
RedundancyControllable Adaptive Retransmission
Timeout Estimation for Packet Video

Ali C. Begen and Yucel Altunbasak
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332 USA

{acbegen, yucel}@ece.gatech.edu

ABSTRACT

Time-constrained error recovery is an integral component
of reliable low-delay video applications. Regardless of
the error-control method adopted by the application,
unacknowledged or missing packets must be quickly
identified as lost or delayed, so that necessary timely
actions can be taken by the server/client. Historically, this
problem has been referred to as the retransmission timeout
(RTO) estimation. Earlier studies show that existing RTO
estimators suffer from either long loss detection times or
a large number of pre-mature timeouts. The goal of
this study is to address these problems by developing an
adaptive RTO estimator for high-bitrate low-delay video
applications. By exploiting the temporal dependence
between consecutive delay samples, we propose an adaptive
linear delay predictor. This way, our RTO estimator
configures itself based on the video characteristics and
varying network conditions. Our approach also features
a controller that optimally manages the trade-off between
the amount of overwaiting and redundant retransmission
rate. The skeleton implementation shows that the proposed
RTO estimator discriminates lost packets from excessively-
delayed packets faster and more accurately than its rivals,
which consequently enables the applications to recover more
packets under stringent delay requirements.

Categories and Subject Descriptors

C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network protocols

General Terms

Algorithms, Measurement, Experimentation

1. INTRODUCTION
The Internet is a shared medium; any packet injected

into the Internet has to wait for some time before it is
serviced. It therefore experiences random delay. Because of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’06 Newport, Rhode Island USA
Copyright 2006 ACM 1595932852/06/0005 ...$5.00.

the finite buffering capabilities of the intermediate routers
and switching devices, it is safe to assume that a packet is
lost if it has not been received or acknowledged within some
time after its transmission. In TCP jargon, this duration
is referred to as the retransmission timeout (RTO). It is
vital that the value of the RTO is chosen large enough so
that the packets experiencing long queueing delays do not
trigger spurious timeouts. However, adopting an arbitrarily
large RTO is impractical for delay-sensitive multimedia
applications. A delayed retransmission attempt eventually
recovers a missing media packet. Yet, the chances are
that the retransmitted packet will be late and useless for
decoding at the client side. Therefore, an RTO estimation
method that quickly detects lost packets is imperative for
such applications. Only then can well-timed actions be
taken for error control.

Naturally, retransmission-based error-control methods are
unsuitable for multimedia applications where the extra
delay introduced by the retransmissions is prohibitively
large. However, due to emerging broadband technologies,
end-to-end delays experienced by Internet users today
are comparably smaller. Consequently, retransmission-
based error-control methods can be still accommodated by
many of today’s low-delay multimedia applications. For
example, consider a video-on-demand session running over
UDP between a server and a client, where the server
continuously transmits video packets to the client, and the
client reports missing packets to the server with negative
acknowledgments (NACKs); a NACK message is generated
for a packet when the client decides that the packet is
lost. If the NACKs are received by the server early enough,
missing packets can be retransmitted successfully before
their decoding deadlines pass. As a rule of thumb, the
client should not time out pre-maturely and should wait
as long as it is necessary for the excessively-delayed packets,
since under normal circumstances it is highly unlikely that
a retransmitted packet will arrive earlier than the initially-
transmitted packet.

Needless to say, the primary challenge is that the client
has to decide on timeouts merely by observing the packet
arrivals in the course of a streaming session. It is never a
clear-cut decision whether a missing packet has been lost
or delayed. Naturally, a trade-off between overwaiting and
spurious timeouts is present. To address this problem, in
our earlier study [1], we introduced a client-driven method
that utilized packet interarrival times for RTO estimation.
The proposed approach was computationally efficient, and
substantially outperformed an enhanced TCP-like RTO

estimator by reducing both the amount of overwaiting and
the number of redundant retransmissions. In that study,
however, we did not provide a formal way to compute the
parameters used in the RTO estimation. Our experiments
with several video streams encoded at different bitrates later
showed that the best-performing set of parameters varied for
each stream and there was not a global optimal solution
that would work for every video traffic. This motivated
us to develop an adaptive RTO estimation method that
would completely configure itself based on the source video
characteristics and time-varying network conditions.

In this study, we devise a novel RTO estimation method
that involves two main steps. In the first step, an adaptive
linear delay predictor produces the best estimate in terms of
the mean-squared error criterion by exploiting the temporal
dependence among the packet delay samples. In the second
step, on the other hand, a controller optimally manages the
trade-off between the amount of overwaiting and redundant
retransmission rate by regulating the bias to be added to the
estimate produced in the previous step. We refer to this two-
step method as the redundancy-controllable adaptive RTO

estimation. The contribution of this method is two-fold:
First, an adaptive delay predictor is proposed. A large
number of multimedia protocols such as packet scheduling
algorithms and adaptive buffer management techniques can
potentially benefit from this predictor [2, 3]. Second, an
optimal bias controller is derived. This controller allows
the applications to maximize their error-recovery capability
under any given redundant rate budget. To the best of our
knowledge, this feature has not been previously offered by
existing RTO estimation methods.

One of the earliest RTO estimation methods is the Jacob-
son’s algorithm [4], which basically uses an exponentially-
weighted moving average (EWMA) approach. Currently,
TCP employs this algorithm with some modifications [5].
This class of RTO estimators have been thoroughly exam-
ined by Loguinov and Radha in the context of a video stream-
ing application [6]. Their empirical study concluded that
EWMA-based RTO estimation was not quick enough to
detect lost packets. The authors also suggested using jit-
ter samples in fine-tuning the estimations. Although [6]
presents important findings, its scope is rather limited, since
the study primarily focuses on a low-bitrate video streaming
application with a large playout buffer. On the TCP end,
other proposals for replacing [4] are [7–10]. However, these
approaches are not suitable for low-delay applications either,
due to their conservative estimates and slow adaptation to
time-varying network conditions.

In a more recent study [11], Sinha and Papadopoulos
proposed a timerless retransmission protocol that eliminated
the pitfalls of round-trip time (RTT) estimation and timer-
triggered timeouts. In this protocol, a lost packet can only
be identified upon detection of a gap in the received packets.
Hence, when a batch of packets are lost or excessively
delayed, this protocol has to wait indefinitely until a new
packet is received, which potentially impedes the timely
recovery of bursty losses. Previously, Papadopoulos and
Parulkar used an algorithm similar to [4] for real-time
streaming [12]. A different approach was later proposed
by Rhee [13], where retransmission decisions were based on
multiples of frame durations. However, these approaches
are not adaptive and cannot perform well when streaming
high-bitrate video under low-delay requirements.

In the sequel, Section 2 provides an overview of different
RTO estimation methods. In Section 3, we discuss the
details of the adaptive linear delay prediction and timeout
estimation. Results from Internet experiments are presented
in Section 4. We conclude the paper with directions for
future work in Section 5.

2. OVERVIEW OF RTO ESTIMATORS
In this section, we briefly summarize three different classes

of previously proposed RTO estimators. Later, in Section 4,
we compare our approach with these estimators in terms of
their performances.

2.1 TCPLike RTO Estimators
The RTO estimation algorithm used in current TCP

implementations is based on Jacobson’s algorithm [4], which
was later modified in [5]. In TCP, the TCP sender
records a new RTT measurement when it receives an
unambiguous acknowledgment packet. Let r[n] denote the
RTT observation corresponding to packet n. Jacobson’s
algorithm predicts the RTT of the subsequent packet
(denoted by r̃[n + 1]) by computing the moving average:

r̃[n + 1] =
7

8
r̃[n] +

1

8
r[n]. (1)

The TCP sender also keeps track of the variation in the
observed RTT values, which is computed by

σRTT =
3

4
σRTT +

1

4
× |r[n] − r̃[n + 1]|. (2)

Subsequently, the value of RTO is set by using

RTO = max
(

RTOmin, r̃[n + 1] + max (G, k × σRTT)
)

,

(3)
where k = 4 and G is the clock granularity. In practice,
RTOmin is set to one second [5] to reduce spurious
timeouts. In addition, current TCP variants implement
Karn’s algorithm [14], which suggests doubling the RTO
value when a timeout occurs. Employing exponential timer
backoff as well as adopting a large RTOmin are essential
for TCP’s congestion control algorithm and network-
friendliness. However, such measures are naturally too
costly for delay-sensitive applications. Therefore, in our
comparisons, we will use an enhanced TCP-like RTO

estimator, where RTOmin is set to zero and the exponential
timer backoff is disabled.

2.2 Recursive Weighted Median Filtering
Recursive weighted median (RWM) filtering was recently

proposed by Ma et al. to improve Jacobson’s algorithm [10].
The idea is to compute the RTT estimate by taking
the weighted median of the last K estimates and last J

observations. That is,

r̃[n] = WM

(

[

r̃[n − k]|Kk=1, r[n − j]|Jj=1

]

,W

)

, (4)

where W is the weight vector. The study suggests
the following values: K = 1, J = 5 and W =
[1
2
, (7

8
)0, (7

8
)1, (7

8
)2, (7

8
)3, (7

8
)4]. Once an RTT estimate is

computed, the value of the RTO is determined by scaling the
RTT estimate, where the scale factor depends on the mean
absolute deviation among the RTT samples. Improvements
over Jacobson’s algorithm are reported through Internet
experiments [10].

2.3 PercentileBased RTO Estimators
Empirical studies usually try to fit a well-known

distribution to packet delays experienced in IP networks [15–
17]. Such statistical models are particularly useful in laying
out a mathematical framework for building application-layer
protocols [2]. For example, [15] suggests that RTT values
follow a shifted Gamma distribution, whereas [16, 17] show
that packet delay distributions are heavy-tailed and can
be characterized by a Pareto distribution. The pertaining
distribution model parameters can be estimated from the
collected samples by using Maximum Likelihood Estimation.
Alternatively, one can collect the delay samples and generate
a distribution on the fly. Having a history of the delay
samples, the delay of the next packet can be predicted
by computing the pth-percentile of the delay histogram,
where p is selected depending on the maximum redundant
retransmission rate tolerable by the application.

3. PROPOSED APPROACH
Let us start our discussion with the problem scenario.

Consider a low-delay video application where the client runs
an RTO estimation method to determine the best time to
request a retransmission for a missing packet. Upon receipt
of a packet, the client measures its delay and predicts the
delay for the subsequent packet. The client then computes
the amount of additional waiting to take into account the
delay variability. In the implementation, we identify each
packet with a unique number, which can be associated with
the Sequence Number field in the RTP header [18]. Since
a retransmission cannot be distinguished from the initial
transmission, the delay measurements for the retransmitted
packets are ignored to avoid any ambiguity.

Our Internet experiments suggest that the majority of the
lost packets can be recovered with a single retransmission
and doing two or more retransmissions is rarely necessary.
Furthermore, the low-delay requirement of our target
applications severely limits the possibility of multiple
retransmissions. Thus, our discussion will focus only on the
single-retransmission case1.

3.1 Adaptive Linear Delay Prediction
Statistical models, briefly discussed in Section 2.3, are

only useful for characterizing the general properties of packet
delays, and fall short in describing the temporal dependence
among packet delays. Previously, Jiang and Schulzrinne
investigated the conditional delay distributions [16], and
found significant correlation between the adjacent delay
samples. Here, we exploit this correlation through
autoregressive models for delay prediction.

Consider a stochastic process s and let s[n − k], k ≥ 1
denote the past samples of this process. The operation of
linear prediction expresses the value of s[n] as the linear
combination of the samples s[n− k]. The estimate based on
the N most recent values is given by

s̃N [n] = Ẽ
{

s[n]|s[n − k], 1 ≤ k ≤ N
}

=

N
∑

k=1

αk,Ns[n − k].

(5)

1Note that the methods summarized in Section 2 were
originally designed for server-side RTO estimation. In our
comparisons (Section 4), we adopt them for use at the client
side.

This estimate is called the one-step forward predictor of
order N . The process s̃N [n] is the response of the forward
predictor filter

HN (z) =

N
∑

k=1

αk,Nz
−k (6)

to the input s[n]. Our objective in prediction is to determine
the constants αk,N so as to minimize the mean square value

PN = E{ǫ2
N [n]} (7)

of the forward prediction error ǫN [n] = s[n] − s̃N [n]. From
the orthogonality principle, we know that the prediction
error, i.e., ǫN [n], is orthogonal to all the data used to
generate the prediction, i.e., s[n − m], where 1 ≤ m ≤ N .
Mathematically, we have

E

s[n] −

N
∑

k=1

αk,Ns[n − k]

 s[n − m]

= 0 1 ≤ m ≤ N,

(8)
which yields a set of linear equations known as the Yule-
Walker equations. The coefficients αk,N of the predictor
filter HN (z) can be computed from

R[m] −

N
∑

k=1

αk,NR[m − k] = 0 1 ≤ m ≤ N, (9)

where R[q] represents the lag-q autocorrelation of s.
Alternatively, one can use Durbin-Levinson recursion [19]
by virtue of the toeplitz nature of the linear system given
in (9). The resulting mean-squared prediction error equals
to

PN = R[0] −

N
∑

k=1

αk,NR[k]. (10)

As the order of prediction, N , increases, the value of the
mean prediction-error power, PN , decreases or else remains
the same. Since prediction-error power is always positive,
we have

P1 ≥ P2 ≥ . . . ≥ PN −−−−→
N→∞

P ≥ 0. (11)

The implication of (11) is that as we increase the order of the
predictor filter HN (z), we successively reduce the correlation
between the adjacent samples of the input process until we
ultimately reach a point at which increasing the order of
prediction any further does not reduce the prediction-error
power. At this point, the error is a white noise process and
consists of purely uncorrelated samples.

Suppose that PM−1 > PM and PM = PM+1 = . . . =
P . By definition, the process s is called an M th order
autoregressive, denoted by AR(M), process or a wide-sense
Markoff process of order M . For this process, the M th order
predictor, s̃M [n], equals to its Wiener predictor:

Ẽ
{

s[n]|s[n − k], 1 ≤ k ≤ M
}

= Ẽ
{

s[n]|s[n − k], k ≥ 1
}

.

(12)
Wiener predictors produce the best fit to the observed data
by exploiting the existing correlation completely. Generally,
it is desirable to have the values predicted by a model to be
close to the actual data values. However, an overfitted model
cannot distinguish the systematic effects of the process

from its random effects, thus, suffers from a low predictive
accuracy. Therefore, Wiener predictors are usually not used
in practice. Next, we study the issue of model selection by
examining two delay traces.

In the following numerical results, we benefit from the
one-way delay traces collected by simulating a moderate-
sized Internet topology [20] in ns-2 network simulator [21]2.
We generated two delay traces from video streams encoded
at 300 and 600 Kbps. These traces will be referred with
the notation of ∆T = 40 ms and ∆T = 20 ms, respectively,
where ∆T denotes the average transmission interval at the
server.

The relation between the mean prediction-error power and
the order of prediction is given in Fig. 1 for both delay
traces. Based on the definition given in (12), the order of
Wiener prediction for the ∆T = 20 ms and ∆T = 40 ms
traces is found to be 32 and 60, respectively. Clearly, we
require a higher order of prediction for larger ∆T . This is
not surprising since the correlation between the adjacent
delay samples reduces with ∆T . Fig. 1 shows that the
mean prediction-error power gradually decreases with the
order of prediction. However, based on the AICC (Akaike’s
Information Corrected Criterion) scores [19] the predictive
accuracy first shows an increasing and then a decreasing
trend. Specifically, the predictive accuracy for the ∆T =
20 ms and ∆T = 40 ms traces reaches its global maxima
at N = 9 and N = 12, respectively. These values are
comparably smaller than the ones corresponding to the
Wiener prediction, signifying that Wiener predictors are
indeed overfitted and have sub-optimal predictive accuracy.

0 10 20 30 40 50 60
0

50

100

150

200

250

M
e

a
n

 P
re

d
ic

ti
o

n
−

E
rr

o
r

P
o

w
e

r

Order of Prediction

∆T = 20

∆T = 40

Figure 1: Variation of the mean prediction-error
power with the order of prediction.

Generally speaking, the AICC scoring system suggests
good models that provide sufficient insight into the process
being analyzed, while leaving out the random effects. In
non-time-critical tasks, the computational complexity is of
a less important issue. Thus, the models suggested by the
AICC approach can be facilely employed without hampering
the performance of the system. However, if the prediction is
carried out in real time, low-complexity models have to be
used to sustain the system feasibility. The main objective
is, thus, to select a computationally-efficient yet intuitively

2In a real environment, one-way delay measurement requires
a clock synchronization between the end-points. See [22] for
details.

plausible prediction model that adequately captures the
dynamics in the packet delay process.

A naive approach is the AR(1) model, where the next
delay estimate is solely determined by the last observation,
i.e., s̃1[n] = s[n − 1]. The phase diagrams plotted in
Fig. 2 clearly indicate the existence of a significant lag-1
correlation among the delay samples and support the AR(1)
prediction model. However, this predictor is not capable
of distinguishing whether packet delays are increasing,
decreasing, or remaining the same, and therefore, does not
serve our goal.

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

Figure 2: Phase diagrams for ∆T = 20 ms (on the
left) and ∆T = 40 ms (on the right).

A more elaborate model is the AR(2) model. AR(2)
model bases its estimation on the last two observations. By
definition, we have

s̃2[n] = α1,2s[n − 1] + α2,2s[n − 2], (13)

which can be rewritten as

s̃2[n] = (α1,2 +α2,2)s[n−1]+α2,2

(

∆T − ∆t[n − 1]
)

, (14)

where ∆t[n] denotes the interarrival time for packet n, i.e.,
the time difference between the arrivals of packets n and
n − 1. The interpretation of (14) is that the AR(2) model
takes into consideration not only the last delay sample but
also its deviation from the previous sample.

To understand how well an AR(2) predictor compares
to its Wiener counterpart, we plot the prediction-error
autocorrelation functions (ACF) for both predictors. Since
Wiener predictors completely model the data, the resulting
error samples are guaranteed to be uncorrelated, which is,
however, not necessarily true for AR predictors of lower
orders. Nevertheless, Fig. 3 shows that the correlation left
out by the AR(2) predictors is rather insignificant, implying
that AR(2) predictors have sufficient prediction accuracy for
practical purposes.

3.2 Timeout Estimation
From the point of view of (7), an underestimate

that is marginally smaller than the actual value is as
good as an overestimate that is marginally larger than
the actual value. However, in the context of RTO
estimation, underestimations trigger pre-mature timeouts
whereas overestimations eliminate them. In this section, we
formulate an elegant way to compute the minimum amount
of additional waiting that is required to keep the probability
of a pre-mature timeout below a desired value.

In Fig. 4, we plot the prediction-error distributions for
both delay traces. We notice that each of these distributions
(particularly, the tail parts) can be approximated by a
Gaussian distribution whose mean and standard deviation

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
u

to
c
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

ts

∆T = 20, AR(2)

∆T = 20, Wiener

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
u

to
c
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

ts

∆T = 40, AR(2)

∆T = 40, Wiener

Figure 3: ACFs of the prediction errors produced
by Wiener and AR(2) predictors for ∆T = 20 ms
(above) and ∆T = 40 ms (below).

(σ) are equal to those of the corresponding prediction-error
distribution. Statistically, Gaussian-distributed samples of
a white noise process are independent of each other. In
the light of Fig. 3, we infer that AR(2) predictors produce
error samples that are independent. This result has two
important implications: First, a sequence of independent
random variables is not predictable by linear or non-linear
models. Thus, if packet delay sampling is sufficiently dense,
the delay process can be almost completely characterized
by an AR(2) model. Second, Gaussian-distributed processes
are easy to work with and a rich set of mathematical tools
is available.

Let τ denote the additional amount of waiting to be added
to the initial delay predicted by (14), and let Φ(τ) denote
the underestimation probability. By definition,

Φ(τ) = P
{

s̃2[n] + τ < s[n]
}

, (15)

which is a non-increasing function of τ . We seek the
minimum value for τ that satisfies

Φ(τ) ≤ pf , (16)

where pf is the desired probability of timing out pre-
maturely. By rewriting Φ(τ) as P {τ < ǫ2}, we compute
τ from

τ = F
−1
ǫ2

(1 − pf), (17)

where Fǫ2
is the cumulative density function of ǫ2. A

nice feature of the Gaussian distribution is that its inverse
cumulative function can be directly calculated from the first

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

Prediction Error, AR(2)

Normal(0,9.6)

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)
C

D
F

Prediction Error, AR(2)

Normal(0,14.8)

Figure 4: Prediction-error distributions for ∆T =
20 ms (above) and ∆T = 40 ms (below). Plots do
not include the lost packets.

and second-order moments. For example, to limit the rate
of pre-mature timeouts to 5%, τ should be set to 1.65 × σ,
which is 25 ms for the ∆T = 40 ms trace. While 25 ms
can be mistakenly seen insignificant, τ quickly increases for
lower pf values, e.g., for pf = 0.1%, the required amount
increases to 46 ms.

The adverse impact of large τ values is the increase in
the time required to detect lost packets. To quantify the
detection time of a lost packet, we use the delay of the
last successfully-received packet as the hypothetical delay
for the lost packet. The loss detection time is then given by
the difference between the predicted and the hypothetical
delays. That is,

w[n] = s̃2[n] + τ − s[n∗], ∀n : s[n] = ∞, (18)

where n∗ is the last successfully-received packet. The
average loss detection time and the pre-mature timeout
probability are the benchmarks that characterize the
performance of an RTO estimator. In Fig. 5, we plot several
(w, pf) points for both delay traces. We notice that the
client detects lost packets faster when streaming at higher
bitrates. This result is consistent with Fig. 1 and 3 where
we showed that the AR(2) prediction is more accurate for
smaller ∆T values.

4. INTERNET EXPERIMENTS

4.1 Setup
In order to assess the performance of the proposed RTO

estimation method, we developed a skeleton implementation

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

∆T = 20

∆T = 40

Figure 5: Performance analysis of the proposed
RTO estimator.

and established an experimental platform on the Internet.
On this platform, we emulated a real-time video streaming
application over UDP between a broadband client in
Ankara, Turkey and a broadband server in Atlanta, GA
USA3. The client simultaneously streamed video packets
from the server and carried out the RTO computation.
When a packet was identified as lost, a retransmission
request was sent to the server. If this request was
successfully received, the server immediately retransmitted
the requested packet. The delay measurements for the
retransmitted packets were ignored by the client in order
to avoid any potential ambiguity.

We conducted our experiments in five sessions of
60 minutes, where we tested four different approaches:
(i) the enhanced TCP-like RTO estimator, denoted
by RTOE−TCP, (ii) recursive weighted median filtering,
denoted by RTORWM(1,5), (iii) a percentile-based RTO
estimator that predicts the forward-trip time (FTT) of the
next expected packet by computing the pth-percentile of the
FTT histogram (excluding the lost packets), denoted by
RTOPRC, and (iv) the proposed RTO estimator, denoted
by RTOAR(2). After each session, the mean delay and
packet loss rate were measured to ensure that similar
network characteristics were observed in all sessions. (The
mean round-trip delay and mean forward-path packet loss
rate were measured as approximately 250 ms and 6.0%,
respectively.) In order to compensate for one-way delay
jitter and allow some time for retransmissions, we employed
a playout delay of 500 ms. The packets that missed
their decoding deadlines, i.e., late packets, were still used
in the decoding process to improve the decodability of
the predictively-encoded frames. We concealed missing
macroblocks with the ones in the last successfully-decoded
frame. This basic error-concealment technique reduced the
amount of severe transitions from the frames in error.

For video quality comparison, we encoded the test
sequence Foreman (352 × 288) with a standard H.264
codec [23] at 600 Kbps and 20 frames per second. We
present our results in terms of both the percentage of on-
time packets and average video quality. For the latter,
we use the peak signal-to-noise ratio (PSNR) measure on

3The reason for experimenting over an intercontinental
network was to observe a wide range of packet loss and delay
characteristics.

the luminance (Y) channel. PSNR is computed from

PSNR = 10 × log10(
2552

MSE
), where MSE stands for the mean-

squared error between the original and decoded luminance
frames.

4.2 Results
An immediate result of our experiments is that without

any error control, the video quality severely suffers from
the lost packets; in our case, the average streaming quality
barely reached 34.3 dB (5.6 dB lower than the lossless case).
When RTOE−TCP was employed, the video quality improved
by 0.7 dB at the expense of an average rate increase of
39 Kbps. However, 7% of this rate increase was redundant
due to pre-mature timeouts, and 86% of it was useless since
those packets missed their deadlines. The second method,
RTORWM(1,5), improved the video quality by only 0.2 dB
while increasing the average transmission rate by 38 Kbps.
We observed that 5% of the retransmissions requested by
RTORWM(1,5) were redundant and 93% of them were late.
These results clearly indicate that the RTO estimators that
are primarily designed for TCP are not suitable for low-delay
applications. The overinflated estimates inevitably disrupt
the timely detection of lost packets, which adversely affects
the on-time retransmission performance.

In the third session, we tested RTOAR(2) and obtained
an average video quality of 38.3 dB (4.0 dB improvement
over the no-retransmission case) at an average streaming
rate of 638 Kbps. The quality gain stemmed from the fact
that only 5% and 30% of the total retransmissions were
redundant and late, respectively. In the last two sessions,
we experimented with RTOPRC with two different p values.
These p values were chosen by trial and error such that (i)
RTOPRC recovered as many packets on time as RTOAR(2),
and (ii) RTOPRC consumed an average total streaming
rate equal to the one consumed by RTOAR(2). Table 1
summarizes our results, and shows that RTOAR(2) clearly
outperforms all other three RTO estimators by achieving a
higher video quality while streaming at an equal or smaller
bitrate.

Rate Redundant Late PSNR
(Kbps) Ret. Ret. (dB)

RTOE−TCP 639 7% 86% 35.0
RTORWM(1,5) 638 5% 93% 34.5
RTOPRC 644 18% 29% 38.3
RTOPRC 638 5% 55% 36.5
RTOAR(2) 638 5% 30% 38.3

Table 1: Experimental results for different RTO
estimators.

4.3 Implementation Issues
In our implementation, the AR(2) predictor filter

coefficients, α1,2 and α2,2, as well as the prediction-error
standard deviation were computed from the accumulated
statistics. Particularly, we employed a window-based
approach and used the last 20 samples to solve (9). While
α1,2 and α2,2 varied over time, we did not observe much
change in the error statistics. However, it is still not
conclusive whether a window size of 20 is suitable for
all cases. We are currently investigating this issue and
its impact on the computational complexity of the RTO
estimation.

5. CONCLUSIONS AND FUTURE WORK
In this study, we developed an adaptive delay predictor

and a redundancy-controllable timeout estimator. The
proposed two-step RTO estimation method optimally
manages the trade-off between the amount of overwaiting
and redundant retransmission rate, which allows the
applications to maximize their error-recovery capabilities
under a given redundant rate budget. We summarize our
main findings as follows:

• The RTO estimators that are developed for TCP
severely suffer from long loss detection times. We were
able to reduce the detection times by tweaking the
estimation parameters, e.g., k in (3) and W in (4).
However, the resulting rate of spurious timeouts was
unacceptably high.

• Provided that the packets are transmitted at suffi-
ciently short intervals, consecutive delay samples show
a strong correlation. Wiener predictors can be used to
fully exploit this correlation and produce uncorrelated
prediction-error samples. We showed that these uncor-
related error samples could be modeled by a Gaussian
distribution, implying that the error samples were in-
deed independent. Thus, Wiener prediction models
can completely characterize the packet delay process.
We also showed that AR(2) predictors could be safely
used in practice instead of their Wiener counterparts.

• Adaptivity to time-varying network conditions is the
key in a successful RTO estimation. Slow adaptation
potentially leads to a significant performance degrada-
tion in terms of redundant/late retransmissions.

In this study, to keep the discussion focused and
concrete, we ignored the interdependency relations among
the video frames and packets. However, a media-aware RTO
estimation method may prioritize the packets that carry a
more important payload and the packets whose decoding
deadlines are sooner, over the less important and non-urgent
packets. A promising direction in our future work is to
investigate the potential quality improvements that can be
gained through media-aware RTO estimation.

Another direction for future work is to investigate whether
a hybrid ARMA (autoregressive/moving average) model
could be used to improve Jacobson’s algorithm. While
data-oriented applications do not explicitly impose delivery
deadlines to TCP packets, a quick loss detection may be
beneficial to achieve a higher TCP throughput, particularly
in the short-lived flows.

Acknowledgments– The authors would like to thank
Mehmet A. Begen of University of British Columbia for his
helpful discussions. This work is supported by NSF under
NSF award CCF-0430907.

References
[1] A. C. Begen and Y. Altunbasak, “Timely inference of

late/lost packets in real-time streaming applications,” in
Picture Coding Symp. (PCS), 2004.

[2] P. A. Chou and Z. Miao, “Rate-distortion optimized stream-
ing of packetized media,” Microsoft Research Technical Re-
port MSR-TR-2001-35, 2001.

[3] M. Kalman, E. Steinbach, and B. Girod, “Adaptive media
playout for low delay video streaming over error-prone
channels,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 14, no. 6, pp. 841–851, June 2004.

[4] V. Jacobson, “Congestion avoidance and control,” in ACM
SIGCOMM, 1988.

[5] Computing TCP’s Retransmission Timer. [Online].
Available: http://www.ietf.org/rfc/rfc2988.txt

[6] D. Loguinov and H. Radha, “On retransmission schemes for
real-time streaming in the internet,” in IEEE Int. Conf.
Computer Communications (INFOCOM), 2001.

[7] M. Allman and V. Paxson, “On estimating end-to-end
network parameters,” in ACM SIGCOMM, 1999.

[8] R. Ludwig and K. Sklower, “The eifel retransmission timer,”
SIGCOMM Comput. Commun. Rev., vol. 30, no. 3, pp. 17–
27, 2000.

[9] Q. Li and D. L. Mills, “Jitter-based delay-boundary
prediction of wide-area networks,” IEEE/ACM Trans.
Networking, vol. 9, no. 5, pp. 578–590, Oct. 2001.

[10] L. Ma, G. R. Arce, and K. E. Barner, “TCP retransmission
timeout algorithm using weighted medians,” IEEE Signal
Processing Lett., vol. 11, no. 6, pp. 569–572, June 2004.

[11] R. Sinha and C. Papadopoulos, “An adaptive multiple
retransmission technique for continuous media streams,” in
ACM NOSSDAV, 2004.

[12] C. Papadopoulos and G. M. Parulkar, “Retransmission-
based error control for continuous media applications,” ACM
NOSSDAV, 1996.

[13] I. Rhee, “Error control techniques for interactive low bitrate
video transmission over the internet,” in ACM SIGCOMM,
1998.

[14] P. Karn and C. Partridge, “Improving round-trip time esti-
mates in reliable transport protocols,” in ACM SIGCOMM,
1987.

[15] A. Mukherjee, “On the dynamics and significance of low
frequency components of internet load,” University of
Pennsylvania, Tech. Rep. MS-CIS-92-83, 1992.

[16] J. Wenyu and H. Schulzrinne, “Modeling of packet loss
and delay and their effects on real-time multimedia service
quality,” in ACM NOSSDAV, 2000.

[17] D. Loguinov and H. Radha, “End-to-end internet video
traffic dynamics: Statistical study and analysis,” in IEEE
Int. Conf. Computer Communications (INFOCOM), 2002.

[18] RTP: A Transport Protocol for Real-Time Applications.
[Online]. Available: http://www.ietf.org/rfc/rfc1889.txt

[19] P. J. Brockwell and R. A. Davis, Introduction to Time Series
and Forecasting. Springer, 2003.

[20] E. W. Zegura, K. L. Calvert, and M. J. Donahoo, “A
quantitative comparison of graph-based models for Internet
topology,” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp.
770–783, 1997.

[21] S. McCanne and S. Floyd. Network simulator. [Online].
Available: http://www.isi.edu/nsnam/ns

[22] Simple Network Time Protocol (SNTP) Version 4. [Online].
Available: http://www.ietf.org/rfc/rfc2030.txt

[23] H.264 AVC reference software. [Online]. Available:
http://iphome.hhi.de/suehring/tml/download

