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ABSTRACT
Massive multi-player online games have become a popular,
fast growing, multi-million industry with a very high user
mass supporting hundreds or thousands of concurrent play-
ers. In many cases, these games are centralized and every
player communicates with the central server through a time-
critical unicast event stream. Funcom’s Anarchy Online is
one of these; it is based on TCP. We find that its kind of
traffic has some interesting properties that inspire changes
to protocol or architecture.

In these game streams, TCP does not back off, using TCP
does not have to be slower than using UDP, and almost
only repeated timeouts ruin the game experience. Improving
the latter in the sender implementation does not impose
any remarkable penalty on the network. Alternatively, a
proxy architecture for multiplexing could save about 40%
resources at the server, allow congestion control to work and
also reduce the lag of the game.
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1. INTRODUCTION
Large improvements in computer technology have enabled

highly interactive distributed applications such as distrib-
uted virtual environments, massive multi-player online games
(MMOGs) and computer supported cooperative work. These
applications often include several types of media ranging
from text to continuous media and may have stringent re-
quirements with respect to the quality of the client data
playout.

In the MiSMoSS project, we aim for better system support
for such applications by trying to make more efficient use
of the available resources and increase the perceived qual-
ity at the user. In particular, we look at MMOGs due to
the mix of different media, the stringent latency require-
ments, the dynamic client groups and the fact that it has
become a popular, fast growing, multi-million industry with
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a very high user mass. Today, MMOGs are increasing in
size and complexity, supporting hundreds or thousands of
concurrent players [13], and they typically include a mix-
ture of game situations from role-playing games, first person
shooter games and real-time strategy games. Players in the
game move around and interact with other players, seem-
ingly as if they were located next to each other. Frequently,
many players interact with each other and the same object
in the game world; these are then said to share an area-
of-interest (AoI) or to be within each others AoI. In such a
case, it is important that the users get the same information
more or less at the same time to have a consistent view of
the game world.

Today, most MMOGs apply a central server (or a central
server cluster) approach for collecting and processing game
events generated by players, and point-to-point communica-
tion for the distribution of game state updates. With respect
to delivering events to players in time, the game traffic must
compete with all other traffic in the network, and in case of
errors, the servers usually use standard protocol implement-
ations available in the operating system kernels.

In this paper, we focus on the challenge of delivering real-
time data in MMOGs. As a starting point, we examine
the traffic of a particular game, Funcom’s popular massive
multi-player online role playing game (MMORPG) Anarchy
Online [10], which uses an unmodified default TCP vari-
ation to deliver data to the players. A trace from one of An-
archy Online’s game regions shows that the event streams
are very thin (i.e., less than 4 small packets per second),
and some users experience huge delays due to retransmis-
sions. We therefore look at the various TCP mechanisms
in Linux to see if the experienced game play can be im-
proved. Our experimental results show that, in such thin
game streams, 1) TCP does not back off, i.e., each stream
may be thin, but the application may have hundreds or thou-
sands concurrent streams which together may give conges-
tion without reducing the sending rate, 2) using TCP does
not have to be slower than using UDP as the send buffer is
usually empty and an event may be sent immediately, and
3) almost only repeated timeouts ruin the game experience
because the number of in-flight packets is so small that fast
retransmissions due to multiple duplicate acknowledgments
is an exceptional occurance. Furthermore, improving the
latter in the sender implementation does not impose any
remarkable penalty on the network. Alternatively, a proxy
architecture for multiplexing could save about 40% resources
at the server, allow congestion control to work and also re-
duce the lag of the game.
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Figure 1: Anarchy Online packet trace analysis

The rest of this paper is organized as follows. In section 2,
we briefly describe some of the main observations from the
Anarchy Online game trace. Section 3 presents some related
work, and experiments and results using the various Linux
implementations (and enhancements) are presented in sec-
tion 4. Finally, we summarize the paper in section 5.

2. ANALYSIS OF ANARCHY ONLINE
GAME TRAFFIC

To look at an example, we have analyzed a one hour packet
trace1, obtained using tcpdump, containing all packets from
one of a few hundred game regions in Funcom’s popular
MMORPG Anarchy Online. Each machine in the central-
ized server cluster manages one or more regions, i.e., no re-
gion spans several machines. Furthermore, Anarchy Online
keeps point-to-point, default (New Reno) TCP connections
open, from one or more Linux servers to every client. We
found approximately 175 distinct connections in this packet
dump, and knowing that the servers are located in the US,
one can assume from the observed minimum latencies that
there are players concurrently located in the US, Europe and
Asia.

Some of our findings are depicted in figure 1. From fig-
ure 1(a), we see that the average RTT is somewhat above
250 ms with variations up to one second, i.e., these RTTs
make the game playable [7]. However, looking at the max-
imum application delay (time for receiving a successful ac-
knowledgment) which may include several retransmissions
as a result of packet loss, we have extreme worst case delays
of up 67 (!) seconds. Obviously, we cannot distinguish
between lost packets and lost acknowledgments in this server-
sided trace, but we can see the potential for several second-
long delays in delivering packets to the application on the
client side. Furthermore, figure 1(b) shows that, on aver-
age, less than one packet is sent per RTT. Combined with
the measured RTTs, we see that the number of packets per
second is low, below 4 packets per second. Considering that
each packet is very small (about 120 bytes on average, see
table 1), this demonstrates how thin the individual streams
are. Finally, figure 1(c) shows that groups of these connec-

1We have mostly looked at server to client communication as
the client to server traffic is very smooth, and we do not have
any control over the client TCP in order to make changes.

tions have a high probability of shared paths. It visualizes
the results of a Wilcoxon test [11] of connection pairs that
checks whether their RTT values stem from the same RTT
base value set. A dot in the figure shows that two connec-
tions with high probability share a path.

With respect to losses, the original trace shows a loss prob-
ability of slightly less than 1 % but contains several instances
of 6 retransmissions. This implies that it is not the loss rate
itself that is unacceptable, but the occasional huge delays
when multiple retransmissions are needed. Moreover, we
have not found any correlation between losses of the various
connections in the trace, and we would like to conclude that
losses across the connections in the trace are uncorrelated.
This would imply that losses are not due to server-sided bot-
tlenecks. We use this as a working assumption, however, the
thinness of the streams may actually hide loss correlation.

In summary, the lag that is experienced by players with
lossy connections can be huge, and the thinness of the streams
implies that retransmissions occur more or less only due to
timeouts, since less than one packet is sent per RTT. Simul-
taneously, the congestion window grows very slowly even in
slow start since several writes will be merged into a single
packet, and repeated losses can keep the congestion window
size close to 1. Thus, the main challenge for this kind of
traffic is not the bandwidth, but the delay due to retrans-
missions that is typical for this kind of distributed multime-
dia application today. Therefore, it is important to note and
deal with the most important observations, i.e., the connec-
tions are so thin that 1) they hardly ever trigger fast retrans-
missions but mainly retransmit due to timeout and 2) TCP’s
congestion control does not apply, i.e., the TCP stream does
not back off. We therefore consider it reasonable to look at
the TCP stack for an alleviation. Additionally, there are
several connections that probably share several links in the
path to the server, and we should use this observation to
conserve network resources.

3. RELATED WORK
The body of work that has analyzed game traffic has

grown considerably in the recent past. For example, Clay-
pool [7] has investigated how latency affects the perceived
quality for real-time strategy games where the results show
that some latency is tolerable. Moreover, Feng et al. [5, 9]
provide a comprehensive analysis of Counter-Strike traffic



and investigate traces of several games concerning the pre-
dictability of game workloads. There, the conclusion is that
game traffic varies strongly with time and with the attract-
iveness of the individual game. Chen et al. [6] investigate
the traffic of MMORPGs. They find that streams are in
general very thin, but that they are also bursty and show a
correlation of inter-arrival times on the minute scale within
individual streams. Furthermore, fitting multi-player game
traffic to probability distributions is described by Borella [1].

Little work has been done on providing network-related
mechanisms specifically for games, but Busse et.al. [3] present
an admission control algorithm for a wireless network. They
show its suitability for a simple game whose bandwidth us-
age approximately follows a Poisson distribution. However,
we do not know any papers that analyze how underlying
mechanisms affect the game performance and make propos-
als for improving the support for our kind of network traffic
in the general Internet.

In Anarchy Online, TCP is used for communication, and
we assume that this will remain the appropriate choice for
MMORPGs for a while, due to the current state of firewall
technology. We will therefore look more closely at TCP.
Many variations of TCP exist to improve the throughput of
individual streams without penalizing other TCP streams
under various conditions.

The most basic TCP variant that is included in the Linux
kernel is New Reno. It performs the usual slow start mech-
anism, halves the congestion window threshold and reduces
the congestion window to 1 on timeout. If it receives duplic-
ate acknowledgments it also performs fast retransmit and
a variation of fast recovery that improves on TCP Reno.
In Linux, it can be combined with selective acknowledg-
ments (SACK). SACK was developed independently from
New Reno. It resolves the ambiguity in senders’ interpreta-
tion of duplicate ACKs by listing additional ranges of arrived
bytes behind a gap. Also available are duplicate SACKs
(DSACKs) that allow the receiver to inform that an ACK
does not belong to new but to duplicate data. Forward ac-
knowledgment (FACK) [12] is a SACK extension that keeps
track of the amount of data that has been received and trig-
gers a fast retransmit when the receiver indicates in a SACK
block that it has a gap that is at least three segments long.

In addition to these variations, Linux offers a variety of
TCP variations meant for higher throughput over connec-
tions with a high bandwidth-delay product. Binary increase
congestion control (BIC) [14] tries to find the fair share of
the bandwidth faster than Reno by performing a binary
search for the number of packets per RTT that can be sent
without packet loss. However, this happens only between
two thresholds for the congestion window size. Below the
lower threshold, normal congestion window development ap-
plies. Above the higher threshold, additive increase is ap-
plied. Vegas [2] uses RTT measurements to detect whether
queue lengths increase, and stops to increase transmission
speed when they do. This leads to very stable operation
if only Vegas is used. The Linux implementation does not
modify retransmissions in any way, but within one RTT,
it can reaffirm the appropriate transmission speed after the
connection has been temporarily idle. Westwood [4] avoids
Vegas’ problem of loosing bandwidth in competition with
New Reno connections. It uses the flows of ACKs instead of
RTTs to estimate the bandwidth. This algorithm does not
modify basic loss recovery either.

There are, however, TCP variations not included in Linux
that make such changes. A variation is fixed-RTO [8] that is
meant to improve TCP performance over wireless networks.
It does this, but on the general Internet it would obviously
be considerably more aggressive in recovering after a con-
gestion event than the other TCP variations.

4. EXPERIMENTS
Figure 1 shows that the basic average RTT between the

Anarchy Online servers and the clients is rather high. But
sporadically, clients experience really huge lag (delay in the
application). This might be devastating to the perceived
game experience. It is easily confirmed that the problem
is due to the thinness of the streams. Few packets sent
per RTT prevent fast retransmission, the congestion win-
dow does hardly grow, and packet loss is only detected by
timeout, which additionally reduces the congestion window
to 1 MSS. In addition, the sender reacts to repeated losses
with exponential back-off.

To see whether the existing TCP variants in Linux could
improve the situation, we replayed the packet trace through
emulated lossy networks. FACK, for example, does not re-
quire triple duplicate ACKs to trigger retransmission and
could reduce average lag, although probably not maximum.
Additionally, we have looked at the possible gain of send-
ing all the data in one single connection to save network
resources. The idea is that the packets are redistributed to
the clients by a proxy server.

4.1 Test Setup
We performed the tests using two small local networks

and three Pentium4 machines. The server application regen-
erates and sends all the original packets in the trace to the
client (retransmissions present in the trace are not sent). To
simulate delay, jitter and loss, we used netem (Linux 2.6.15
kernel) to add 100 ms and 300 ms delay with and without
10 % jitter. Due to instabilities of netem, we used a sep-
arate packet dropper implemented on a network processor
(IXP2400) to drop 1 % and 5 % of the packets, respect-
ively. The properties apply both ways in the network, i.e.,
since we have as many lost acknowledgments as lost packets,
the client will have received about half of the retransmitted
packets early, improving the actual situation from the per-
spective of the gamer.

4.2 Replaying the Game using Different
Linux TCP Variants

To see if there is any difference in how the various Linux
TCP versions perform with respect to retransmission delay
when low-rate, real-time event streams are sent to clients,
we tested the existing Linux variants, i.e., New Reno (plain,
with SACK, DSACK, FACK, and with DSACK and FACK),
Westwood, BIC and Vegas. Additionally, we ran the tests
with and without LOWLAT and FRTO turned on, but these
options did not change anything.

Figure 22 shows the average time between the first trans-
mission of a packet from a server and the retransmission
that is finally successfully acknowledged. Each of the sub-
figures shows the average time for the 8 TCP settings in

2The results in figure 2 and 3 show the 100 ms delay only.
However, the 300 ms experiments show identical results only
with higher delays according to a higher RTT.
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Figure 2: Average retransmission delay, simplex streams, 100ms delay

the 2.6.11 kernel in various situation. The figures are ar-
ranged in four blocks according to network properties, i.e.,
1 % loss/no delay variation, 1 % loss/10 % delay variation,
5 % loss/no delay variation and 5 % loss/10 % delay vari-
ation.

Looking at the results, there are only small variations
between the different options available in Linux. The first re-
transmissions are delayed by more or less the same amount
of time3 (about 400 ms, figure 2(a)). Since nearly all re-
transmissions are triggered by timeouts, the second (and
later) retransmission have delays according the TCP back-
off mechanism, i.e., about 1200 ms as shown in figure 2(b)
for the second retransmission.

Obviously, changing the TCP version itself has no or very
little effect in this scenario. Therefore, to see if we can
improve the gaming quality by other means, we have ex-
perimented with a modified server architecture introducing
proxies and a modified retransmission timeout (RTO) cal-
culation at the sender in section 4.3 and 4.4, respectively.

4.3 Modified Architecture
To see the effect on delay and server resources, we com-

pared individual connections to every client with a single
connection carrying the multiplexed streams for all clients
to an imaginary proxy which performs operations on behalf
of the server and splits the single multiplexed TCP connec-
tion to each individual client. The test depicted in figure 1
has shown that quite a few clients probably share a path, so
the proxy approach makes sense in that manner. A separ-
ate consideration is the increase in end-to-end latency that
is naturally introduced by a proxy architecture. Minimal
and average end-to-end latency would degrade, and the in-
crease in bandwidth share that comes with TCP connection
splitting is irrelevant in our scenario. However, we would
benefit from improved loss recovery times.

Several interesting observations can be made. First, since
packets are small (far below 100 bytes), the appended head-

3The timeout calculation in Linux increases the average
delay with increasing RTT variance. However, with a max-
imum 10 % variance, this variation is too small to have a
visible impact.

ers comprise a huge part of the number of transmitted bytes.
As table 1 shows (for FACK), a lot of resources can be saved
at the server. In our scenario, where about 175 individual
thin streams are multiplexed into a single connection with
an average data rate of 0.122 Mbps, we have reduced the
amount of data and the number of packets by approximately
40 %. While this may seem irrelevant for the individual
connection, an operator of a successful MMORPG has to
dimension the access network for tens or even hundreds of
thousands of concurrent connections.

Besides this, we see also the hoped-for improvement of
per-client latency. We used the settings from section 4.2
to emulate multiplexed streams (figure 3). Comparing the
two alternatives, we see that the average latency experienced
over multiplexed connections is lower if the packet loss rate is
low. In this approach, fast retransmissions are typical. This
implies that the multiplexed stream is subject to congestion
control, and an MMORPG that uses this approach would
have to be able to scale the multiplexed stream to adapt
to the available bandwidth. It is also important to note
that the reduction in retransmission times is less pronounced
when the latency is higher.

The high-speed variations do not perform well in the thin
streams scenario. We found this particularly surprising for
Westwood+, which is meant for efficient transfer over wire-
less connections. However, the implementation does never
touch the smoothed RTT which is used for the RTO cal-
culation; Westwood+ is meant to work well in the wireless
scenario by not simply halving the congestion window in
case of loss. If throughput is not the issue, it provides no
advantage. Similarly, Vegas affects only congestion control.

According to figure 3, the most promising of all TCP set-
tings in our scenario are the more recent extensions to New
Reno, DSACK and/or FACK. For FACK, figure 4 shows a
direct comparison of average latencies between direct and
multiplexed connections. It demonstrates that the average
latency is lower for the multiplexed connections, but it shows
also that the advantage is lost when the packet loss rate is
very high. In the following section, we are therefore looking
at a the potential of a protocol variation.



total total total average bandwidth

time #bytes #packets packet size requirement

simplex 1855 s 44974424 bytes 372711 120 bytes 0.194 Mbps

multiplex 1804 s 27582922 bytes 113149 243 bytes 0.122 Mbps

Table 1: Packet statistics (New Reno with FACK, 100 ms delay, 1% loss)
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Figure 3: Average retransmission delay, a multiplexed stream, 100 ms delay
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4.4 Modified Kernel
To see whether we can gain anything from making the

TCP retransmission scheme slightly more aggressive to bet-
ter support thin real-time event streams without violating
the basic congestion mechanisms, we modified a 2.6.15 ker-
nel. The default standard RTO calculation and the tradi-
tional back-off mechanism is implemented as (using Linux
notation4)

min([(srtt ≫ 3) + rttvar] ≪ n, TCP_RTO_MAX)

where TCP_RTO_MAX is 2 minutes (default), srtt is the

4Other implementations may use other formulas like
RTO = rtt + 4×mdev which for example is used in BSD.

smoothed RTT (7/8 srtt + 1/8 new rtt), rttvar is the vari-
ance of the RTT (3/4 medium rtt deviation + 1/4 new rtt)
and n is the number of retransmissions. In our modified
scheme, we used a new RTO calculation if less than 3 pack-
ets are “in-flight” (packets_out < 3), i.e., when we assume
a thin stream that will not cause congestion. This RTO
calculation is implemented as

min([(srtt ≫ 3)+min((srtt ≫ 4), rttvar)], TCP_RTO_MAX).

Thus, as long as the traditionally calculated timeout is not
shorter, this scheme uses the smoothed RTT only for the
RTO calculation and does not apply back-off. Note, how-
ever, that our experimental modification is not meant to
provide a perfect formula for thin streams. For example, the
approach is not well suited for very high loss rates or cor-
related losses, and aggressive piggy-backing on other pack-
ets should also be considered. However, this is subject for
further research, and we wanted here only to see if such a
scheme could be used without wasting too many resources
in additional retransmissions.

To see how the modified RTO scheme influences the re-
transmission delay, we reran a selection of the tests using
New Reno and the basic extensions. The average retrans-
mission delay with standard deviation for FACK is shown in
figure 5 (the other results are similar). The retransmission
latency can never be higher than in the original scheme, but
the improvement increases considerably with the number of
retransmissions that are necessary, i.e., the lag experienced
by the player due to repeated packet loss is reduced.

On the other hand, the approach ignores rttvar and tends
to choose a more aggressive retransmission timer setting.
This may increase the number of unnecessary retransmis-
sions due to early timeouts. In table 2, we present the num-
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Figure 5: Comparing standard and modified RTO, New Reno with FACK

delay total max 1st retrans 2nd retrans 3rd retrans

loss delay variance #packets #retrans. total self incl. total self incl. total self incl.

Standard 1% 100ms 0% 184230 3 4528 3400 1128 65 53 12 2 2 0

1% 100ms 10% 184213 3 4319 3298 1030 69 60 9 3 2 1

1% 300ms 0% 182687 3 4282 2737 1545 32 22 10 0 0 0

1% 300ms 10% 182855 3 4318 2717 1601 43 30 13 0 0 0

5% 100ms 0% 182480 4 20532 15187 5345 1236 1055 181 127 109 18

5% 100ms 10% 182820 4 20557 15253 5304 1153 945 208 115 96 19

5% 300ms 0% 176573 5 18798 11729 7069 855 629 226 54 45 9

5% 300ms 10% 175851 4 19290 12081 7209 945 705 240 93 65 28

Modified 1% 100ms 0% 184164 3 4642 3369 1273 58 49 9 2 2 0

1% 100ms 10% 184145 3 4680 3396 1284 65 51 14 1 1 0

1% 300ms 0% 179416 3 4239 2709 1530 43 32 11 4 2 0

1% 300ms 10% 179927 3 4203 2659 1544 46 35 11 0 0 0

5% 100ms 0% 177401 4 19115 14654 4461 1433 1185 248 143 121 22

5% 100ms 10% 182320 6 19800 15158 4642 1352 1135 217 116 101 15

5% 300ms 0% 161321 4 16882 11527 5355 1119 846 273 93 76 17

5% 300ms 10% 159906 4 16708 11413 5295 1111 838 273 98 78 20

Table 2: Statistics for retransmissions using FACK

ber of experienced retransmissions, again represented by the
FACK results. Here, the “self” column contains the number
of retransmissions of a particular packet, while the “incl”
column provides the number of retransmissions that are
piggy-backed in (re)transmissions of another packet. Nev-
ertheless, comparing the numbers with respect to the total
number of transmitted packets, the two schemes are almost
identical. For example, the new scheme is 0.07% higher for
100 ms delay/1% drop, but 0.5% lower if we increase to 5%
drop – both for the first retransmission.

With respect to delivering time-dependent packets, our
results show that it should be possible to implement an
improved scheme for thin real-time event streams that im-
proves retransmission delay, gives approximately the same
number of retransmissions and does not apply to other situ-
ations, whereas for example fixed RTO [8] would also re-
transmit quickly when the RTT in a high bandwidth situ-
ation varies strongly.

5. CONCLUSION
Most existing work on TCP is aimed at providing the

highest possible throughput to individual TCP connections
while not violating the fairness principle. This is also the
aim of the more recent options in the Linux kernel. At the
same time, researchers discuss more frequently the use of
TCP for time-dependent multimedia applications that do
not always exhaust the bandwidth share that is available to
their connection.

This is particularly true for the very thin game traffic
streams examined in this paper. This scenario is hardly in-
vestigated and badly supported in TCP. For the individual
stream, this lack results in a harsh penalty for not exhaust-
ing its bandwidth share. On the other hand, these streams
appear in large numbers without any means of reacting to
congestion.

Here, we have looked at the first issue and shown two ap-
proaches that can reduce the lag experienced at the applic-
ation layer. Both the multiplexing of streams into a single



192.168.12.2:39106 - 192.168.2.50:12000
num time/sec
126 PKT t 463.354 seq 5546 len 37 ;; packet 126 (seq 5546) is sent
127 ACK t 463.681 ack 5546 ;; acknowledgement, receiver expects seq 5546
128 PKT t 463.691 seq 5583 len 70 ;; packet 128 (seq 5583) is sent
129 ACK t 463.933 ack 5583 ;; acknowledgement, receiver expects seq 5583
130 PKT t 464.199 seq 5653 len 83 ;; packet 130 (seq 5653) is sent
131 PKT t 464.726 seq 5736 len 94 ;; packet 131 (seq 5736) is sent
132 RTR PKT t 464.737 seq 5583 len 153 ;; retransmission of packet 128, unacknowledged packet 130 is piggybacked
133 DUP ACK t 464.845 ack 5583 ;; duplicate acknowledgement, receiver expects seq 5583
134 PKT t 465.019 seq 5830 len 25 ;; packet 134 (seq 5830) is sent
135 DUP ACK t 465.329 ack 5583 ;; (second) duplicate acknowledgement, receiver expects seq 5583
136 PKT t 465.329 seq 5855 len 228 ;; packet 136 (seq 5855) is sent
137 ACK t 465.361 ack 5830 ;; acknowledgement, receiver expects seq 5830

Figure 6: A retransmission

TCP connection and a more aggressive timeout retransmis-
sion approach promise a reduced lag. We do therefore in-
tend to pursue further options for improvement. For ex-
ample, we see that the use of TCP has a disadvantage over
the use of UDP. A correctly received TCP packet follow-
ing a lost packet is blocked from delivery to the application
until the lost packet is eventually retransmitted successfully.
The thin streams would also permit an alternative handling.
For example, an application of the piggy-backing approach
seen in figure 6, in which the unacknowledged packet 130 is
piggy-backed with the retransmission of packet 128, could
also be applied to first time transmissions if the a packet is
not acknowledged by the simple RTO. A new packet would
include the payload of the previous packet as well, e.g.,
piggy-backing packet number 126 in packet 128, doubling its
chances of being delivered just as quickly as a UDP packet.

6. ACKNOWLEDGEMENTS
We would like to thank Funcom, Jarl Christian Berentsen

in particular, for information about Anarchy Online and the
trace used in this study.

7. REFERENCES
[1] Borella, M. S. Source models of network game

traffic. Elsevier Computer Communications 23, 4 (Feb.
2000), 403–410.

[2] Brakmo, L. S., O’Malley, S. W., and Peterson,

L. L. TCP Vegas: new techniques for congestion
detection and avoidance. In Proceedings of the ACM
International Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM) (London,
UK, 1994), ACM Press, pp. 24–35.

[3] Busse, M., Lamparter, B., Mauve, M., and

Effelsberg, W. Lightweight QoS-support for
networked mobile gaming. In Proceedings of the
Workshop on Network and System Support for Games
(NETGAMES) (Portland, OR, USA, 2004), pp. 85–92.

[4] Casetti, C., Gerla, M., Mascolo, S., Sanadidi,

M. Y., and Wang, R. TCP Westwood: end-to-end
congestion control for wired/wireless networks.
Wireless Network 8, 5 (2002), 467–479.

[5] Chambers, C., Wu-chang Feng, Sahu, S., and

Saha, D. Measurement-based characterization of a
collection of on-line games. In Proceedings of the

USENIX Internet Measurement Conference (IMC)
(Berkeley, CA, USA, 2005), pp. 1–14.

[6] Chen, K.-T., Huang, P., Huang, C.-Y., and Lei,

C.-L. Games traffic analysis: An MMORPG
perspective. In Proceedings of the International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV) (Stevenson,
WA, USA, 2005), ACM Press, pp. 19–24.

[7] Claypool, M. The effect of latency on user
performance in real-time strategy games. Elsevier
Computer Networks 49, 1 (Sept. 2005), 52–70.

[8] Dyer, T. D., and Boppana, R. V. A comparison of
TCP performance over three routing protocols for
mobile ad hoc networks. In Proceedings of the
International Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc) (Long Beach,
CA, USA, 2001), ACM Press, pp. 56–66.

[9] Feng, W.-c., Chang, F., Feng, W.-c., and

Walpole, J. Provisioning on-line games: a traffic
analysis of a busy Counter-strike server. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet
measurement (Marseille, France, 2002), pp. 151–156.

[10] Funcom. Anarchy online.
http://www.anarchy-online.com/, Feb. 2006.

[11] Larsen, R. J., and Marx, M. L. An Introduction
to Mathemetical Statistics and Its Applications.
Prentice Hall, 1986.

[12] Mathis, M., and Mahdavi, J. Forward
acknowledgement: refining TCP congestion control. In
Proceedings of the ACM International Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM)
(Palo Alto, CA, USA, 1996), ACM Press, pp. 281–291.

[13] Whang, L. S.-M., and Kim, J. Y. The online game
world as a product and the behavioral characteristics
of online game consumers as role player. In
Proceedings of the Digital Games Research Association
International Conference (DIGRA) (Vancouver,
Canada, June 2005).

[14] Xu, L., Harfoush, K., and Rhee, I. Binary
increase congestion control for fast long-distance
networks. In Proceedings of the Joint Conference of
the IEEE Computer and Communications Societies
(INFOCOM) (Hong Kong, China, 2004).


