
A Platform for Dynamic Microcell Redeployment in
Massively Multiplayer Online Games

Bruno Van Den Bossche
brvdboss@intec.ugent.be

Tom Verdickt
tverdick@intec.ugent.be

Bart De Vleeschauwer
bdevlees@intec.ugent.be

Stein Desmet Stijn De Mulder

Filip De Turck Bart Dhoedt Piet Demeester

Ghent University - IBBT - IMEC, Department of Information Technology
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium

Tel: +3293314900, Fax: +3293314899

ABSTRACT
As Massively Multiplayer Online Games enjoy a huge pop-
ularity and are played by tens of thousands of players si-
multaneously, an efficient software architecture is needed
to cope with the dynamically changing loads at the server
side. In this paper we discuss a novel way to support this
kind of application by dividing the virtual world into several
parts, called microcells. Every server is assigned a number of
microcells and by dynamically redeploying these microcells
when the load in a region of the world suddenly increases,
the platform is able to adapt to changing load distributions.
The software architecture for this system is described and
we also provide some evaluation results that indicate the
performance of our platform.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; C.4 [Computer Systems Organization]:
Performance of Systems

General Terms
Performance, Design

Keywords
MMOG, Game Server Architecture, Load Balancing, Micro-
cell Distribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

1. INTRODUCTION
With the advance of technology and the availability of

broadband Internet access, interactive multimedia applica-
tions are becoming increasingly popular. One class of these
applications is online games, especially Massively Multiplayer
Online Games (MMOGs). These applications offer their
users a huge virtual world in which they can interact with
tens of thousands of other players and build new virtual
identities. Examples of these applications include World of
Warcraft and Lineage 2, each boasting millions of subscrip-
tions and hundreds of thousands of simultaneous users. One
of the main characteristics of these applications is that they
are highly interactive and generate an enormous load due to
their massive scale.

An efficient architecture is needed to manage the virtual
worlds and provide a continuous service to its players. Two
traditional ways to support an MMOG are the approaches
followed in World of Warcraft and in Second Life. In the
former, the virtual world is divided into several realms. By
not allowing players to communicate between realms, the
load is divided over a number of server clusters that may
even be geographically dispersed. In Second Life, the world
is divided into several “cells”. A cell is a part of the virtual
world and each of these cells is managed by one single server.
Players can move freely from one cell to another. However,
both of these approaches are not able to cope with an uneven
and dynamically changing player distribution. When a lot of
players are concentrated in one realm or cell, the responsible
server gets overloaded, resulting in severe degradation of the
game experience for the players in these regions.

To cope with the dynamics of MMOGs, we developed a
novel technique to dynamically redistribute the load over a
set of servers [4]. We split the virtual world into several
small parts, called microcells. Every server of the system
is responsible for a set of microcells. When some server is
experiencing a high load, due to a high player density in
the microcells it is responsible for, some of its microcells are
assigned to another server, thereby reducing the load the
server is experiencing. In this way, we are able to dynami-
cally alter the portions of the virtual world the servers are
responsible for. This enables us to evenly distribute the total

system load over the available servers, thereby eliminating
potential bottlenecks before they occur. Figure 1 illustrates
the concepts of using microcells to divide the virtual world
and to distribute the load, taking into account the player
densities in the regions.

MicroCell

Figure 1: The virtual world is divided into several
microcells. The microcells are assigned to a number
of servers, where each server gets an similar amount
of load.

In this paper we describe and evaluate the software archi-
tecture for our microcell based MMOG platform. The plat-
form is built using the J2EE programming platform since it
provides several features that enable us to design and deploy
our application quickly.

This paper is outlined as follows: section 3 contains a
detailed description of the architecture of our MMOG plat-
form. Section 4 focuses on the migration of microcells from
one server to another. The evaluation of some of the impor-
tant characteristics of our architecture is presented in 5 and
conclusions and future work are discussed in section 6.

2. RELATED WORK
The idea of dividing the game world of an MMOG in

smaller parts to make it more manageable is not new and
has already been investigated. In [5] the publish-subscribe
paradigm is applied to an MMOG architecture where the
world is divided into several cells. They also investigate
the influence of the shape of the cells on the communication
overhead that is induced by inter cell communication. Using
hexagonal cells proves to be the most efficient shape for a
cell. The architecture that we present in this paper does
not put any restrictions on the shape or layout of a cell and
could therefore be easily modified to use hexagonal cells.

In [7] a Distributed-organized Information Terra Platform
(DoIT) is proposed, which offers a middleware platform to
simplify the development, deployment and management of
MMOGs. However, it does not offer a solution for deal-
ing with hotspots where a large number of players migrate
to the same part of the world, thus overloading the server
responsible for it.

Another approach is taken by BigWorld [2] and EVE On-
line [3] where the load distribution is not handled by re-
allocating parts of the world to other servers but by shifting
processing resources to the regions in need of extra process-
ing power. Although this simplifies the development and
management of an MMOG, it is less flexible than the soft-
ware based solution proposed in this paper.

3. ARCHITECTURE
When designing a complex distributed application like

an MMOG, measures must be taken to avoid architecture
induced bottlenecks. Performance scalability needs to be
achieved, as it must be possible to add extra servers and
bandwidth, without the need to actually reconfigure the ap-
plication or the deployment of the application itself.

When the concept of dividing the world into a fairly large
number of microcells is used, it is beneficial to maintain a
mapping between the logical world model and the architec-
tural components of the application and thus have each mi-
crocell represented by a logical software component. In order
to be able to actually influence the distribution of the micro-
cells we need additional components to create, delete, move
and basically manage microcells. One component, called the
MicroCellController is present on every server in the clus-
ter and takes care of the microcells assigned to it. A second
(global) component, called the MicroCellManager takes care
of managing the global deployment of the microcells over
the available servers. The ActorController is responsible for
all interactions between the application and the players per
server.

MicroCell
Manager

MicroCellController

MicroCell
1

MicroCell
2

MicroCell
3

MicroCell
4

ActorController

SERVER SERVER

Figure 2: Global architecture of the microcell based
MMOG platform. The microcells are deployed on
the available servers and are managed by per server
components and one centralized component.

Figure 2 shows the global architecture and how compo-
nents interact. A more detailed explanation of the compo-
nents and their role is presented in the following subsections.
Furthermore an overview of the inter-component interac-
tions is detailed to clarify the behavior of the application.
But first we motivate the choice for J2EE as the underlying
platform for the development of the application.

3.1 Why J2EE?
Developing the MMOG architecture with movable cells

from scratch would be very tedious and error prone. There-
fore existing architectures and software platforms were in-
vestigated and evaluated. J2EE, although not the most ob-
vious choice, provides a large number of interesting features
for the application in mind.

The development model of J2EE, with applications being
composed of a number of smaller modular components fits
the description of an architecture consisting of mobile com-
ponents. Even more as J2EE offers a solid base for develop-
ing network enabled applications. Distributing components

and accessing them over the network is handled transpar-
ently by the Application Server.

Another important feature of J2EE is the built-in support
for asynchronous message-driven execution through the use
of JMS [6]. This allows asynchronous processing of user and
system generated events.

As J2EE is a Java technology it allows for platform inde-
pendent development of applications. Even more, it allows
the same application to be deployed on multiple J2EE ap-
plication servers. Although platform independence might
not be a primary issue when developing very specific ap-
plications such as an MMOG the use of J2EE does allow
to easily switch application servers if the application server
used would prove to have certain performance limitations.

3.2 Components
The MicroCell component is the virtual representation of

the microcell. It contains all the data associated with a mi-
crocell, such as the items that can be found in that part
of the world, the environment conditions and also all play-
ers and their respective information, such as their current
position, the items they carry etc. The implementation of
the MicroCell consists of an Entity Bean and a Session Fa-
cade [8]. The Entity Bean representing the microcell con-
tains references to other Entity Beans representing the con-
tents of the microcell, the players currently inhabiting it,
neighboring microcells, etc.

The ActorController takes care of all world-user interac-
tions. This component offers an interface to the clients that
allows them to send events, such as movements, actions or
interactions with the environment or other players. It man-
ages all the events and messages that need to be sent to
the players such as other players that come within viewing
range, the actions of those other players and the proper-
ties of non-static game data. The ActorController is imple-
mented as a Stateless Session Bean. There is exactly one
ActorController running on each server of the MMOG.

The MicroCellController is a key component in the archi-
tecture. It is responsible for the management of the micro-
cells on the server and acts as the central access point for
all actions that microcells participate in. The movement of
a cell is, once initiated, under the total control of the Mi-
croCellController. It contacts the destination server, moves
the actual data, and takes all the necessary steps to arrange
the redirection of message flows and clients. In order to be
able to do all this, it is required that all communication be-
tween microcells and between microcells and clients passes
through the MicroCellController. As this is a rather compli-
cated logical unit, it is split into two subcomponents which
are further detailed in subsection 3.3. A more thorough de-
scription of the role of the MicroCellController can be found
in section 4. There is exactly one MicroCellController run-
ning on each server part of the MMOG.

The MicroCellManager is the component responsible for
initiating the relocation of the microcells. It monitors the
application components, the system load generated and de-
termines more optimal microcell distributions if necessary.
As this component does not contain any game logic, nor in-
fluences the game logic directly, it is currently designed to
be one centralized component. However nothing prevents
implementing a distributed or peer-to-peer version of this
component. Furthermore, this component is not strictly nec-
essary for the MMOG to function properly. A breakdown

will only disable the redeployment of the microcells, result-
ing in a situation similar to current MMOGs with a static
deployment. The MicroCellManager can be implemented
using a Stateless Session Bean.

3.3 Communication
This section describes the interactions between the differ-

ent components. An overview of all important interactions
between the components is shown in figure 3. It is impor-
tant to note there are two types of interactions used, namely
synchronous communications, which correspond to method
calls both local and remote, and asynchronous communica-
tions which correspond to the use of JMS.

M
icroC

ellC
ontroller

M
essage D

riven B
ean

ActorController

SERVER

M
icroC

ellC
ontroller

Session B
ean

MicroCell

Client

M
icroC

ellC
ontroller

M
essage D

riven B
ean

ActorController

SERVER

M
icroC

ellC
ontroller

Session B
ean

MicroCell

Client

M
icroC

ellC
ontroller

M
essage D

riven B
ean

ActorController

SERVER

M
icroC

ellC
ontroller

Session B
ean

MicroCell

Client

Figure 3: Overview of the communication patterns
of the microcell based MMOG platform. The full
arrow heads represent synchronous communication,
the hollow arrow heads represent asynchronous com-
munication.

This is why the MicroCellController is shown as a combi-
nation of two separate components. One part is a Message-
Driven Bean which is responsible for the asynchronous process-
ing of incoming messages and the other part is a Stateless
Session Bean which allows the other components to gener-
ate the messages and send them to the correct destination.
This design pattern is also known as the Message Facade [8].
Using this approach allows asynchronous processing and cre-
ates an abstraction layer to hide the use of JMS.

An example of a player generating an event and the process-
ing of the event is detailed to explain the internal communi-
cations. When a client performs an action, he sends this ac-
tion to the ActorController. The ActorController forwards
this event to the MicroCellController which turns it into a
JMS Message to allow for asynchronous processing and to
greatly reduce blocking times which would prevent the client
from sending other actions. The JMS Message containing
the player action is then processed by the MicroCellCon-
troller which performs the necessary logic on the MicroCell.
As a result of this action, e.g. the player chopping down a
tree, a MicroCell could generate one or more events of its
own, e.g. the tree fell down and crushed another player.
These are sent to the MicroCellController, converted into
JMS messages and then processed. This means forwarded

to the ActorController and then to the players close enough
to the source of events or even forwarded to the neighboring
microcells if the action took place close enough to the border
for it to be seen in an adjacent microcell.

If neighboring cells are located on a different server this
means the MicroCellController sends a message to the Mi-
croCellController on that server, which accepts the event
and takes care of the necessary processing on that server.
Similarly, any MicroCellController can receive events from
external MicroCellControllers responsible for neighboring mi-
crocells. When moving microcells between servers, simi-
lar actions are taken, although the initiating event is not
a player action, but an action from the MicroCellManager
and there will always be at least two MicroCellControllers
involved.

3.4 Extensions
The architecture as detailed in this paper allows clients

to interface directly with the application. In a real world
situation this is not desirable and the use of extra proxy-
servers would be preferred. These servers take care of the
clients logging in and directing the requests to the correct
ActorControllers. However, this does not change the core
architecture as this would only add an extra layer between
the clients and the application.

A second extension is the use of a different messaging
system than JMS. The actual use of messaging is confined
to a limited number of components and abstracted through
the use of the Message-Facade pattern. Therefore it can
be easily replaced with another messaging or event based
system.

4. MICROCELL MIGRATION
As explained in section 1, the goal of migrating microcells

between servers is to evenly distribute server load, or to
prevent servers from becoming overloaded. Thus, when the
load on a server exceeds a certain threshold, one or more
microcells are moved from that server to another server.

An important requirement of this microcell migration is
that it should happen in mid-play, without hindering game-
play. This not only means that the overhead for moving a
microcell should be minimized. It also means that the game
state should be kept consistent throughout the migration
and that play should not be interrupted for players residing
in or close to the microcell being moved. This is made even
more complex by the fact that, apart from the microcell it-
self and its data, the connections between the microcell and
its neighbors need to be moved, as well as the connections
between the microcell and the players in the microcell, or
rather between the ActorController of the microcell and the
players.

Therefore, a two-phase migration process is used to en-
sure continuing and correct game-play during and after the
microcell migration. First, a copy of the microcell is made
on the new server. The “old” microcell remains active and
the new microcell copy is kept up-to-date when it is created.
This is the relocation phase. During the second phase, the
rerouting phase, control is passed on to the new microcell
copy, and a message is sent to the players in the microcell
and to the neighboring microcells, asking them to reconnect
to the new copy. Finally, after all players are reconnected,
the old copy can be removed and the microcell migration
is completed. A more detailed description of the different

migration phases will be provided in the remainder of this
section.

The microcell migration process is largely independent of
lower-level aspects of the platform. Therefore, a conceptual
overview of the migration process is provided here, with-
out mentioning JMS. Similarly, the MicroCellController is
described as one solid component in this section, while in
reality it consists of two separate components, as explained
in section 3.3 and figure 3.

4.1 The relocation phase
The first part of moving a microcell from one server to

another is moving the microcell data (figure 4). This is
done by creating a new microcell on the target server, and
loading that new microcell with the data of the microcell to
be moved. Meanwhile, the current copy of the microcell can
continue operating, ensuring uninterrupted gameplay.

W
hi

le
Ef

fe
ct

s
Le

ft

Pa
ra

lle
l

Old
MicroCellController

New
MicroCellController

Init Migration

GetData

SendData(Data) CreateMicroCell(Data)
Create(Data)

Forward(Effect)
Forward(Effect)

Forward(Effect)

New
MicroCell

Old
MicroCell

Figure 4: The relocation phase of the microcell mi-
gration, consisting of 2 parallel parts: copying the
microcell data and forwarding the effects of arriving
actions.

While copying the microcell and its data to the new lo-
cation, new player actions will be arriving at the microcell.
When the microcell processes these actions, its internal state
might change, e.g. when the player cuts down a tree or picks
up a rock. This in turn causes inconsistencies between the
current microcell copy and the newly created copy, since
the results of actions performed during the copying are not
present in the new microcell copy.

To solve this problem, the new microcell copy must be
updated again after it has been created. This is performed
as follows: when the microcell relocation starts, the Micro-
CellController warns the microcell that it is being relocated.
From that moment on, each time the microcell processes an
action, the result of the action (its effect) is sent to the
MicroCellController, who forwards it to the MicroCellCon-
troller of the new microcell copy. These effects are processed
by the new microcell copy once its creation is finished, bring-
ing the new copy up to date with the “old”, still functioning,
copy.

Note that it is important to forward the results of player
actions to the new microcell copy, instead of the actions
themselves. If the actions would be forwarded directly, and
thus would be processed both by the old and the new micro-
cell copy, inconsistencies between both versions might arise
if the result of the action depends on some random value,

the exact timing, or other factors which might be different
for both versions.

Once the backlog of effects is processed and the new copy
is up to date, the MicroCellController of the new copy sends
a message to that of the old copy, asking for the next phase
of the migration to be started. It is possible for further
effects to arrive at the new cell copy after this time, e.g. be-
cause they were still traveling through the network when the
request for the next phase was sent and had not yet been
received by the MicroCellController. This is not a problem
however, as they are still forwarded to the new microcell
copy, to bring it further up to date.

4.2 The rerouting phase
The goal of the second phase of the microcell migration

is to start using the new microcell copy. At that point, the
currently used copy becomes redundant and can be erased,
which was the goal of migrating the microcell. This can
be done simply by making sure that all further actions and
other messages sent to the microcell are sent to the new copy
instead of to the old one. Since messages are sent by players
and neighboring microcells (and their MicroCellControllers),
these will all have to be informed of the new location of the
microcell. There is no further need to “activate” the new
microcell copy. Once it is up to date, it is ready to process
further player actions, and can thus immediately take over
from the current copy, as long as all further messages to the
microcell arrive at the new copy instead of the old (current)
one.

Informing the neighboring cells of the new microcell loca-
tion is fairly straightforward. The dispatching of messages
is performed by the MicroCellControllers, so only they need
to know the microcell locations. The new location is simply
sent to the MicroCellManager. The MicroCellManager then
informs the MicroCellControllers of the microcells neighbor-
ing the migrated cell of its new location, so they can send
their messages directly to the new microcell copy.

Rerouting the client connections is equally straightfor-
ward. The MicroCellController (of the old microcell) sends
a message to its ActorController to inform the clients of all
players in the microcell of the new microcell location. After
a client receives such a message, it sends further actions to
the new location, and thus to the new microcell copy (via
the ActorController and the MicroCellController of the new
microcell).

The difficulty of the rerouting phase however is that none
of these things happen instantaneously. While the location
update messages are sent to the clients, new player actions
may arrive at the old microcell location, where a microcell
is still present, but should no longer be used. Another issue
is that the new microcell, which is already fully functional,
might need to send a message to a client that is still con-
nected to the old microcell copy. This situation could arise
because of an action from a player that has already con-
nected to the new copy.

These problems are solved as follows. Once the relocation
phase finishes and the new microcell copy goes live, the old
microcell copy still accepts player actions and other mes-
sages. Only instead of processing them, it forwards them
to the new, currently active, microcell copy. The new copy
then processes the actions, thus ensuring once again that all
actions are processed only once.

However, this does not solve the entire problem. After the
player action is processed, its results still need to be sent to
the player itself, and possibly to a number of different play-
ers in the same cell. If a player is already connected to the
new microcell copy, this is not a problem. The message with
the result of the action can just be sent to the player. How-
ever, it is possible that the player has not yet connected
to the new copy, and is instead still connected to the old
copy. If that is the case, the microcell can not directly send
a message to the player, as it doesn’t know the client loca-
tion. Therefore, before sending a message to a client, the
microcell checks whether the client is connected to the new
microcell copy or to the old one. More accurately, the Mi-
croCellController performs this check, as all messages to and
from the microcell pass through the controller. If the client
is connected to the new copy, the message is sent directly
to the client. If the client is not yet connected to the new
copy, the message is forwarded to the MicroCellController
of the old copy, to which the client is still connected, which
can then send the message to the client (or more correctly,
the ActorController will send the message to the client).

Checking whether a client has connected to the new server
or not can be done by keeping a list of clients to connect to
the new copy when the rerouting phase starts. Each time
a client sends an action to the new copy, that client can be
removed from the list. Once the list is empty, all clients have
been connected to the new microcell copy. This concludes
the rerouting phase, as the old copy will no longer receive
further player actions, and can now safely be removed. To
clarify to rerouting of the client connections when a microcell
migrates between two servers, see figure 5.

Reconnect
Clients

Event

Client 2

Reconnect

Client 1

Reconnect

Event

Event

Event

AllClientsConnected

Effect
Effect

Effect
Effect

Effect
Effect

Effect

Old
Actor-

Controller

New
Actor-

Controller

Old
MicroCell-
Controller

New
MicroCell-
Controller

Figure 5: After receiving a request to connect to the
new microcell Client 2 sends an event to the new mi-
crocell copy. As Client 1 is not yet reconnected it
receives the resulting effect via the old ActorCon-
troller. As soon as Client 1 is reconnected to the
new microcell as indicated by it sending an event, it
receives further effects directly.

Note that clients, after connecting to the new microcell
copy, still need to listen to the connection with the old copy,
because it is possible that a message to the client is underway
via the old copy when the client reconnects to the new copy.
In order not to miss this message, the client needs to listen
to the old connection for a short time after connecting to
the new microcell copy.

5. ARCHITECTURE EVALUATION
Performance is an important consideration for most dis-

tributed systems. Even more so for multiplayer games, where
performance plays a crucial part in the way players expe-
rience the game. Large latencies prevent the game from
running smoothly, and might even render it entirely un-
playable [1]. Therefore, some preliminary tests were per-
formed to assess the JMS communication mechanism, which
handles an important part of the inter-component commu-
nication, and as such might have an important influence on
the performance of the platform.

The goal of the test was to have an indication of the perfor-
mance impact of using JMS for the communication between
MicrocellControllers. The test consisted of a client and a
stateless session bean. The client makes a call to the session
bean which results in a JMS message being sent back.

For this test, the client was deployed on an AMD athlon
xp 1400 with 256 MB RAM. The server machine (with the
session bean) was a dual opteron 1.6 GHz with 4 GB RAM,
a Java virtual machine with maxmem set to 1 GB, and a
JBoss 4.03SP1 application server, tuned for low latency ap-
plications. A 100 Mb network connected both machines.

The round-trip time (RTT) for this entire scenario was
measured for a number of different message sizes. Each test
was performed 1000 times, discarding the first 250 results
to allow for the steady-state performance to be measured.
The results of the tests are presented in table 1. Note that
these tests were not run on the kind of hardware an MMOG
platform should consist of. This means that the RTTs in
the final system would be smaller than those presented in
the table.

Table 1: Measured round-trip times for JMS.
message size average RTT

750 B 3.22 ms
7500 B 4.66 ms

75000 B 29.83 ms

The test shows that, while JMS does incur some overhead,
it is still a viable means of communication in the platform.
The latency caused by using JMS inside the platform is not a
prohibiting factor, especially for small messages, up to a few
KB. Most messages however are small, e.g. player actions,
or messages telling that a player has successfully picked up
a rock and that it has been added to his inventory. Large
messages are only used when large amounts of data need to
be transferred. This happens for example during microcells
migrations, which occur rarely compared to player actions.

6. CONCLUSIONS AND FUTURE WORK
In this paper, an MMOG platform was presented that

adapts to varying load distributions by dynamically rede-
ploying part of the game world. The platform uses well-
known application platforms and mechanisms, such as J2EE
and JMS. A description has also been provided of an al-
gorithm for the migration of microcells during play, a key
feature of the platform. Preliminary performance tests in-
dicate that JMS is a viable alternative for inter-component
communication.

One area that needs more research is the design of algo-
rithms to determine the “optimal” microcell deployment. A
number of algorithms were already proposed and evaluated
in [4]. However, these algorithms do not take the current
deployment into account. Therefore, in order to completely
take advantage of the dynamic nature of the microcell de-
ployment, a new set of algorithms is needed that try to find
a balance between the performance of the new deployment
and the effort needed to redeploy the microcells (e.g. the
number of microcells to be moved).

We are currently implementing the outlined architecture.
This implementation will be used to test its performance un-
der varying loads and to improve the microcell deployment
algorithms.

7. ACKNOWLEDGMENTS
T. Verdickt is supported by the Institute for the Promo-

tion of Innovation through Science and Technology in Flan-
ders (IWT-Vlaanderen).

The research in this paper is partially funded by the In-
terdisciplinary institute for Broadband Technology (IBBT)
T-Case project.

F. De Turck is a postdoctoral Fellow of the Fund for Sci-
entific Research - Flanders (F.W.O.-Vlaanderen).

8. REFERENCES
[1] G. Armitage. An experimental estimation of latency

sensitivity in multiplayer Quake 3. In Proc. of the 11th

IEEE International Conference on Networks
(ICON2003).

[2] BigWorld Pty Ltd. [online].
http://www.bigworldtech.com.

[3] CCP. [online]. http://www.eve-online.com/.

[4] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt,
F. De Turck, B. Dhoedt, and P. Demeester. Dynamic
microcell assignment for massively multiplayer online
gaming. In Proceedings of Netgames 2005: 4th
Workshop on Network and Systems Support for Games,
New York, USA, 2005.

[5] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer
games. In NetGames ’02: Proceedings of the 1st
workshop on Network and system support for games,
pages 14–22, New York, NY, USA, 2002. ACM Press.

[6] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Haase. Java Message Service API Tutorial and
Reference: Messaging for the J2EE Platform.
Addison-Wesley Professional, 2002.

[7] T.-Y. Hsiao and Y. Shyan-Ming. Practical middleware
for massively multiplayer online games. IEEE Internet
Computing, 9(5):47–54, September-October 2005.

[8] F. Marinescu. EJB Design Patterns: Advanced
Patterns, Processes and Idioms. Wiley Computer
Publishing, 2002.

