
AC/DC: an Algorithm for Cheating Detection by Cheating ∗

Stefano Ferretti
Department of Computer Science

University of Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy

sferrett@cs.unibo.it

Marco Roccetti
Department of Computer Science

University of Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy

roccetti@cs.unibo.it

ABSTRACT
Time cheats represent some of the most crucial issues in
online gaming. Since they act on timing properties of gen-
erated game events, these malicious schemes are particularly
difficult to thwart when distributed games are deployed over
peer-to-peer architectures. Indeed, the absence of a global
clock shared among peers enables cheaters to see into the
future by waiting for events generated by other peers before
generating its own ones (lookahead cheat). This may give
an unfair advantage to the cheater. We consider a version
of lookahead cheat generalized in the context of real-time
(i.e., not round-based) games. To face this time cheat, we
present AC/DC, an Algorithm for Cheating Detection by
Cheating. This algorithm enables to detect cheaters based
on monitoring of network latencies. The basic idea is that
of conducting against each suspected peer a sort of cheating
counterattack, by delaying events before notifying them to
the (hypothetic) cheater. This permits to detect whether
that peer waits for these events before generating its own
ones. Our claim is that an approach based on the moni-
toring of communication patterns among peers allows cheat
detection without affecting the performances of the game.

Categories and Subject Descriptors
K.8.0 [Computing Milieux]: PERSONAL COMPUTING—
Games

General Terms
Algorithms, Synchronization, Security

Keywords
Cheating, Online Games, Peer-to-Peer

∗This work is financially supported by the Italian M.I.U.R.
and R.E.R. under the Interlink, MOMA, DAMASCO and
SWIMM initiatives.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

1. INTRODUCTION
The computer game industry is growing rapidly. Today,

these digital forms of entertainment require complex soft-
ware solutions able to ensure compelling experiences to users.
Among the numerous technological novelties introduced in
the gaming market, network playing is probably the most
revolutionary one. From a user perspective, the Web can be
seen as a whole game platform that enables one to discover
and play with millions of unknown other players. However,
several issues arise when geographically dispersed players in-
teract together through the Internet. Indeed, the highly dy-
namic configuration of distributed game environments and
the anonymity among players bring new security challenges
for game developers that need to be addressed. Among
these, cheating is certainly one of the most problematic.

Cheating is defined as any action that a player accom-
plishes to obtain an unfair advantage over other players.
Cheaters try to alter game rules via deviant program behav-
iors [9]. There are several types of cheats in online games.
Taxonomies have been proposed in [13, 18, 19, 20], where
cheating schemes are organized depending whether cheaters
try to violate game rules, authentication procedures, private
information, timing constraints, etc. Our focus here is on
those cheats that allow players to alter timing information
of game events (time cheats). Time cheating is rampant in
distributed games since players are placed at different geo-
graphical locations and typically connect to the game thanks
to different system/networking technologies. This unfair-
ness on players’ technological capabilities is the first alibi
for cheaters. Indeed, by simulating larger network response
times, time cheats can be devised which allow cheaters to
“see into the future”, thus providing them with an unfair ad-
vantage with respect to honest players [6]. Moreover, games
are particularly vulnerable to time cheats when they are
hosted on peer-to-peer platforms which are, instead, one of
the most promising game architectures for the support of
these kinds of applications [3, 4, 7].

In this work, we face with a particular version of the
well-known lookahead cheat, generalized in the context of
real-time (i.e., not round-based) games. According to such
malicious scheme, the cheater waits to see game events gen-
erated by other participants before generating its own game
event. Then, the cheater mimics that such event has been
generated prior to other ones. Schemes that prevent this
specific time cheat have been presented in [1, 6, 13, 16]. The
main characteristic common to these approaches is that the
event delivery is supposed to be organized in rounds. Nodes
are forced to exchange additional information (such as hash

values) before revealing their new generated moves. Un-
fortunately, these schemes result really expensive in terms
of number of additional messages and introduced latencies.
In fast paced real-time games, this represents an important
limitation. Moreover, forcing the game to proceed in rounds
limits the pace of the game evolution, thus jeopardizing re-
sponsiveness. Indeed, having a proof cheat protocol that
affects the interactivity degree may be useless for a large
class of fast paced games.

With this in view, we claim that, instead of avoiding
cheats, more profitable solutions can be devised which are
based on detection of cheaters. In essence, a peer may de-
cide to control other suspected peers to assert with a certain
confidence whether they are cheating or not. The algorithm
presented in this work follows this approach. In particu-
lar, the proposed scheme works at the game communication
level and monitors game event latencies during the game
delivery. The scheme is based on the following fundamental
assumption: the underlying network over which the game is
deployed offers a best-effort service with unpredictable delay
latencies and jitters but, on the long run, an average trend
of network latencies may be observed. This assumption is
in accordance with a plethora of works that model network
traffic in different contexts of networks and applications such
as, in the networked gaming literature, [2, 11, 15].

Our scheme is named AC/DC, i.e., an Algorithm for
Cheating Detection by Cheating. In substance, cheaters
detection is accomplished by deliberately increasing trans-
mission latencies of game events towards a given peer p, once
p is suspected for cheating. This enables to notice whether
p waits for these delayed game events before generating its
own (cheated) game events. Put it in other words, a specific
node in the system (i.e., the leader peer that controls oth-
ers for cheating) performs a sort of cheat towards p, so as
to detect if p is a cheater. Detection of cheaters is possible
since increasing network latencies will be measured at the
leader for subsequent cheated events from p, based on their
associated timestamps.

According to our model, the game evolution is not forced
to proceed in rounds. Moreover, even if game events are
delivered to suspected cheaters with increasing latencies, all
other nodes in the system are not directly affected by our
cheating counterattack. Indeed, it could be the case that
a cheating counterattack against a suspected cheater may
lead to the introduction of additional delays whose effect
may have some impacts on the general game dynamics. To
counterbalance this problem, classic hiding approaches may
be exploited, such as optimistic synchronization and dead-
reckoning, to reduce the impact of additional delays. In
conclusion, based on our approach, a real-time evolution
can be guaranteed.

The remainder of this work is organized as follows. Sec-
tion 2 describes our system model. Section 3 presents in de-
tail AC/DC. Section 4 provides discussions on the devised
scheme and on how peers may assume the role of leaders.
Finally, Section 5 concludes the work.

2. SYSTEM MODEL
We use a framework for modelling games and related tim-

ing constraints based on the seminal work by Fujimoto [12].
As this model is quite general, our approach can be applied
to a wide range of different gaming contexts.

We denote with Π the set of peers; pi identifies a single

Table 1: Notations and Symbols

Symbol Definition

Π Set of peers
pi Single peer
Πi All peers but pi

ei
k k -th event generated by pi

WTi Wallclock time at pi

STi Simulation time at pi

TW
i Mapping function from STi to WTi

TS
i Mapping function from WTi to STi

driftij Drift between physical clocks at pi and pj

gapij Time between the instants at which pi and pj

start the game
UB Upper bound on latencies in the system
δij (e) Time to transmit e from pi to pj

δij Average latency from pi to pj

WT rec
j (e) Time of reception of e at pj

λl Additional delay employed during the cheating
counterattack

γ Value that accounts for a significant difference
between two latency estimations

Λ Upper bound on the increment of overall delay
latencies during the cheating counterattack

peer, i.e., pi ∈ Π. For the sake of a simpler notation, with
Πi we indicate all peers but pi i.e., Πi = Π − {pi}. Simi-
larly, notations such as Πi,j indicate all peers but pi , pj i.e.,
Πi,j = Π − {pi , pj}. (Notations and symbols employed in
the remainder of the work are summarized in Table 1.)

Games are often viewed as specific simulations where char-
acters interact each with other and evolve with the passing of
time. Time is thus a primary characteristic to be modelled.
We consider here a general model where the game advances
in real-time using the notions of wallclock time and simu-
lation time. Specifically, the so called wallclock time is the
time that identifies when the game takes place. With WTi ,
we refer to the wallclock time measured at pi . Simulation
time, instead, is the abstraction that is used to model when
events have been produced within the virtual game timeline.
With STi , we refer to the simulation time measured at pi .
Thus, once a game event e is generated at pi , pi associates to
e a specific simulation time STi(e), obtained from its wall-
clock time WTi(e) representing the instant of generation of
e, measured at pi .

We define a mapping function TW
i that transforms a sim-

ulation time s ∈ STi into the corresponding wallclock time
t ∈ WTi at pi i.e., TW

i (s) = t . With TS
i , instead, we rep-

resent TW
i ’s inverse function. A typical equation to map

wallclock times into simulation times is as follows:

TS
i (ti,actual) = TS

i (ti,start) + k(ti,actual − ti,start), (1)

where k is a constant that determines the pace of game
advancements in the simulated world, ti,actual represents the
actual wallclock time at pi , ti,start represents the wallclock
time associated to the beginning of the game at pi . The
mapping TS

i (ti,start) returns a simulation time value, agreed
and shared among all nodes, representing the time at which
the beginning of the game plot takes place i.e., TS

i (ti,start) =
sstart ∈ ST , ∀pi ∈ Π. Using (1), the simulation time of a
given game event ek can be characterized as follows

STi(ek) = sstart + k(WTi(ek)− ti,start). (2)

We assume that it is never the case that peers start the
game at the same instant i.e., we have with high probability

that ti,start 6= tj ,start , ∀pi , pj ∈ Π, i 6= j . We then assume
that at the beginning of the game, each player notifies other
peers with its own ti,start . Based on this model, each peer
pi associates its starting wallclock time ti,start to the agreed
constant starting simulation time i.e., TS

i (ti,start) = sstart .
Another assumption on which our approach is based is

that at the beginning of the game a clock synchronization
protocol is exploited, such as one inspired to those presented
in literature, e.g., [8, 14, 17]. This allows us to obtain an
initial estimation of the average network latencies among
peers pi , pj ∈ Π and of the drift among physical clocks at
pi and pj (i.e., driftij). By convention, we suppose that
driftij > 0 , if pj reaches a given wallclock time t∗ before pi

(simply put, at a given time instant pj has a wallclock time
higher than pi , see Figure 1).

 pi

 pj
 WTj

 WTi
 t*

 t*

Figure 1: Drift among Physical Clocks of Peers

During the game evolution, each peer pi maintains also
a value gapij measuring the interval of time (real time) be-
tween the instants at which pi and pj , respectively, start the
game (see Figure 2). A simple equation to measure gapij ,
based on the starting point of the beginning time instant
(including driftij) is as follows

gapij = driftij + ti,start − tj ,start . (3)

In essence, gapij takes into account that a drift among clocks
of pi and pj exists and that they started the game at different
times. Clearly, gapij = −gapji as well as driftij = −driftji . It
is worth mentioning that methods may be devised to min-
imize the value of gapij . As an example, peers may simply
agree to start the game at a certain point in time. Alter-
natively, a peer pl may be set to broadcast a start message
to other ones that begin the game as soon as they receive
that message (while pl sleeps for a properly set delay before
starting the game).

 pi

 pj
 WTj

tj,start

 ti,start

 gapij

 WTi

Figure 2: Gap among Peers

Sometimes, for the sake of a clearer notation we denote
game events with subscripts (e.g., ek) to characterize game
events produced by the same player in different time in-
stants, e.g., ej , ek , j 6= k . Moreover, prime notations (e.g.,
e l) denote that the event has been generated by a specific
peer (in this case pl).

Game events are notified within messages. Without loss of
generality, we assume that employed message transmission
procedures for interprocess communication are reliable i.e.,
transmitted messages can experience different latencies and
delay jitters but cannot be lost. We assume the existence of
an upper bound UB on the latencies among peers in the sys-
tem. UB is known by peers. Moreover, we assume to be in a
fully connected peer-to-peer network. With δij (e) we denote
the time needed to transmit a game event e from pi to pj .

With δij , instead, we denote the average latency needed for
the transmission of a non specified game event from pi to pj .
We realistically assume that typically δij (e) ' δij . Further,
WT rec

j (e) identifies the (wallclock) time of the reception of a
given game event e at pj , i.e., pj receives e at t = WT rec

j (e).
As already mentioned, our approach requires the existence

of a leader peer pl which is in charge of controlling if some
other peer nodes cheat. The leader must be a trusted player
(pl must not be a cheater). We discuss in Section 4.1 viable
choices of a leader.

Finally, we assume that the generation of game events by
a honest peer is independent of those generated by other
peers. In other words, even if certain game events, gener-
ated by some peer, may influence the semantics of subse-
quent game events generated at other peers, in general, the
pace of event generation at a given player is mainly influ-
enced by autonomous player decisions. This assumption is
supported by the typical use of techniques such as dead reck-
oning and/or optimistic synchronization, exploited to hide
latencies on notifications and local losses of availability on
updated information, thus providing players with the possi-
bility of independently making the game to evolve [5, 10].

3. CHEATING DETECTION BY CHEATING

3.1 The Cheat
A cheater pi typically waits for moves generated by other

participants before generating an event. As soon as pi re-
ceives these game events, he decides the best action to carry
out, and notifies others with the new game event e, pretend-
ing that e has been generated concurrently with (or before)
other ones. This kind of cheat is commonly referred to as
lookahead time cheat [1, 6, 16].

To formalize this cheat in a real-time model, we denote
with W(e) the set of those game events which pi will be
waiting before generating e. A first issue is concerned with
determining which game events belong to W(e). This clearly
depends on the specific game. In round-based games, for ex-
ample, W(e) corresponds to the set of all the game events
generated by other players at that round. Different alterna-
tives may be in use when the game proceeds in real-time.
For example, W(e) may consist of the set of game events
generated by other players within a given interval of sim-
ulated time ∆s. Alternatively, other possible settings for
W(e) exist and it is reasonable to assume that pi knows
which game events W(e) is comprised of. In the following,
we will consider ∆s as the simulation time value exploited
to determine W(e).

Upon generation of e, pi may create a cheated simulation
time obtained through the use of the following formula:

ST c
i (e) = min{STj (ek) | ek ∈ W (e), pj ∈ Πi} − ω,

(ω ∈ ST , ω > 0). (4)

In essence, ST c
i (e) is chosen so that ST c

i (e) < STj (ek), ∀ek

∈ W (e), i.e., pi pretends that e has been generated before
each other game event in W(e). Finally, pi calculates a
cheated wallclock time WT c

i (e) in accord with ST c
i (e), ob-

viously different from the real wallclock time of generation
of e, WTi(e).

3.2 AC/DC: A Cheating Detection Scheme
To face this cheat, we present an Algorithm for Cheating

Detection by Cheating (AC/DC), which is based on the idea

of deliberately increasing the transmission latency of events
generated at pl for pi . The goal here is that of detecting
whether pi waits for game events generated by pl , before
generating its own messages. Thus, as soon as pl decides to
control pi for possible cheating, it starts computing a new
measure of the average latency for the transmission of game
events from pi to pl . This value is obtained by averaging
over time several measurements of δil(e

i
k),

δil(e
i
k) = WT rec

l (e i
k) + driftli −WT c

i (e i
k). (5)

In (5), WT rec
l (e i

k) represents the time of reception of e i
k at pl ,

WT c
i (e i

k) is the (possibly cheated) wallclock time at which
(pi claims that) e i

k has been generated, and driftli is the
drift between physical clocks of the two peers. It is worth
noticing that the use of an average computation of expe-
rienced latencies is probably a naive proposal. Alternative
and more sophisticated approaches could be employed that
exploit, for example, a low-pass filter to smooth the aleatory
behavior of latencies caused by delay jitter.

Equipped with δil , pl may begin a sort of cheating coun-
terattack against pi . In essence, for each game event e l

generated at pl , pl delays e l for an additional amount of
time (say λl) before delivering it to pi . In other words, the
time elapsed since the generation of e l at pl to its reception
at pi results equal to δli(e

l) + λl .
Upon delivery of e l to pi , new latency values δil(e

i
k) are

collected for a given amount of time whose average δ∗il is con-
trasted with δil . Based on this comparison, the leader may
take a decision. Let γ be a time value that accounts for a
significant difference between δ∗il and δil , i.e., the hypothesis
that the two measured values are equal must be rejected.
If δ∗il > δil + γ then pl suspects pi for cheating. Otherwise,
the value of λl is progressively increased and the cheating
counterattack mentioned above is iteratively repeated until
a maximal value for δli + λl equal to Λ is exceeded, where

Λ = UB + TW
l (∆s) + max{gapjl , pj ∈ Πl}. (6)

If the Λ value is reached while δ∗il rests below δil + γ then pi

is not a cheater.
The rationale behind the choice of incrementing λl , till

reaching the bound mentioned above, is as follows. The
first term UB makes sure that no other peer pj has higher
latencies to reach pi i.e., δli + λl > UB ≥ δji , ∀pj ∈ Πi,l .
Furthermore, cases may arise where some game events e j ,
subsequent to e l but still within W (e i

k), can be generated
by other peers in Πi,l . With this in view, the second term
TW

l (∆s) accounts for those events e j ∈ W (e i
k) with simula-

tion times higher than e l but within a time interval of range
∆s. The third and final term max{gapjl , pj ∈ Πl}, instead,
accounts for for those peers pj with gapjl > 0. Indeed, it
may be the case that pl and pj generate events with same
simulation times at different real times and pj reaches these
simulation times after pl (see Figure 2). Summing up, the in-
crement of λl guarantees that no event in W (e i

k) is received
by pi later than e l . Thus, in the case that pi is cheating, pi

will eventually stop, waiting for game events coming from
pl .

A general description of our AC/DC, executed by pl , is
presented in Figure 3 and behaves as discussed above. It
is worth noticing that pl assumes that network latencies
are symmetric (i.e., δli = δil). Moreover, because of delay
jitter, to obtain an accurate value of δ∗il a properly tuned
number of measurements must be set, based on the spe-

Process pl :
pi = peer to control;
assume δli = δil ; /*assumption of symmetry*/
λl = init value; /*init value > 0*/
while ((δli + λl ≤ Λ) ∧ (pi is not suspected))

set additional delaying time = λl ;
observe δ∗il of received game events;
if (δ∗il > δil + γ)

suspect pi ;
else

λl = increase(λl);

Figure 3: AC/DC Pseudo-Code

cific network conditions. Finally, the procedure increase(λl)
mentioned in Figure 3 is not specified here. There are dif-
ferent possible implementation choices such as, for example,
λl = λl ∗ k , k > 1, or a (less aggressive) linear growth of
λl = λl + k , for some constant k.

4. DISCUSSION
A first important issue relates to the choice of λl . One may

argue that a direct use of a value for λl such that δli + λl > Λ
could make the algorithm simpler, as no increments on λl

would be needed during the check phase. However, an ap-
proach based on the progressive increment of λl may be of
help to avoid a too high and unneeded growth of transmis-
sion latencies between pl and pi .

Note also that we are assuming that the increment of λl ,
bounded as discussed before, may lead new observed laten-
cies from pi to pl to surpass a significance threshold, i.e.,
δ∗il > δil+γ. In practice, γ should be properly tuned based on
guarantees (in terms of latency and delay jitter) offered by
the underlying network over which the game is deployed and
on the needed significance level. In particular, the bound on
the increment of λl enables to detect cheaters when γ is set
so that γ < δli + λl− gapil (see Appendix A). Conversely,
if a value of γ is needed that is higher than this last term,
higher values for Λ must be taken into account. Needless to
say, the higher Λ the larger the introduced additional delays
to catch a cheater. Finally, we do not suggest any specific
statistical test to infer whether the two measures δ∗il , δil are
different. Sophistication of the employed test should be de-
termined on a case by case basis.

AC/DC makes pl able to detect if pi is cheating. Indeed,
suppose that pi is a cheater. Due to the progressive in-
crement of λl , latencies experienced by pi to receive game
events generated by pl will increase accordingly. Moreover,
pl lets λl to grow until the overall latency between pi and
pl reaches Λ, if necessary. Thus, during the generation of
cheated events e i

k at pi , eventually the time for receiving all
events in W (e i

k) grows in accordance with δli +λl . This con-
firms that pi will generate successive events e i

k after increas-
ing waiting times and pl will receive these events with in-
creasing measured average delays δli(e

i
k). A detailed discus-

sion on the correctness of AC/DC is reported in Appendix
A.

When pi is not a cheater, instead, the delays added by pl

before the notification of its generated game events will not
influence the event generation activity at pi . This claim is
supported by our assumption that the event generation rate
at a honest node is independent from other ones. Summing

up, during the cheating counterattack, transmission laten-
cies of events from a honest peer pi , δij (e), will be approx-
imately equal to the average latency δij , i.e., δij (e) ' δij .
Thus, pl will not be able to conclude that pi is cheating.
On the other hand, pi will observe progressively increasing
latencies for events coming from pl during the checking pe-
riod. In point of this, however, we already observed that
advanced techniques such as dead reckoning and/or opti-
mistic synchronization schemes may be exploited at honest
peers. These approaches guarantee a fast paced evolution
of the game, even when augmented network latencies slow
down the reception of “fresh” game state updates [5, 10].

Clearly, our cheating counterattack should be activated
only when some peer is suspected by another one. In other
words, methods are needed to suspect a peer for cheating.
In practice, several heuristics that suggest when starting
AC/DC against a possible cheater can be devised. It is not
the aim of this work to list all possible causes for cheating
suspicion. Probably, a combination of diverse factors should
be taken into consideration. Examples are factors based on
degradation of latencies between pl and pi , anomalies based
on the observation (at pl) that other peers “near” pi have
smaller latencies (than pi), or, finally, a player presents par-
ticularly striking game skills i.e., he always wins, therefore
he is very skilled or he is cheating.

4.1 On the Choice of a Leader
Our scheme assumes the presence of a leader in charge of

controlling whether some other peer nodes cheat. Thus, vi-
able choices for a leader election in a completely decentral-
ized peer-to-peer architecture are needed. In general, the
leader should be a peer trusted by all other peers. However,
agreement among all peers on the trustworthiness of a single
node is often hard to achieve. Furthermore, since the leader
delays its generated game events before transmitting them,
it results that peers cannot freely assume this role without
informing others. Indeed, suppose there are two peers which
concurrently elect themselves as leaders, and suppose they
decide to control each other. In this case, both peers will
delay transmission of game events towards the other one.
Thus, both peers may erroneously suspect each other.

A possible solution consists in exploiting a token based
scheme according to which, every time a process receives
the token becomes the leader. When a leader, say pk , sus-
pects another node pi , pk passes the token to another peer
pj , j 6= i , k , informing it of its pi ’s suspicion. Then, pj will in
turn control pi . Once a majority of peers suspects pi , then
pi is identified as cheater. This solution enables agreement
among honest peers (on cheaters detection). Moreover, such
a cooperative approach makes harder for the cheater to de-
tect if some other node is monitoring his behavior. Thus, it
results more difficult for the cheater to dynamically switch
off its cheat as soon as he detects he is being examined.

5. CONCLUSIONS
From a game design point of view, the best-effort nature

of the Internet may be interpreted as a system inadequacy
for the support of fast paced online games. Probably, in a
QoS guaranteed network, time cheats would be not possible.
However if, on one side, Internet protocols present several
limitations for the deployment of these kinds of distributed
interactive applications, on the other hand, it is the pos-
sibility of playing over the Web that makes online games

successful. Thus, until IPv4 will be used as network pro-
tocol for the Internet, distributed cheat proof solutions are
required in the context of online gaming.

In this work, we have considered a version of the well-
known lookahead cheat, adapted in the context of real-time
games, and proposed a countermeasure to face with it. The
provided model is very general and can be adopted in a
wide range of different gaming scenarios. The idea at the
basis of our approach is that a scheme that permits to de-
tect cheaters with a certain probability represents a viable
solution to face with cheating without affecting game per-
formances. A general analysis has been provided to demon-
strate the correctness of the devised approach. Extensions
to this study include the introduction of asymmetric delays
among peers in the system. This would enable to model
variegated existing scenarios in residential networks such as
ADSL or wireless networks, for example.

6. REFERENCES
[1] N.E. Baughman, B.N. Levine, “Cheat-proof Playout for

Centralized and Distributed Online Games”, in Proc. of
INFOCOM 2001, Anchorage (USA), IEEE, April 2001,
104-113.

[2] M.S. Borella, “Source models for network game traffic”, in
Computer Communications, 23(4):403-410, February 2000.

[3] F.R. Cecin, R. Real, R. de Oliveira Jannone, C.F. Resin
Geyer, M.G. Martins, J.L. Victoria Barbosa, “FreeMMG:
A Scalable and Cheat-Resistant Distribution Model for
Internet Games”, in Proc. of International Symposium on
Distributed Simulation and Real-Time Applications,
Budapest (Hungary), IEEE, October 2004, 83-90.

[4] C. Chambers, W. Feng, D. Saha, “Mitigating information
exposure to cheaters in real-time strategy games”, in
Proc. of the International Workshop on Network and
Operating Systems Support For Digital Audio and Video,
NOSSDAV ’05, June 2005, ACM, New York (USA), 7-12.

[5] E. Cronin, B. Filstrup, S. Jamin, A.R. Kurc, “An efficient
synchronization mechanism for mirrored game
architectures”, Multimedia Tools and Applications,
23(1):7-30, May 2004.

[6] E. Cronin, B. Filstrup, S. Jamin. “Cheat-proofing dead
reckoned multiplayer games”, In Proc. of 2nd International
Conference on Application and Development of Computer
Games, January 2003.

[7] B. Di Chen, M. Maheswaran, “A Fair Synchronization
Protocol with Cheat Proofing for Decentralized Online
Multiplayer Games, in Proc. of Third IEEE International
Symposium on Network Computing and Applications
(NCA’04), Cambridge (USA), IEEE, August 2004, 372-375.

[8] F. Cristian, “Probabilistic clock synchronization”,
Distributed Computing, 3(3):146-158, 1989.

[9] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky,
U. Sammapun, I. Lee, C. Tsarouchis, “Is runtime
verification applicable to cheat detection?”, in Proc. of
ACM SIGCOMM 2004 Workshops on Netgames ’04:
Network and System Support For Games, Portland (USA),
ACM, August 2004, 134-138.

[10] S. Ferretti, M. Roccetti, “Fast Delivery of Game Events
with an Optimistic Synchronization Mechanism in Massive
Multiplayer Online Games”, in Proc. of ACM SIGCHI
International Conference on Advances in Computer
Entertainment Technology (ACE 2005), Valencia (Spain),
ACM, June 2005, 405-412.

[11] J. Farber, “Network game traffic modelling”, in Proc. of
the 1st Workshop on Network and system support for
games, Braunschweig (Germany), ACM, April 2002, 53–57.

[12] R. Fujimoto, “Parallel and Distribution Simulation
Systems”, John Wiley and Sons, Inc., 1999.

[13] C. GauthierDickey, D. Zappala, V. Lo, J. Marr, “Low

latency and cheat-proof event ordering for peer-to-peer
games”, in Proc. of the 14th International Workshop on
Network and Operating Systems Support For Digital Audio
and Video (NOSSDAV’04), Cork (Ireland), ACM, June
2004, 134-139.

[14] R. Gusella, S. Zatti, “The accuracy of clock
synchronization achieved by tempo in Berkeley Unix
4.3BSD”, in IEEE Transactions of Software Engineering,
15(7):47-53, July 1989.

[15] T. Henderson, S. Bhatti, “Modelling user behaviour in
networked games”, in Proc. of the 9th ACM International
Conference on Multimedia (ACM Multimedia), Ottawa
(Canada), October 2001, 212-220.

[16] H. Lee, E. Kozlowski, S. Lenker, S. Jamin,
“Synchronization and Cheat-Proofing Protocol for
Real-Time Multiplayer Games”, in Proc. of the
International Workshop on Entertainment Computing,
Makuari (Japan), May 2002.

[17] D.L. Mills, “Internet time synchronization: the Network
Time Protocol”, in IEEE Transactions on
Communications, 39(10):1482-1493, October 1991.

[18] M. Pritchard, “How to hurt the hackers: the scoop on
Internet Cheating and How You Can Combat It”, in
Gamasutra Web Site, July 2000,
http://www.gamasutra.com/.

[19] J. Yan, H.J. Choi, “Security Issues in Online Games”, in
The Electronic Library: International Journal for the
application of technology in information environments,
Emerald, Vol. 20 No.2, 2002.

[20] J. Yan, B. Randell, “A Systematic Classification of
Cheating in Online Games”. in Proc. of the 4th Workshop
on Network and System Support for Games
(NetGames’05), New York (USA), October 2005.

APPENDIX

A. ON THE CORRECTNESS OF AC/DC
We provide evidence of the general correctness of AC/DC.

In particular, we show that by exploiting our proposed cheat-
ing counterattack scheme, pl is able to detect if pi is cheat-
ing.

Suppose pi is a cheater. Then, denote with τ c
il(e

l , e i
k) the

amount of time elapsed since the generation at pl of its game
event e l ∈ W (e i

k), its notification to pi , the time pi waits
to receive all events in W (e i

k), the subsequent (generation
and) transmission of e i

k (by pi) and, finally, its reception at
pl . Before pl starts AC/DC, τ c

il depends on the time needed
by pi to receive events from Πi and on the time needed to
notify pl with the newly cheated game event e i

k .
1 At pl , this

amount of time can be measured as

τ c
il(e

l , e i
k) = max

{[
(WTj (e

j) + driftjl −WTl(e
l)) +

+ δji(e
j)

]
, e j , e l ∈ W (e i

k)
}

+ δil(e
i
k). (7)

In (7), the max{. . .} term accounts for the time needed to
transmit all events in W (e i

k), starting such measurement
from the time of generation of e l .2 The second term δil(e

i
k),

instead, accounts for the latency needed for the transmis-
sion of the cheated event e i

k (generated by pi after having

1We assume that the processing time needed to analyze received
events and generate ei

k is negligible.
2For each event ej in the considered set, the difference between
the times of generation of ej and the event generated by pl is
considered (driftjl is exploited to equalize physical clocks of the
two peers). The time required for the transmission of the event
ej to pi , i.e., δji (e

j), is then added to this term. The higher value

obtained among all events ej is considered.

received all events in W (e i
k)) to pl . Generally, before pl

starts AC/DC, the average latencies δli , δil result smaller
than τ c

il() i.e., δli ≤ τ c
il() and δil ≤ τ c

il(). This consideration
is straightforward from (7).

Once pl starts AC/DC, eventually the τ c
il() value will be

approximately equal to

τ c
il(e

l , e i
k) = δli(e

l) + λl + δil(e
i
k)

' δli + λl + δil ,

' 2δli + λl , (8)

as δli(e
i
k)+λl will result higher than every other event trans-

mission delay for events in W (e i
k). In other words, once pl

starts AC/DC, e l ∈ W (e i
k) is the last game event in W (e i

k)
received by pi before generating e i

k . Thus, if pi is a cheater,
pi will wait for the event e l ∈ W (e i

k) generated by pl . Thus,
since pl progressively increases λl , and Equation (8) is sat-
isfied, eventually also τ c

il() grows accordingly.
However, the cheater pi alters timestamps of its generated

events e i
k . Based on these timestamps, the (cheated) latency

δ∗il(e
i
k) measured at pl for the transmission of each cheated

event e i
k is

δ∗il(e
i
k) = WT rec

l (e i
k) + driftli −WT c

i (e i
k). (9)

WT c
i (e i

k) is assigned to e i
k by pi , based on the cheated sim-

ulation time ST c
i (e i

k), computed as specified in (4). Thus,

ST c
i (e i

k) < STj (e
j), ∀e j ∈ W (e i

k). (10)

From (10), (2) and (3), it results that ∀e j ∈ W (e i
k),

ST c
i (e i

k) < STj (e
j),

WT c
i (e i

k)− ti,start < WTj (e
j)− ti,start +

−driftij + gapij ,

WT c
i (e i

k) < WTj (e
j) + driftji +

gapij . (11)

As to e l , generated by pl ,

e l ∈ W (e i
k) ⇒ WT c

i (e i
k) < WTl(e

l) + driftli + gapil . (12)

Thus, by substituting (12) in (9),

δ∗il(e
i
k) = WT rec

l (e i
k)− (WT c

i (e i
k)− driftli)

> WT rec
l (e i

k)−WTl(e
l)− gapil . (13)

Now, since during AC/DC τ c
il(e

l , e i
k) eventually becomes

equal to the time interval for the transmission of e l from pl

to pi and the time of reception of e i
k at pl , we have

τ c
il(e

l , e i
k) = WT rec

l (e i
k)−WTl(e

l). (14)

Therefore, using (8), (13) and (14), eventually the following
statement holds

δ∗il(e
i
k) > WT rec

l (e i
k)−WTl(e

l)− gapil

= τ c
il(e

l , e i
k)− gapil

' 2δli + λl − gapil . (15)

As discussed in Section 2, gapil is a constant, short value.
Hence, as λl grows (same for τ c

il(e
l , e i

k)) during AC/DC, also
δ∗il(e

i
k) does it. In other words, during AC/DC, eventually

timestamps associated to events generated by pi will lead pl

to measure increasing network latencies. When γ may be set
so that γ < δli + λl − gapil (for some value of λl , bounded as
already discussed), then pl is able to detect if pi is cheating.

