Adaptive Multimedia Content Delivery for Scalable Web
Servers

by

Rahul Pradhan

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science

by

May 2001
APPROVED:

Prof. Mark Claypool, Advisor

Prof. Craig Wills, Reader

Prof. Micha Hofri, Department Head

Abstract

The phenomenal growth in the use of the World Wide Web often places a heavy
load on networks and servers, threatening to increase Web server response time and
raising scalability issues for both the network and the server. With the advances in
the field of optical networking and the increasing use of broadband technologies like
cable modems and DSL, the server and not the network, is more likely to be the
bottleneck. Many clients are willing to receive a degraded, less resource intensive
version of the requested content as an alternative to connection failures. In this
thesis, we present an adaptive content delivery system that transparently switches
content depending on the load on the server in order to serve more clients. Our sys-
tem is designed to work for dynamic Web pages and streaming multimedia traffic,

which are not currently supported by other adaptive content approaches.

We have designed a system which is capable of quantifying the load on the
server and then performing the necessary adaptation. We designed a streaming
MPEG server and client which can react to the server load by scaling the quality of
frames transmitted. The main benefits of our approach include: transparent content
switching for content adaptation, alleviating server load by a graceful degradation of
server performance and no requirement of modification to existing server software,
browsers or the HT'TP protocol. We experimentally evaluate our adaptive server
system and compare it with an unadaptive server. We find that adaptive content de-
livery can support as much as 25% more static requests, 15% more dynamic requests

and twice as many multimedia requests as a non-adaptive server. Our, client-side

experiments performed on the Internet show that the response time savings from

our system are quite significant.

Acknowledgements

I would like express my deep gratitude and appreciation for Professor Mark
Claypool for his continual guidance and support. He has not only been an amazing
advisor for this thesis but has also been of help on academic and personal matters.
Thank You Mark, for going out of your way to help me and making my stay here

at WPI really memorable.

I would also like to thank Professor Craig Wills for being my reader and also
for his suggestions and help to improve this work. I would like to thank my best
friends, Sooraj and Shivani for being there whenever I needed them. I would also

like to thank Akshay for his help in the early part of this thesis.

Last but not the least, special thanks to my parents without whose love, support
and encouragement this would not have been possible. I dedicate this thesis to my

parents.

Contents

2.1

2.2

3.1
3.2

4.1

4.2

Introduction

Related Work

Improving Server Performance
2.1.1 Mirrored Architecture
2.1.2 Load Balancing oo
2.1.3 Content Adaptation
Web Content Adaptation
2.2.1 Multimedia Compression Techniques

2.2.2 Content Adaptation Techniques

Adaptive Content Delivery System

Adaptive Content Delivery Architecture

Adapting Web Contento

Web Server Load Monitoring

Methodolgyo

4.1.1 Metrics,

i

10
10
11
12
15
18
18
21

26
26
30

4.2.1 Httperf

4.2.2 Netperfo
423 Bonnie
4.3 Results and Analysis
5 Web Server Performance
5.1 Methodology
5.1.1 Metrics
5.2 Results and Analysis L.
5.2.1 Server Performance o000
5.2.2 Dynamic Requests L oL
5.2.3 Multimediao oo
5.2.4 Client Side Measurements on the Web

6 Future Work

7 Conclusions

A Tools Used

A.1 hitperf

il

47
47
49
49
49
92
93
26

61

63

65

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
9.3
0.4
9.5
5.6
5.7

Bail Out Rate for Various Web Page Sizes [1] 6
JPEG Compression oo 19
MPEG Compression 20
Adaptive Content Delivery Framework 27
Response Time(ms) vs CGI Output File Size 32
JPEG Quality vs File Size 34
MPEG Quality vs File Size 35
Average Response Time vs Average CPU Utilization 43
Average Response Time vs Average Network Utilization 44
Average Response Time vs Average Disk Utilization 45
Response Time (ms) vs File Size (KB) 46
Snapshot of the Adaptive Content Delivery System 50
Response Time (ms) vs Requests/sec 51
Responses/sec vs Requests/sec 52
Errors vs Requests/sec 53
Overhead for the Adaptive Content Delivery System 54
Response Time vs Number of CGI Clients 55
Failure Rate vs Number of CGI Clients 56

v

5.8
9.9
5.10
5.11
5.12

5.13

Frame Rate (fps) vs Number of Multimedia Clients 57

CPU Utilization vs Number of Multimedia Clients 58
Network Utilization vs Number of Multimedia Clients 58
Disk Utilization vs Number of Multimedia Clients 59

Connection Set up Time and Transfer Time as a Percentage of Re-
sponse Time 59

Response Time (ms) vs File Size (KB) 60

List of Tables

1.1 The Economic Impact Of Web Performance

4.1 Multimedia Storage Requirements

vi

Chapter 1

Introduction

The Internet has evolved from being just a medium for communication and browsing
to a medium for conducting business and selling a myriad of emerging services. The
World Wide Web has made the Internet available to a wide range of users. The
Web server is at the center of an emerging e-service infrastructure with increasing
requirements for reliability, scalability and security guarantees in an unpredictable
and highly dynamic environment. This phenomenal growth in traffic and increas-

ingly stringent requirement demands have placed a heavy load on the Web servers.

The Web is emerging not only as an information dissemination mechanism but
also as an entertainment medium. The number of people on the World Wide Web is
expected to reach 320 million by 2002 [2]. Popular Web sites like Microsoft, CNN,
Yahoo which feature in the top 100 [3] most frequently accessed sites, get more than
a million requests per day. As Internet usage skyrockets throughout the world this
number could easily increase by an order of magnitude as more people get online.
However, the hit count does not give an accurate indication of the load on the server -

as the richness, perceptual quality, interaction, dynamism and security requirements

of the contents increase, the size of the Web pages and the processing time required
to serve them increases by an order of magnitude. Personal Web hosting services
like geocities.com and nbci.com allow individuals to create and share information
easily. With rich media authoring tools readily available more and more Web pages

contain multimedia.

The size of the embedded multimedia objects determines the average size of Web
pages. This problem is exacerbated by the the increasing popularity of multimedia
content. Today the average size of a Web page is 64KB as compared to 32KB in
1997 [4]. As the number of Web-based businesses expands, there is greater com-
petition to capture and hold the attention of viewers. Web-based audio and video
streaming capabilities give Web developers a competitive edge in the creation and
delivery of captivating applications that attract and retain vast and diverse sets of
audiences. Media streaming is becoming popular and widely used because it removes
the storage requirement for the client and can be used for real time applications.
With media streaming, a server stores the media files and transmits encoded streams
to the client. The client then decodes the stream and synchronizes the audio and
video and plays it out. Thus the client need not download and store the received
multimedia file. This works very well for a live Web cast or for a video on demand
server. The client just needs to buffer the media data in memory for a period of time
long enough to avoid jitter, and then discard the data after playing. The trend for
Web content providers is towards an increasingly multimedia rich experience for the
end user. [5] estimates that about 77% of the bytes across the Web are multimedia

objects such as images, audio and video clips and 67% of those bytes are images.

With the growth in Internet commerce, dynamic Web pages have become an

important tool in the exchange of information. Dynamic Web pages typically re-
quire some processing by the server before they can be served. New application
technologies like Java, Secure Sockets Layer (SSL) for security, database transac-
tions and sophisticated middleware components increase the processing demands
on the server. This means that the delays witnessed by users are directly affected
by server performance, and are not simply due to download times. These evolv-
ing applications, like continuous media, need high throughput, whereas e-commerce
transactions need low response time, even during congested periods. Web servers
that do not respond quickly under heavy loads can slow down a network connection,

deny service to clients and cause network failures.

Web services need to serve as many users as possible at sufficiently attractive
levels of quality and latency to gain and retain their business. Web sites also need
to scale under heavy load in order to offer assured service to retain their preferred
customers as well as attract potential customers. Flash crowds can overload a pop-
ular server leading to sluggish response times or an inability for clients to connect
at all [6]. During periods of such high demand, large multimedia objects and com-
putationally expensive dynamic Web pages limit the ability of the server to respond

to requests all of its clients.

With network bandwidth increasing due to broadband services like DSL, cable
modems and the advances in optical networking, more and more bottlenecks are
observed at the server. Thus, there is a need to address the issue of server-side bot-
tlenecks to scale up Internet server capacity to meet networking capacity and service
demands. Web servers typically offer poor performance in overloaded conditions,

leading to high response times on the most popular servers. When the request rate

Site Types Example of Site Impact

Most Accessed Sites News Sites, Portals, Top 100 Lost Advertising Revenues

E-Commerce Sites On Line Catalogs Shopping Sites | Lost Sales Revenues, Fewer Repeat Customers
Streaming Media Sites | Video-Audio on Demand Lost Event Revenues, Fewer Repeat Business

Table 1.1: The Economic Impact Of Web Performance

on a Web server increases beyond server capacity, the server becomes overloaded and
unresponsive. The TCP connection queue of the server’s socket overflows resulting
in client perceived server outage [7] and the end system can spend more than half
of its time processing eventually rejected requests (e.g., protocol stack processing,
queuing, socket call processing etc.). Once overloaded, the server starts rejecting

connections and cannot offer a graceful degradation in performance.

The incapability of Web servers to degrade gracefully under load results in con-
nections being denied, which translates to a loss in revenue for today’s Internet
economies. Zona research estimates that more than $4 billion in e-commerce rev-
enues are lost each year in the US because of slow pageloading times. Table 1.1
[1] gives the economic impact of overload on different types of sites. It empha-
sizes the loss for Internet economies on account of poor Web performance. While
the consumer E-commerce market is considerable in size, the business-to-business
(B2B) E-commerce market is larger and is predicted to grow dramatically. B2B
transactions need to be secure, scalable, reliable and instantaneous. Therefore, it
is important to consider how to serve the maximum number of clients under con-

strained conditions.

Improving users’ perception of Web page performance is complicated by the

fact that the factors that influence Web performance are often interdependent. For

example, Web pages that are retrieved faster are judged to be significantly more
interesting than their slower counterparts [8], and users may judge a relatively fast
service to be unacceptable unless its predictable and reliable. The spikes of traffic
that can overwhelm a server have a negative impact on Web users. Users’ concep-
tion of the Internet is that it provides service on demand, so when they find that at
times they are not able to access a site the opinion of the user about the site falls
sharply. [8] shows that clients believe that e-commerce companies should possess
the capability to have a scalable server which can perform under overloaded condi-
tions. [8] also shows that the inability of an e-commerce site to perform satisfactorily
under overloaded conditions affects users’ conception of the company’s stature and
commercial viability. Users do not perceive the network traffic demands, networking
infrastructure, ISP’s or their own network connection as the cause for the poor per-
formance, but instead they place the blame on the individual businesses represented
by the sites [8]. Thus, inevitably if poor response times are regularly observed under
loaded conditions, then the opinion of the users about the site falls dramatically.

This means that users are less likely to accept delays, or refused admissions to a site.

Zona Research also tracked “bailout rates” (the percentage of people who did not
wait for pages to load but instead went to other pages), as shown in Figure 1.1 [1].

The study noted that over 50 percent of the people attempting to download a
page in excess of T0KB leave before the page is completed. As might be expected,
the larger the page size, the greater the bailout rate: Typically a 40KB page has
a 30-percent bailout rate, while a 34KB page has only a 7% bailout rate. What
appears to be a mere 6KB difference with 15 percent less information and down-
load time results in a greater than fourfold reduction in the bailout rate. This

data demonstrates users’ high sensitivity to download times. Thus, the increasing

a0

40

30
20
) g

Y0KB Page 40FKE Page 34 KB Page

Figure 1.1: Bail Out Rate for Various Web Page Sizes [1]

criticality of Internet applications demand that the servers exhibit a high level of ro-

bustness and availability while delivering low response times with a high probability.

There has been significant research to alleviate server load through various load
balancing techniques [9, 10]. [11] describes a different approach of adaptive con-
tent delivery. It describes modifying Web content to reduce the load on the server.
Reducing the number of embedded objects per page can also result in significant
additional resource savings. Reducing local links is another way of adapting site
content. This approach is sometimes followed manually by administrators of large
sites such as www.cnn.com of the Cable News Network (CNN) upon overload due
to breaking news [12]. Another approach to content adaptation involves the use of
thumbnails to index large images. Thumbnails are typically small images that give
a preview of the larger high quality image. Thus, the user can download the entire
image only if it is really of interest. [13] describes the benefits of HT'TP content
negotiation, which uses Apache’s [14] built in content negotiation to serve varying
content depending on the client/server conditions. However, most of these tech-

niques are not automated to respond to server load dynamically. All the techniques

just consider network bandwidth as a measure of the load on the server. This might
not necessarily be true as more and more multimedia and dynamic requests are

served.

Similar content adaptation techniques can be easily used to adapt server output
to client-side resource limitations, or to provide content to more important clients
[5]. The processing power, connection bandwidth and the display resolution may
vary significantly from client to client especially with the proliferation of mobile
computing devices. Content adaptation can provide the most appropriate version

of the content to each client in accordance with their resources constraints.

[11] uses request rate and the network bandwidth as their criteria for switching
content. Since increasingly a server processes resource intensive multimedia objects
and dynamic page generation technologies, the switching should take into consid-
eration those parameters as well. Multimedia places stringent requirements on the
system due to its processor and memory intensive operation. The storage and re-
trieval of multimedia objects are the most resource intensive operations in terms of
processing needs and disk access. Dynamic Web page technologies usually involve
some processing on the part of the server, generating a Web page on the fly and
sending it over the network to the client. Thus, both multimedia and dynamic page
generation induce load both to the processor and the disk in addition to the load
placed on the network. Thus, in addition to alleviating overload, content adapta-
tion will reduce the amount of server resources wasted on eventually unsuccessful

or rejected connections.

For many purposes, the highest reproduction quality is not the aim when pic-

tures are included in a Web page. A client need not wait for a long time for the
best quality response from the server, but rather can get a degraded response in a
shorter time. This is based on the presumption that as an alternative to connection
failures, clients may be willing to receive a degraded, less resource intensive version
of the requested contents. This is especially important for multimedia applications

where a timely delivery is more important than a guaranteed high quality delivery.

Our solution is designed for a graceful degradation of the server performance
under heavy load rather than cope with permanent sustained overload. We concern
ourselves with the problem of scaling a dynamic multimedia rich server by switching

the content under high load.

This thesis develops a system which dynamically adapts to the content being
delivered to the client according to the resources of the server so as to alleviate
the load on the server. The dynamic modifications are performed automatically by

monitoring the server load.

Server overload may occur due to the saturation of CPU bandwidth, the commu-
nication link or the disk bandwidth of the server. Streaming multimedia applications
which tend to be resource intensive are dependent upon CPU utilization, network
and disk bandwidth and are connection oriented due to their long term streaming
nature. The dynamic Web page generation techniques are also resource intensive, as
they often require some processing. We develop a measure of the load on the server
based on the CPU utilization, disk utilization, the outgoing network bandwidth and

the observed request rate.

The remainder of this thesis is organized as follows. Chapter 2 gives a brief
overview of the various techniques used to provide a scalable solution to the problem
of Web server overload and some related work done in the area of adaptive content
delivery. Chapter 3 describes our adaptive content delivery approach in detail,
the architecture of our system, and the ways of varying quality for multimedia
files. Chapter 4 shows the effect of server performance on the system utilization
parameters. Chapter 5 shows the results of tests on both the adaptive and non-
adaptive server for static, dynamic and multimedia workloads. Chapter 6 presents

possible future work and Chapter 7 concludes the thesis.

Chapter 2

Related Work

Due to the phenomenal growth in the World Wide Web traffic and the consequent
load on the Web server, there is currently a lot of ongoing research to improve server
performance under load. This chapter, discusses about the various techniques used
to improve the performance of a Web server under load including content adaptation

techniques which we explore.

2.1 Improving Server Performance

Numerous techniques have been proposed to alleviate server overload. Techniques
such as distribution of load across geographically separated servers [10, 9, 15] have
been proposed to reduce server load. [16] proposes redirection servers to transpar-
ently redistribute users’ requests. There has been a lot of research in the field of
server load balancing and numerous networking companies have commercial prod-
ucts to load balance a server. This section briefly overviews some techniques used

to improve the server performance under load.

10

2.1.1 Mirrored Architecture

Two web sites are said to be mirrors of each other if a high percentage of paths
are valid on two Web sites and the documents linked at those path are similar [17].
These web sites have a complete or a partial replication of content. The selection
of the appropriate site is not dynamic, but the clients are either allowed to select a

mirrored site or explicitly directed to one.

[17] studies the various mirroring techniques used on the Web and classifies
various mirroring techniques on the basis of the similarity in structure and content
as:

1. Level 1 : Structural and Content Identity

Every page on host A with a relative path P is byte-wise identical to the page
on host B with a relative path P and vice versa.

2. Level 2 : Structural Identity and Content Equivalence

Every page on host A with relative path P, is represented by an equivalent
content page on host B with a relative path B and vice versa.

3. Level 3 : Structural Identity and Content Similarity

Every page on host A with a relative path P, is represented by a highly similar
page on host B at relative path P and vice versa.

4. Level 4 : Partial Structural Match and Content Similarity

Some pages on host A with relative path P, are represented by a page on host
B, with relative path P and vice versa, and these pages are highly similar.

5. Level § : Structural Identity and Related Content

11

Every page on host A with relative path P, is represented by a page on host
B with relative path P and vice versa. The pages are pair-wise related but in

general are not syntactically similar.

2.1.2 Load Balancing

Server load balancing [9] is the process of distributing service requests across a group
of servers. Some content-intensive applications have scaled beyond the point where
a single server can provide adequate processing power. Both enterprises and service
providers need the flexibility to deploy additional servers quickly and transparently
to end-users. Server load balancing makes multiple servers appear as a single virtual
service by transparently distributing user requests among the servers. The highest
performance is achieved when the processing power of servers is used intelligently.
Advanced server load-balancing products can direct end-user service requests to the
servers that are least busy and therefore capable of providing the fastest response
times. Necessarily, the load-balancing device should be capable of handling the ag-

gregate traffic of multiple servers.

Some of the techniques used for Load Balancing are [9]

1. HTTP Redirection

HTTP redirecting distributes a Web site’s load among multiple servers by
connecting users’ browsers directly to the servers. When you select a Web
site’s URL, you usually connect directly to the computer servicing that URL.
For example, type www.wpi.edu, and the server designated to respond to
requests for that HTTP address will provide the WPI Web site. However, if

the Web site has a replica on a server with the URL www.wpi2.edu, an HTTP-

12

redirecting program can redirect users’ browsers to www.wpi2.edu to balance
the Web site’s load. HT'TP-redirecting software automatically directs browsers
to a Web site replica if the primary URL’s server fails. HTTP redirecting’s

main disadvantage is that it does not work with all Web browsers.

. Packet Redirection

Packet redirection is a transparent mechanism as compared to HTTP redi-
rection. The server reached by a request reroutes the connection to another
server through a packet rewriting mechanism. The load balancing algorithm
can be static or dynamic wherein there is a periodic communication between

servers to determine load.

. Domain Name Service (DNS) - Based Approach

Round Robin (RR) DNS allows a domain name associated with several IP
addresses, each of which represents a different web server. For a DNS lookup,
the RR DNS server returns a domain name mapping in a round robin fashion,
thus each request gets routed to a different server in a round robin manner

and distributes the load on the servers.

. Load Balancing Switches

Load balancing switches such as Cisco’s LocalDirector and Nortel Networks’
Alteon ACEdirector redirect TCP/IP requests to multiple servers in a server
farm, providing a highly scalable, interoperable solution that is also very reli-
able. These switches sit between the connection to the Internet and the Web
farm. All requests come to the switch using the same IP address, and then
the switch forwards each request to a different Web server based on various

algorithms implemented in the switch. Switches will frequently be able to ping

13

the servers in the farm to make sure they are still up, and to get an estimate of

how busy they are so they can make informed decisions about load balancing.

Application load-balancing software distributes a Web site’s workload among
servers according to the content browsers request. A primary Web server accepts
all incoming Web traffic and performs tasks such as static HTML file transmissions.
The primary server redirects back- end applications, such as Active Server Pages
(ASP) and Common Gateway Interface (CGI) programs, to other computers. An-
other common algorithm is to load balance based on the content of the request, such
as the IP address of the requestor, or some other information in the request. Using
the IP address alone does not work well because some Internet service providers
(ISPs) and some companies use proxy servers that change the IP address of all of

the requestors that go through the proxy to the same address.

Load balancing with admission control [18] has often been used for overload
protection. The traditional method of scaling Web servers has been to do load bal-
ancing across a server farm using a front-end load distributor. Such a solution is
inherently non-scalable. If the front-end operates at the transport layer or below,
scalability suffers because of contents in the memory cache of each server while a
content-aware load distributor itself becomes a bottleneck because of the amount of
work expected of it [19]. Admission control on the other hand is used to improve
the average latency of admitted client requests by rejecting a subset of clients. It is
based on the premise that consistent rejection of all requests from a subset of clients
may be better than indiscriminate connection failures affecting all clients alike in
the absence of admission control. Though admission control can improve server
performance by preventing overload, it offers no service to rejected connections,

and cannot recover the significant resources wasted in the communication protocol

14

stack on client requests rejected by the server. This wasted kernel overhead may
be significant at overload. As an alternative to connection rejection by admission
control, Web server load can be reduced by using multicast to distribute commonly
requested pages [20]. Other techniques include [10] dynamically scheduling HTTP
requests across clusters of server to optimize the use of resources. Rent-a-server, a
technique for server replication on demand is presented in [12] to replicate servers

on overload.

All the above mentioned techniques essentially propose solutions based on load
balancing among multiple servers. However, they do not handle the problem of
scalability of a single server, as even a load-balanced server farm may have a problem
of sudden degradation of a single server performance. We concern ourselves with the
problem of managing an overloaded individual server. Our technique is designed for
alleviating peak load rather than cope with sustained load. If the server is loaded
for a significant proportion of its uptime then, its calls for upgrading of the server
platform. To cope with server overload, servers are either over provisioned or use
admission control. When overprovisioning is used often twice the normal capacity
is allocated to the Web server [21]. This approach does not always prevent overload
conditions. This is because during the evolution of Web applications, there has
been a steep growth in the client demand curve that makes provisioning difficult
and not conducive to static resource allocation approaches. Thus, brute force server
resource provisioning is not fiscally prudent since no reasonable amount of hardware

can guarantee predictable performance for flash crowds.

2.1.3 Content Adaptation

A different approach called content adaptation is described in [7] to reduce overload.

15

Content adaptation involves adaptation of content served to satisfy the server, net-
work or the client conditions. GIF and JPEG images constitute 67% of the total
bytes surveyed [5]. These images can be significantly compressed without a propor-
tional decrease in quality. [22] shows ways of adapting the content according to the
client requirements. [7] talks about content adaptation to balance server load. To
support multiple versions of the same content the path to a particular URL in a
given content tree is the concatenation of the content tree name and the URL name,
prefixed by the name of the root service directory of the web server. It applies to
static as well as dynamic content. Their load measurement is based upon the re-

quest rate and the aggregate delivered bandwidth.

Intervention of the content provider may be required to authorize or fine tune
certain types of adaptation during the off line pre processing stage. For adaptation
technology to be cost effective, the intervention must be minimal and should not
change the way content providers have traditionally created Web sites. The cost
of adapting content should be less than the cost of alleviating load by upgrading
the server’s machine and /or its network connection. Content authoring tools allow
Web content developers to annotate parts of the content with the specific adapta-
tion tags (for example, expendable, degradable etc.). These tags are preprocessed by
content management tools to create separate standard-HTML versions of the site.
The appropriate version will be served at run time depending on load conditions.
Since the created content versions contain only standard HTML and image formats,
no modification is required to the browsers. Default adaptation actions may be
used by the preprocessing tools on those parts of the content that have not been
tagged. These defaults will reduce the need for explicit adaptation tags thus sub-

stantially reducing the effort of utilizing adaptation technology by content providers.

16

Many Web developers today use an alt clause to define an alternate text for
cosmetic items like icons, bullets, gifs etc. Adaptation tools may make use of this
clause, when available, to replace cosmetic items in less resource intensive versions of
content. Content providers may tag objects that should not be removed by default

treatment.

Another way of adapting content is to reduce local links. This reduction will
affect user browsing behavior in away that tends to decrease the load on the server
as users access less content. Reduction of local links may be automated, eg., by
limiting the web site’s content tree to a specific depth from the top page. Content
providers may indicate, using special tags, subtrees that should be preserved beyond

the default depth during the reduction process.

There has been numerous research to adapt Web content to account for client
variability [23, 22]. Universal access is a concept raised by the research community
to address technical issues for enabling information access in a heterogeneous net-
work environment, by accommodating the special needs of users and the constraints
of client devices and network characteristics. The goal of universal access is to pro-
vide the necessary Internet infrastructure to allow users to access any information
over any network from anywhere through any type of client device [24]. To provide
universal access, Web content may need to be transformed into an appropriate rep-

resentation before being delivered to the client.

17

2.2 Web Content Adaptation

Web content Adaptation involves adapting the content to be delivered according
to the bottleneck resource. This section gives an overview of the various ways of

adapting Web content.

2.2.1 Multimedia Compression Techniques

Transcoding is a technique to dynamically customize multimedia objects to pre-
vailing conditions. Transcoding can be performed along a number of different axes
and the specific transcoding technique used depends on the type of the multimedia
object [5]. In this section, we feature transcodings that vary the quality resulting
in file size savings. This section gives a brief overview of some of the most widely

used multimedia compression techniques.

1. JPEG

JPEG [25] is a standardized image compression mechanism. JPEG stands
for Joint Photographic Experts Group, the original name of the committee
that wrote the standard. JPEG is designed for compressing either full-color or
gray-scale images of natural, real-world scenes. It works well on photographs,
naturalistic artwork, and similar material; not so well on lettering, simple
cartoons, or line drawings. JPEG handles only still images, but there is a
related standard called MPEG (described later) for motion pictures. There are
two advantages of using JPEG over other color storage formats - the reduction

of file size and fact that it stores 24 instead of 8 bit-per-pixel color data.

JPEG works by first transforming the image into brightness and color compo-

nents which are separately encoded - with different compression parameters

18

8% 8 Discrete

Binary 011010...

: Cozine .
Pixel > * Quantizer B
Block Transform

¥

k.

Output Data Stream

Figure 2.1: JPEG Compression

for each element. The image is then grouped into 8x8 blocks, each of which is
transformed using a discrete cosine transform (DCT), which results in a map
containing the average value for the block with successively higher-frequency
changes within the block. DCT provides a good approximation to decompose
an image into a set of waveforms, each with a particular spatial frequency.
Hence frequency components which are less perceptible to the human eye can
be dropped. Thus, JPEG is intended for compressing images that will be
looked at by humans. These values are then quantized and rounded to inte-
gers (this is the lossy step). Finally, the reduced coefficients are encoded using
Huffman variable word length coding and stored in the file together with the

compression parameters used.

2. GIF

The GIF [26] format is best used for graphical or artistic images. Because
GIFs are saved by changes in color information rather than by actual colors,
they are usually smaller in file size. The 8-bit color scheme used by GIFs is
another reason that the file size is usually so small (as compared to the JPEG
24-bit scheme). When compressing with the GIF format, there is no image
degradation involved. GIF is a data stream oriented file format used to define

the transmission protocol of a variable length code LZW - encoded bitmap

19

data. Another advantage of the way that GIFs deal with colors is that they
can be interlaced so that they slowly appear in greater and greater resolution
until they are fully loaded. This is especially helpful when loading a large

image as the image can be seen while it’s loading instead of waiting until it’s

fully loaded.

. MPEG

MPEG [27] is a compression standard for audio, video, and data established
by the International Telecommunications Union and International Standards

Organization.

MPEG-2 is targeted for coding broadcast-quality video signals, hence it is
necessary to digitize the source video at its full bandwidth, resulting in both
even and odd field pictures in the sequence. The MPEG-2 standard provides a
means of coding interlaced pictures by including two field-based coding tech-

niques: field-based prediction and field-based DCT.

=} =}

] =} ? .

= Telecine .| De-Interlacer | G ,| MPEG .| Display

sl ™ : Encods Decode

- A & Filter

5:111?12 720x480, 720x480 — UG

4:d:4 flir?tHZl' 4:2(:12 24Hz 4:2:0 stream (eg. 60Hz 4:2:2
£rlags Progressive 4Mbit/sec Interlaced

Figure 2.2: MPEG Compression

MPEG distinguishes four frame types of image coding for processing; I-frame,
P-frame, B-frame and D-frame. The I-frames are Intra-coded images and are
self contained. They are compressed without any reference to other images .
I-frames can be treated as still images and are used for random access. The

compression rate of the I-frames is the lowest within MPEG. The P-frames

20

are the Predictive-coded frames. The encoding and decoding of P-frames
requires the information of previous I frames and/or all previous P-frames.
Compression rates for P frames are higher than I-frames. B-frames are Bi-
directionally predictive-coded frames. The encoding and decoding of B-frames
requires the information of the previous and following I- and/or P-frame. A
B-frame is defined as the difference of a prediction of the past image and
the following P- or I-frame. The highest compression rate can be attained
by using B frames. The D-frames or the DC-coded frames are intra-frame
encoded. They can be used for fast forward or fast rewind. D-frames consist

only of the lowest frequency of an image.

2.2.2 Content Adaptation Techniques

[23] discusses some of the content adaptation technologies useful for adaptive content
delivery. These techniques result in a smart delivery of content, adapting to the

existing resource bottlenecks.

1. Information Abstraction

The goal of information abstraction is to reduce the bandwidth and processing
requirement for delivering the content by compressing the data, while preserv-
ing the information that has highest value to the user. Examples of information
extraction include text summarization, image thumbnail generation, and video
highlighting and key-frame extraction. Such algorithms can also be used to
improve the user’s browsing experience by providing a preview of the content.
In this way, users are able to quickly browse though more information even
though the server/network resources may be constrained. Moreover, informa-

tion abstraction can be very useful when the client device has limited display

21

capability, such as on palmtops and smart phones. For example, summarizing
each paragraph by a few words and shrinking the size/resolution of each image

in a Web page will help to fit this page on the small screens of those devices.

. Modality Transformation

Modality transform is the process of transforming content from one mode to
another so that the content can become useful for a particular client device.
For instance, most handheld computers are not capable of handling video
data because of both hardware and software constraints. In order to make
the information contained in the video accessible on these devices, video can
be transformed into sets of images and audio into closed caption texts. In
this way, users will be able to receive useful information in whatever form
that their devices can handle. Other examples of modality transform include
speech-to-text and text-to-speech transform and table-to-plain-text or table-
to-list transform for HTML. The primary goal of modality transform is to
adapt the content representation to client device capabilities. In some cases it

may even reduce data volume and, thus save bandwidth in delivery.

. Data Transcoding

Data transcoding is the process of converting data format according to resource
requirements and client device capability. For example, a server which is
loaded can serve a lower quality version without as much strain on its resources.
Also, some client devices may not be able to display color GIF images because
of the lack of viewing or rendering software or the constraint of hardware
display capability, such as a black-and-white screen. In such cases, there is a
need to transcode the original images into another appropriate format, such as

GIF-to-JPEG or color-to-grayscale transformation, so that they can be viewed

22

on the client device in a shorter time. Other examples of data transcoding
include video format conversion (such as MPEG-to-QuickTime), audio format
conversion (such as WAV-to-MP3), and document format conversion (such as

Postscript-to-PDF).

. Data Prioritization

The goal of data prioritization is to distinguish the more important part of
the data from the less important part so that different quality of service levels
can be provided when delivering the data through the network. For exam-
ple, less important data can be dropped under overload condition or can be
progressively delivered to send out the more important data first (such as
low-resolution images) and then deliver the less important data to enhance
the information later (such as reconstruction of high-resolution images). In
this way, we can improve the user’s browsing experience by efficiently utilizing
available resources. Data prioritization can be achieved within a single media
type by using special encoding schemes such as layered coding [28] and multi-
resolution compression [29]. It can also be done across multiple media types
by giving audio higher priority than video and text higher priority than other

types of media.

. Purpose Classification

A typical Web page contains a lot of information and media objects that are
redundant or may not be of interest to a user. For example, an e-commerce
Web site may have multiple images for linking to the same product site on
the top, bottom and the side of the page. A portal site usually contains many
images of banners, logos and advertisements. These data often consume a

good deal of network bandwidth and, therefore, decrease the efficiency of in-

23

formation delivery. The purpose of each media object in a Web page can be
classified to improve the efficiency of information delivery by either removing

redundant object or prioritizing them according to their importance.

Purpose classification of a media object can be done using content analysis
techniques. It can also be achieved to some extent by matching URL strings
with a pre-established database or via heuristics for associating meanings with
certain text contained in the URLs. For example, advertisement images can
be detected and blocked by matching URL strings with a list of keywords like
“ad”, “banner”, “advertisement”, “promotion”, or a list of known advertising
web hosts. Objects with names or “alt” tags containing “bullet” and “logo”

are deemed less important, or even redundant.

The W3C and the IETF have existing standards and on-going discussions on
facilitating server/proxy decision making on the mechanisms of content adaptation
and content delivery. One such protocol is the Synchronized Multimedia Integration
language (SMIL)[30, 31]. SMIL is a markup language that enables the synchronized
delivery of multiple video streams, audio streams and images. It provides condi-
tional constructs to switch tasks (eg. request different content) based on bandwidth
conditions. The Extensible Markup Language (XML) [32] describes the logical rep-
resentation of data and can be utilized to facilitate serving content to different types
of clients under varying conditions. The logical representation of data can be con-

verted to an appropriate representation for display using Extensible Style Sheet

Language (XSL).

The HTTP/1.1 content negotiation capability [33] and the CC/PP [34] are mech-

anisms for the client to convey along with its request its preferred version of content

24

and its user agent information. In HT'TP /1.1 content negotiation, a user agent can
specify in the HT'TP header that, for example, English documents are preferred over
JPEG, or that JPEG images are preferred over GIF images. [13] shows how HTTP
content negotiation can be used to provide an adaptive delivery of web content.
CC/PP specifies client capabilities and user preferences as a collection of URI’s and
RDF (Resource Description Framework Text) [35], which is sent by the client along
with a HT'TP request. The URI’s point to a RDF document which has the details
of the client capabilities. RDF provides a way to express metadata for a web doc-
ument. The CC/PP scheme allows proxies and servers to collect information about
the client, from directly the client, and to make decisions based on this information

for content adaptation and delivery.

We make use of some of the content adaptation techniques described in order
to generate different versions of the Web content. We use content adaptation tech-
niques like Data Transcoding and Purpose Classification to generate varying levels
of quality. We use multimedia compression techniques for the quality scaling of

multimedia images and videos.

25

Chapter 3

Adaptive Content Delivery System

This chapter describes in detail our adaptive content delivery system and describes
the techniques used to generate varying quality of content in order to adapt to the

prevailing server load.

3.1 Adaptive Content Delivery Architecture

Adaptive content delivery is a system technology that transforms Web content and
Delivery schemes to optimize the browsing experience for a client. The goal of con-
tent delivery in our context is to take into consideration various parameters affecting
server performance and then serve the best possible content over all users. We con-
cern ourselves with the problem of alleviating server load hence, Web content must
be adapted in a way that preserves essential information but yet reduces the server
resource requirements of content delivery. When the entire system is overloaded
introducing an extra stage of computation, such as data filtering and compression
will further increase the load on the server. We try to follow the approach described

in [7] of pre-processing the content apriori and storing multiple copies that differ in

26

quality and processing requirements such that at overload the server can switch to

a pre-existing less resource intensive version of the content.

Web server performance depends upon several factors: hardware platform, op-
erating system, server software, network bandwidth and workload. The main factor
in server-initiated content adaptation is the parameter based on which the content
selection is made. The way [11] calculates the parameter makes it infeasible to use
it for serving streaming multimedia or dynamic Web pages as it does not take into
consideration the CPU and disk utilization while calculating the load. We take into
consideration those parameters as well as the available network bandwidth and the
observed request rate. These utilization parameters form a basis for determining
the need for content adaptation. Our proposed architecture provides dynamic (on
the fly) content adaptation as each request comes in. Based upon the current server
utilization and the observed request rate, we determine the type of content to be
served.

The framework for our system is as shown in Figure 3.1. It consists of the following

modules:

Feque)

LA - Web " Adaptation
Server e Module

« Disk Load

Respo :

nse Monitor L 4

S 3 Content
PU, ; i
Dide. Switching
Metwork,

Figure 3.1: Adaptive Content Delivery Framework
The dashed lines represent adaptive framework data, the solid lines represent Web data

27

1. Load Monitoring Module:

This module continuously monitors the Web server to determine the load on
the server and detect overload conditions. The measure of the utilization of a
server serving multimedia content can be quantified by taking into consider-
ation the processor, disk and the network utilization along with the observed
request rate for the server. These parameters summarize the resource con-
sumption of the server. Chapter 4 describes this module detail including the

determination of thresholds for the utilization parameter.

2. Adaptation Module:

This module decides on the quality of content that can be served. When
the server utilization is low all clients receive the best available quality of the
content. However, when the server utilization approaches saturation and the
observed request rate exceeds a threshold a fraction of clients will be served
degraded quality content in order to avoid server overload and connection

failures.

3. Content Selector:

Based on the adaptation made by the adaptation module the content selector
selects the appropriate content to be served. For example, if the load monitor
shows that the server is lightly loaded then the adaptation module informs
the content selector to serve the highest quality version available, otherwise to
serve a less resource intensive version. This content switching is done trans-
parently. The client always types the original URL and the page displayed
also has the same address, but the content varies with the load. We use soft
or symbolic links to switch the content from high quality to low. Symbolic

links are special files in UNIX, that do not contain any data, but instead are

28

just “pointers” or “shortcuts” to other files. The symbolic links are used as
pointers to point to the different files with varying quality. Since symbolic
links are just pointers we can make the entire content switching process trans-
parent to the client. For example, consider a file, index.html which the client
requests. The client, always asks for index.html, but internally on the server,
file name is mapped to either indexhigh.html or indexlow.html, which are the
two variations of the file. Depending on the server load the symbolic link is
made to point to either the high or the low content. This content switching is
not only transparent to the user but is also transparent to the server. It does

not need any modification of the server and also adds minimal load to it.

. Web Server:

We used the Apache [14] Web server (version 1.3.12) for our experiments. It is
the most widely used server on the Internet today. We ran the Web server in a
stand alone mode. In standalone mode, the server is started only after a pool
of HT'TP processes are spawned and waiting to service incoming requests. On
startup, a predefined number of HT'TP processes are spawned. Once running,
the server increases or decreases this number depending on its load. A master
process manages this pool of processes by periodically checking the number
of idle child processes and dynamically adjusting this number to the current
load. There is a limit on the total number of simultaneous requests that
can be supported; no more than this number of child server processes will be
created. Each HTTP child process has a finite lifetime, limited by the number
of requests it can handle. This helps reduce the number of processes when the

server load decreases.

29

3.2 Adapting Web Content

Web content must be adapted in a way that preserves essential information yet
reduces the resource requirements of content delivery. The feasibility of adapting
content dynamically depends upon the availability of a varying quality of content
so that the server can choose the correct content depending on the overload condi-
tion. Web content quality can be easily varied by changing the transcoding of the
multimedia objects. By their very nature, multimedia objects are amenable to soft
access through a quality-versus-size tradeoff. In order to increase content accessi-
bility and improve the users’ online experience, many media processing techniques
can be used to enable an intelligent information delivery. Several existing content
adaptation techniques apply image processing techniques to adapt the embedded
images of a Web page according to the characteristics of the bottleneck resource.
Multimedia content can be adapted by changing the quantization factor of the ob-
ject leading to significant file size savings. We dynamically vary the quality of the
multimedia objects according to the server load characteristics. We used some of
content adaptation techniques discussed in Section 2.2 to generate varying quality
of content on the server. For our system we use two quality levels, high and low.
High quality corresponds to the best quality Web content, the low quality content

is the less resource intensive version of the best quality content.

For a static web page the best quality is the actual web page along with the
graphics, while the low quality corresponds to the text version of the same. The im-
provements in the server performance here are obtained by the reduction in the size
of the objects and the fewer number of requests to the servers due to the reduction

in the number of embedded objects in the page.

30

For dynamic Web pages the scaling to different qualities is slightly complicated
as the page is generated on the fly. Dynamic applications exacerbate the server
performance by overloading the server and increasing the client perceived delay.
With the phenomenal growth in E commerce and B2B transactions. Dynamic web
pages are computationally expensive since they require some processing and disk
accesses. [36] shows the effect of disk utilization on the disk and CPU utilization.
A typical CGI request consists of accessing a large database, processing it and then
generating the dynamic page on the fly. Such a resource intensive script adds a lot of
overhead to the server. Hence, it is necessary to scale under heavy load. The script
can be modified by reducing the computations involved and the data output to the
client. Thus, a dynamic Web page can be varied in quality by not only altering
its static parts but also by executing a different version of the script which is less
resource intensive. A lower quality script may look for fewer matches thus reducing
the processing time and also the data to be delivered to the client and in turn
reducing the overhead on the server to a minimum. We scale a dynamic request
by varying its processing capability. Our high quality script performs processor
intensive computations and returns a large output file to the client. The processor
intensive computations include threads that count to infinity to keep the CPU busy
and program to read a large file. On the other hand, a less resource intensive or
lower quality script was one which did minimal computation and returned a smaller

output file.

In order to determine the effect of the output file size on the response time, we
performed tests during which the script returned increasingly large amount of data.

Figure 3.2 shows the effect of the output file size on the response time. The horizon-

31

4000

3500 4

3000 4

2500 4

2000 4

1500 4

1000 4

Response Time (ms)

500

D T T T T
0 200 400 B00 800 1000

Cutput File Size (Kbytes)

Figure 3.2: Response Time(ms) vs CGI Output File Size

tal axis represents the output file size in kilobytes and the vertical axis represents
the response time in milliseconds. The graph clearly shows that as the output file

size increases the response time increases significantly for higher file sizes.

For multimedia objects we used quality scaling to generate objects of varying
quality. A useful property of JPEG is that the degree of lossiness can be varied
by adjusting compression parameters. The quantization factor in a JPEG encoding
determines the quality of the file. The higher the quantization factor, the better the
quality of the file and consequently greater its file size. Conversely, a smaller quanti-
zation factor corresponds to a lower quality and thus a smaller file size. The highest
value of the quantization factor is 100. This means that the image maker can trade
off file size against output image quality. This property of JPEG is used to generate
varying levels of quality of a given web content. We degrade the image file to various

levels of quality by varying the quantization resulting in significant savings in the

32

file size compared with the drop in perceived quality. Figure 3.3 shows the file size
savings achieved by varying JPEG quality. The horizontal axis shows the percentage
savings in file size while the vertical axis gives the JPEG quality factor. The graph

shows an increase in the file size savings with a decrease in the JPEQ quality factor.

Continuous media files can be scaled using temporal scaling or quality scaling.
Temporal scaling involves intelligently dropping frames (frames which are depen-
dent) before sending the multimedia file. This adds some processing overhead to
the server. This is because even though the frames are dropped the server still has
to read through the file to get to the next frame. Thus temporal scaling reduces
network load but not the processing load for the server. Quality scaling on the
other hand involves reducing the quality of all the frames uniformly but sending all
the frames. Video files like MPEG can be encoded with a different quality factor
in order to generate a low quality file resulting in an appreciable reduction in file
size without a significant change in the perceived quality. [37] shows that with a
significant reduction in file size within limits there is hardly any difference in the
perceived quality. Quality scaling thus allows web services to transmit variations
of the same multimedia object at different sizes, allowing some control over the re-
sources consumed in transmitting the file to the client. We chose quality scaling for

scaling multimedia files.

A similar approach is adopted for scaling of MPEG files. In MPEG compression,
the quantization factor or the Q scale factor determines the quality of the MPEG
file. It represents a tradeoff between quality and compression. The Q scale factor is
varied for the three types of frames; I, B and P individually. A large Q scale factor

gives better compression but a worse quality, while smaller values give better quality

33

120

100 4

g0

B0

40

JPEG Cuality Factar

20

D T T T T
i 20 40 B0 80 100

Fercentage Savings in File Size

Figure 3.3: JPEG Quality vs File Size

but less compression. The Q scale factor can be varied from 1 to 32. A Q scale
factor of 1 corresponds to the best quality and the Q scale factor of 32 corresponds

to the worst quality or best compression.

Figure 3.4 shows the file size savings achieved by varying the Q scale factor.
The horizontal axis shows the percentage savings in the file size while the vertical
axis has the MPEG Q scale factor. The percentage file size savings increase almost
exponentially with an increase in the quality the Q scale factor. As mentioned, the
encoding with Q scale factor 1 has the highest quality factor but the least file size
savings. We take the file size obtained by such an encoding as a reference. The

encoding of 30 shows the maximum file size savings of about 93%.

For scaling multimedia files, we re-encode the MPEG file with a different quan-

tization value. To decode a given MPEG file we use mpeg_play [38]. Mpeg_play is an

34

35

30 1

25 1

20

WPEG Quality { Quanitization Factor)

D] T T T T
0 20 40 B0 0 100

Percentage Savings in File Size

Figure 3.4: MPEG Quality vs File Size

MPEG player written in C. By default it uses X11 to display the decoded movies. It
can optionally produce PPM files. We use mpeg_play to produce ppm files by using
its -dither ppm option. These ppm files are then re-encoded using mpeg_encode [39].
Mpeg_encode produces an MPEG video stream from a parameter file and a set of
ppm images. The parameter file is used to specify the quantization factor for the
MPEG stream. The quantization scale values (Q scale) give a trade-off between
quality and compression. The Q scale values can be set differently for I, P and
B frames. The larger the numbers the better is the compression, but worser the
quality. A Q scale factor of 1 corresponds to the best quality and the Q scale factor
of 31 corresponds to the worst worst quality or best compression. We use these Q

scale values in order to generate MPEG files of varying quality.

35

Chapter 4

Web Server Load Monitoring

The performance of a Web server depends on its hardware and software. The main
hardware components are the processor, memory, disk and the network. Server
overload may occur due to saturation of the CPU or the disk at the server or due
to saturation of the communication link connecting the server to the network. An
overload on any of the resources of the Web server leads to a drop in its performance.
Hence, it is critical to monitor server load and identify overload so that steps can be
taken to alleviate load. The most relevant components to the servers’ performance

are the hardware, HT'TP server and the operating system.

The hardware platform that we used was an Intel Pentium III, 500 MHz with
a SCSI disk and 128 MB of main memory, with a standard 10 Mbps Ethernet
card. The operating system was Linux version 2.2.14. Linux is a general purpose,
pre-emptive, multi-threaded operating system. Linux has been widely used as an
operating system for various types of servers such as database applications, network

and Web servers.

36

The Web server software used is Apache [14] version 1.3.12. Apache is a secure,
efficient and extensible server which provides HTTP services in synchronization with
the current HTTP standards. Apache can run from the inetd system daemon or
in standalone mode. When running from inetd, a new copy of the server is started
from scratch for each connection made to the server, resulting in high overhead per
connection. Hence, we run Apache in standalone mode which exhibits much lower

overhead.

4.1 Methodolgy

4.1.1 Metrics

Load on a server is often indicated by its CPU, disk and network utilization.

CPU: The time the processor is busy is broken down into two components:
time spent in user mode and time spent in system mode. These two measures allow
one to understand how the system behavior is dependent on the operating system
implementation. Dynamic Web page generation technologies like CGI require some
processing on the part of the server application. Such operations may involve query-
ing huge database files and performing certain operations on the data and generating
a Web page on the fly. This overloads both the processor and the disk. With an
increase in e-commerce there has been tremendous increase in dynamic Web page
generation technologies, such as FastCGI, Servlets, Server API’s and Active Server
pages (ASP). These technologies have made server side scripting popular and their
use widespread. However, these techniques have the drawback of being computa-
tionally expensive. We consider CGI which is one of the most widely used dynamic

Web page generation technologies. Previous work in [36] shows the performance of

37

most dynamic page generation technologies are similar. The imposed overheads in
CGI are mainly because of the process creation, management and synchronization
necessary to create a new process in order to handle each request. Unlike static
pages which involve just fetching a page and sending it over the network, dynamic
pages need to carry out some processing and access large files and generate a Web
page on the fly before sending it. This represents a significant overhead on the sys-

tem and a heavy load on the server.

Disk: A Web server continuously receives requests for access to many different
files. This leads to disk accesses for different types of files. These disk accesses are
significant for multimedia files which tend to be rather large, on the order of MB’s.
For example, a low quality lossy compressed 640x480 pixel can take 25kB while a
high quality non-lossy compressed 1280x1024 pixel image takes as much as 2.5MB.
For multimedia files the disk bandwidth required is usually much larger as shown

in Table 4.1.

Specifications Space Requirements

Voice Quality Audio | 64 Kbps

CD Quality Audio 1.4 Mbps
NTSC Quality Video | 8.7 MBps
HDTYV Quality Video | 351 MBps

Table 4.1: Multimedia Storage Requirements

Continuous playback of a media stream consists of a sequence of periodic tasks
with deadlines, where tasks correspond to retrievals of media blocks from disk and
deadlines correspond to the scheduled playback times. Dynamic page generation

technologies too, need to access databases and retrieve vast amount of information

38

on the fly. Thus the disk performance has become a critical factor due to the storage

intensive nature of multimedia and dynamic web page generation applications

Network: The basic function of a Web server is to serve data from the stor-
age subsystem over the network. Since this operation involves network activity,
the analysis of the utilization of the network bandwidth is important for an accu-
rate understanding of the server behavior. Although the communication link to the
server is getting faster, the network utilization nevertheless is still one of the most

important parameters to determine the server load.

4.1.2 Measurement

Linux provides a virtual file system known as the proc! file system that can be used
to monitor the performance of any computer in a distributed environment. The
proc file system acts as an interface to the internal data structures in the kernel. It
can be used to obtain information about the system and to change certain kernel
parameters at runtime. The proc file system contains information for every process,
the processor utilization, the internal workings of the kernel, the number of bytes

read and written and also the number of packets sent over the network interfaces.

The performance values obtained from the proc file system change transiently as
the system load changes. To obtain average utilization values rather than instanta-

neous ones we use exponential averaging.

util = o X newutil + (1 — «) x oldutil

1The name proc is an abbreviation for process

39

where newutilis the latest value of the utilization parameter, oldutil is its value z
seconds before. Here, «is a constant fractional value between 0.0 and 1.0. The larger
the value of «, the more quickly the average utilization is adjusted to represent the
current state of server utilization. With values of « too large, the utilization value
will be more influenced by the instantaneous values. On the other hand, as the value
of & becomes too small, average utilization measurements adjust to their actual value
too slowly, resulting in an unresponsive server. For our measure, we take the value
of o as 0.40 as it seemed to be effective in providing an appropriately responsive
server in our pilot studies. Similarly we use 40 seconds as our timing parameter
for all the three utilization measurements, as it best captured the variation, in the

utilization values during our pilot studies.

1. CPU Utilization

CPU Utilization is an important capacity and performance metric of a Web
server. To measure CPU utilization we made use of the top system command.
Top provides an ongoing look at processor activity in real time. It displays
a listing of the most CPU-intensive tasks on the system, and can provide an
interactive interface for manipulating processes. It shows the percentage of
CPU time in user mode, system mode, niced tasks, and idle. We measure
the processor utilization as the sum of the user and system processes every 40

seconds. Our measurement monitors the following performance metrics.

% user: The percentage of time the system spent in execution at the user (or

application) level.

% sys: The percentage of time the system spent in execution at the system

(or kernel) level.

The above performance measures can directly be converted into total CPU uti-

40

lization by adding the %user and %sysvalues. We average the CPU utilization

exponentially to account for the transient spikes in the processor utilization.

2. Network Utilization

Network utilization is a measure of the available bandwidth to the server. To
measure network utilization of the server, we use the statistics from the proc
file system in Linux. We use the statistics from proc file system to determine
network utilization. The /proc/dev pseudo file contains statistics such as the
number of packets received / transmitted. We calculate the network utilization
in terms of bytes over the theoretical maximum bandwidth available (10 Mbps)

oIl our server.

3. Disk Utilization

Disk utilization is a measure of the number of accesses made to the disk. With
an increase in file size and the frequency of accesses disk utilization increases.
We measure disk utilization as a percentage of the maximum disk bandwidth.
In order to measure disk utilization we make use of the statistics from the
/proc/stat file in the proc file system. It contains the data about the number
of blocks read and written. We use these numbers to determine the number
of bytes read over a period of time and then calculate utilization in terms of
the bytes accessed over the theoretical maximum disk bandwidth of the disk

(24Mbps in our server).

4.2 Tools

This section gives a brief description of the various tools which we used for our

measurements.

41

4.2.1 Httperf

In order to generate a high request rate we used httperf [40] a tool to measure
Web server performance. httperf uses both the HTTP protocols, HT'TP/1.0 and
HTTP/1.1, and offers a variety of workload generators. The most basic operation
of httperf is to generate a fixed number of HI'TP GET requests and to measure how
many replies (responses) came back from the server and at what rate the responses
arrived. httperf prints out the overall results, including results pertaining to the
TCP connections, results for the requests that were sent, results for the replies that
were received, CPU and network utilization figures, as well as a summary of the
errors that occurred (timeout errors are common when the server is overloaded).

Appendix A explains httperf in detail.

4.2.2 Netperf

Netperf [41] is a benchmark that can be used to measure various aspects of network-
ing performance. Its primary focus is on bulk data transfer and request/response
performance using either TCP or UDP. We used Netperf primarily to generate back-

ground load alongwith multiple ftp and scp sessions.

4.2.3 Bonnie

Bonnie [42] performs a series of tests on a file of known size. If the size is not
specified, Bonnie uses 100 MB. On a big modern server the file size should be larger
than the available RAM to avoid serving the file only from the memory. Bonnie
works with 64-bit pointers. For each test, Bonnie reports the bytes processed per
elapsed second, per CPU second, and the % CPU usage (user and system). We use

bonnie to write and read from the disk in order to vary the disk utilization.

42

4000
3500 4
2000 4
2500 4
2000 4
1500 +
1000 +

A0 Respanse Time (ms)

500 4

0 1 ebststse—s—s—4" . . T
o 20 40 B0 80 100 120
Mg CPU Ltilization

Figure 4.1: Average Response Time vs Average CPU Utilization

4.3 Results and Analysis

This section discusses the results of profiling the Web server. We measure the re-
sponse time of the server by independently varying utilization of the three resources,
CPU, disk and the network. We measured the response time for different values of
server utilization. We use httperf [40] in order to generate requests. The file size

used for these measurements is 64KB, which is the average file size on the Web [4].

In order to increase the processor utilization we load the CPU with computa-
tionally intensive jobs. These jobs were scripts which performed processor intensive
work like counting to infinity to load the processor. We generated the HTTP re-
quests and measured the mean response time with httperf. Figure 4.1 shows the
relationship between the response time and CPU utilization. The horizontal axis
shows the average CPU utilization for the duration of the test and the vertical axis

corresponds to the response time in milliseconds. As CPU utilization increases, the

43

6000

5000 4

ms)

4000 4

3000 4

2000

1000 4

Mg Response Time

Avg Metwoark Ltilization

Figure 4.2: Average Response Time vs Average Network Utilization

response time also increases, and it increases exponentially as the utilization ap-

proaches 80%.

To measure the behavior of the response time with network utilization we in-
creased the network traffic gradually. To generate network traffic, we used Netperf
primarily to generate background load along with multiple FTP and SCP sessions.
Figure 4.2 shows the graph for the average network utilization versus the response
time. The response time increases as the network starts to become a bottleneck. At

around 40% utilization the response time begins to increase exponentially.

To measure the effect of disk utilization on response time, we varied the disk
utilization and measured the corresponding response time. In order to load the disk
we used a program that wrote a huge file to the disk as fast as it can. We also

used bonnie [42], a file system benchmark to read and write from the disk. Figure

44

4500
4000 4
3500
3000 4
2500 4
2000
1500 4

1000 A

&g Response Time (ms)

a00

0 4ttt . .
0 20 40 B0 a0 100

Avg Disk WMilization

Figure 4.3: Average Response Time vs Average Disk Utilization

4.3 shows the relation between the average disk utilization and the response time.
The graph is similar to the CPU utilization one, where the response time increases

exponentially on reaching a threshold around 80%.

Figure 4.4 shows the relation between the response time and file sizes. The plot
shows that the response time for small file sizes is almost independent of file size.
For smaller file sizes, the response time is dominated by the connection setup cost.
For larger file sizes the response time increases approximately linearly. Larger files
reduce system performance and increase response time because serving such files

uses more available bandwidth and more server processing capacity.

Our main thrust in profiling the server was to determine the thresholds at which

we need to switch content. Based on the results obtained, we set two threshold values

for each utilization parameter, a high threshold value and a low threshold value, to

45

100000

10000
W
£ 1000
Lai]
E
=
2 100 4
=
fr
Lix]
i}
o

1 T T T T T T

10 100 250 a00 1000 5000 10000

File Size (in kilo bytes)

Figure 4.4: Response Time (ms) vs File Size (KB)

prevent the system from thrashing from high quality to low quality frequently. As
shown from the graphs we selected the following threshold values. The response
time for CPU utilization increases exponentially as the utilization of the processor
approaches 80%. We chose 75 and 60 as the high and low water marks. For network
utilization, we use 55 and 35 as the high and low thresholds while for disk utilization
we used 75 and 60 as the threshold values. We select two threshold values; high and

low to prevent the system from thrashing from one quality content to another.

46

Chapter 5

Web Server Performance

This chapter discusses the performance of the Web server and we compare the per-

formance of our adaptive server with a non-adaptive one.

Web server performance depends upon several factors: hardware platform, op-
erating system, server software, network bandwidth and workload. There are vari-
ous well-known methodologies for performance evaluation of computer systems, as
pointed out in [43]. For instance, a Web user’s perception of performance has to
do with response time and connections refused. On the other hand, a Webmaster’s
perception of performance is oriented towards high connection throughput and high
availability [44]. We evaluate the performance for our system based on the response
time, throughput, error rates and the number of concurrent multimedia and dy-

namic clients.

5.1 Methodology

This section describes the methodology followed in order to evaluate the performance

47

of our adaptive server as compared to a non-adaptive server. The load monitoring
module consists of four separate programs monitoring the CPU, Network and Disk
utilization and a http_ping program which we developed for measuring the response
time of the server representing the actual request load. The http_ping periodically
sends http requests and measures the corresponding response time. The measured
response time is proportional to the server’s input request queue. Thus, the http_ping
program gives a good indication of the load on the server and the length of the server
queue. When the server queue is short the response time is less as compared to when
the server queue is large. The experiments of server profiling described in Section
4.4 give an indication of the average response time. We take the average response
time as the response time of a file of size 64KB, which is the average size of a page

on the Web [45].

The adaptation module then decides the need for adaptation from the data ob-
tained from the load monitor. The adaptation module makes a decision on the need
for content switching depending on the utilization parameters and the observed
request rate. Content is adapted only if the utilization values are above their re-
spective thresholds and the observed response time is greater than the acceptable
threshold set for it. There is also a need of a mechanism to switch back to higher
quality content once the server utilization drops. We switch back to the full quality

content if the utilization values fall below their respective thresholds.

The content selector module performs the actual content switching as indicated
by the adaptation module. The content switching is a transparent operation and in-
volves switching the symbolic links and redirecting them to point to the appropriate

quality of content.

48

5.1.1 Metrics

Throughput at the server and response time are the two important metrics to an-
alyze server performance. The rate at which http requests are serviced is known
as the throughput. We measure the throughput in terms of the responses/sec from
the server. The response time of a server is the time it takes from the sending of
a request until the arrival of the last byte of the response. We also measure the
number of errors. An error is any failure in attempting an interaction with the
server. Increased errors are an indication of the degradation of server performance.
Thus, an overflow on the connection queue at the server constitutes an error. This
means that an attempt by the client to connect to the server will be ignored. The
client tries connecting until there is available space in the queue or a times out after

a predefined period.

Our test results are based on three client machines simulating multiple clients
issuing uniform sized HTTP GET requests. The clients were connected to the
network with a T1 link. The server was an Intel Pentium III, 500 MHz running
Linux version 2.2.14 with a SCSI disk, 128 MB of main memory and a standard 10

Mbps Ethernet card

5.2 Results and Analysis

5.2.1 Server Performance

This section discusses results comparing the adaptive server with the non-adaptive
server. We compare the performance for a HI'TP workload, a multimedia workload

and a dynamic workload.

49

Figure 5.1 shows the dynamic content switching operation of the system over

time. This graph shows the working of the system is terms of its content switching.

High .

Cfered Cuality

—
=}

W L

U T T T T T T T T T
0 1000 2000 3000 4000 4000 6000 7OOO 8000 9000 10000

Time(secs)

Figure 5.1: Snapshot of the Adaptive Content Delivery System

The graph in Figure 5.2 shows the average response time for each request. The
response time starts out at a minimum of 4.8 ms and then increases slowly as more
requests are received until it reaches the maximum server capacity after which it
increases exponentially. The response time graph for the adaptive server is shifted to
the left indicating that the system gets overloaded much later and hence acceptable

response times are obtained for larger requests/secs

Figure 5.3 shows the number of responses/sec against the number of requests/sec.
It shows that the requests/sec obtained from the server increases linearly with offered

load until the server starts to become saturated at around 80 requests/sec. As the

20

12000

10000

5000

£000 4

4000

Response Tirme (ms)

2000

04+—8—8—=n 1 T
] a0 a0 180 200

Fequestsisec

—4— Unadaptive Server —m— Adaptive Server ‘

Figure 5.2: Response Time (ms) vs Requests/sec

load increases the responses/sec essentially remains constant as all other requests
which the server is not able to service are rejected. The adaptive server is able to
serve up to 25% more requests than the non adaptive one, because of the savings in
serving the less resource intensive contents. The response rate of the adaptive server
gradually falls closer to that of the non-adaptive server because of the saturation of

the operating system resources.

Figure 5.4 is a graph of the number of requests that failed. As the request rate
increases, the server gets saturated and the number of requests that are rejected
increases. This explains the response rate dropping in Figure 5.3 as the time spent

by the server in the kernel to handle calls that fail.

Figure 5.5 shows the overhead for the content adaptation system. The utilization

values shown are the average values for 1000 seconds. The graph shows the CPU

o1

120

100

20

5o 4

Responsesizec

20 4

1]

o 20 40 60 20 100 120 140 160 180 200

|_._ Unadaptive Server g Adapthve Server Requesk/seconds

Figure 5.3: Responses/sec vs Requests/sec

utilization for the both the adaptive and non-adaptive servers, and the network and
disk utilization values for the adaptive server. The values for the CPU utilization

for an non-adaptive server show the minimal overhead for our system.

5.2.2 Dynamic Requests

Figure 5.6 shows a graph for dynamic requests. The horizontal axis represents the
number of concurrent CGI requests while the vertical axis represents the response
time in milliseconds. As shown in the graph the response time increases almost lin-
early in both the cases until about 20 concurrent CGI requests. After 20 requests the
non-adaptive server performance degrades considerably, while the adaptive server
performance remains almost constant, since the server is now serving a smaller, less

resource intensive file.

52

e [85) o e |
) [[})
1 1 1

]
=
L

Percentage Errors
L
=

i
=
1

iD

= L T

] 50 100 150 200

Reqguestsisec

— 4 Unadaptive Server _g Adaptive Ser\rer|

Figure 5.4: Errors vs Requests/sec

Figure 5.7 shows a graph for the failure rate vs the number of CGI clients. The
horizontal axis represents the number of concurrent CGI requests while the vertical
axis represents the percentage of CGI requests rejected. The adaptive server rejects
fewer requests as compared to the non-adaptive server which reaches saturation

earlier due to its resource intensive content.

5.2.3 Multimedia

This section evaluates the benefits of the adaptive content delivery system for mul-
timedia requests. We used the techniques mentioned in Section 3.2 in order to

generate the varying quality content for multimedia files.

Figure 5.8 shows the graph for the frames per second sent to the client against
the number of clients requesting the file. We modified a streaming MPEG server

used in a previous study [46] to serve MPEG files. We built a MPEG client which

93

2.5

Utlization 1.5]

0.5

F =

1 2 3 4
CPU -Adapt Net- Adapt Disk- Adapt CPU

Figure 5.5: Overhead for the Adaptive Content Delivery System

connected to the streaming server. We varied the number of clients and noted the
corresponding frames per second sent by the server. As observed from the graph,
as the number of clients increases the processing load on the server increases and it
cannot maintain a 30 frames per second rate. For the non-adaptive server the frames
per second sent falls below 30 from after the third client itself and it falls below 15
frames per second at 6 concurrent clients. On the other hand, the adaptive server
can handle 6 concurrent multimedia clients and it falls below 15 frame per second
only at 11 concurrent connections. The adaptation leads to the server serving a
smaller video file which significantly reduces the load on the server resulting in a

better frame rate for the server.

Figure 5.9 shows the variation of the CPU utilization with the number of clients.

The processor utilization increases almost linearly as the number of clients increase.

Since the adaptive server serves a degraded quality content, the processor utilization

o4

25000

20000 -

15000 4

10000 4

Response Time (ms)

5000 4

0 20 40 B0 g0 100

Mumberof CGl Requests

Figure 5.6: Response Time vs Number of CGI Clients

does not increase as fast as in the non-adaptive case.

Figure 5.10 shows the graph for network utilization against the number of clients.
The horizontal axis represents the number of concurrent clients, while the vertical
axis gives the network utilization. As shown in the figure the network utilization
increases until it reaches its peak value. Once it reaches a peak value, the network
utilization falls, since there is an increase in the number of packets being dropped
at the network interface. Also, with an increase in the number of clients the CPU
is overloaded and hence it spends most of its time switching between processes. On
the other hand, the adaptive server reduces the amount of data it is sending and
hence its network utilization does not reach its peak value as early as in the first

case.

The graph for the disk utilization and the number of clients is shown in Figure

95

Rejected

e =) =) (53] [EE) =
m] m _ m (]
L L . .

Fy
m O
1 1

Percentage of CGl Requests

EI

] 20 40 &0 &0 100

Number of CGIRequests

—4— Unadaptive Server _g Adaptive Sernver

Figure 5.7: Failure Rate vs Number of CGI Clients

5.11. The disk utilization also increases almost linearly with the number of clients.
As the number of clients increase, the number of accesses to the disk also increases
resulting in high disk utilization. For the adaptive server, the disk utilization in-
creases almost linearly with the number of concurrent multimedia clients. The disk
utilization for the adaptive server does not follow the utilization graph of the non-
adaptive server, as by the time the disk has reached 30% utilization the system has
already switched content due to the high network utilization. Hence, the disk uti-

lization of the adaptive server varies slowly as compared to the non-adaptive server.

5.2.4 Client Side Measurements on the Web

In order to measure the effect of file size variations and the benefits of our system to
the client, when done over a WAN instead of just a LAN, we carried out some tests

on the Web. We selected a set of 25 of the most popular sites from [3] to retrieve

o6

Murmber OF Clierts

—4— Uradaptve Serer g Adaptive Server

Figure 5.8: Frame Rate (fps) vs Number of Multimedia Clients

web pages from. The sites included Microsoft, CNN, Yahoo, Ebay, Aol etc.

We accessed files of varying sizes from these servers. To measure their response
time, the files were retrieved using httperf and their corresponding response times
were noted. We split the response time as the connection set up time and the
transfer time. The connection set up time is the constant time it takes to set up a
TCP connection, while the transfer time is the time it takes to transfer the actual

data from the server to the client.

o7

120

100 4

CPU Ltiliz=tion

Mumber Of Client

—¢—Uradaptive Serer g Ackadine Serer

Figure 5.9: CPU Utilization vs Number of Multimedia Clients

Mebwork LHili =tion
caHE&E8 T8 2R

Mumber Of C lients

—4— reciative Serer g Aoketine Serer

Figure 5.10: Network Utilization vs Number of Multimedia Clients

o8

Mumber of Clients

—4— Uredaptive Serer g Adetive Serer

Figure 5.11: Disk Utilization vs Number of Multimedia Clients

G0%

G0%

40%

20%

0% i = =
100 500 1000 1400 2001 2600 3400

Responze Time

@geconnection Set up Time OTransfer Time

Figure 5.12: Connection Set up Time and Transfer Time as a Percentage of Response
Time

99

3500

3000

2500

2000

FRespanze Time

(ms) 1500

1000

500

49 96 176 239 335 413

File Size (KB

Figure 5.13: Response Time (ms) vs File Size (KB)

60

Chapter 6

Future Work

In this thesis, we designed a system for adapting Web content to alleviate server
load. The main thrust of this thesis was adapting for multimedia and dynamic Web
page generation technologies. There are still many research opportunities in the

area of content adaptation.

Our content adaptation technique switches content between two levels of quality.
In practice, it may be better if the quality variation was more finely grained. Work
needs to be done to generate content with varying levels of quality for different

overload scenarios.

There have been numerous approaches to providing QoS on the Internet. Diff-
serv, Intserv, MPLS talk about a guaranteed delivery between two end systems.
These technologies are basically a network solution to the problem of QoS. How-
ever, network QoS with its associated packet priorities and bandwidth guarantees
is ineffective when the server itself drops packets. Thus, QoS is essentially an end-

to-end solution and hence there is a need to add QoS features to a Web server. One

61

of the major advantages of using response time as a parameter to determine server
load so it can be used to predict service times. Such a function could be the basis of
an admission control technique used to admit only those clients which can be served
within a pre-defined time limit. This gives a notion of QoS at the server. This
can be of great advantage to ISP’s and video servers who have clients who require

guaranteed response times.

The content adaptation approach can also be used along with client resource de-
termination techniques to deliver the appropriate quality content to the client. Our
transparent content switching technique can be used to serve different quality con-
tent to heterogeneous clients like desktops, mobile phones or PDA’s. Client browsers
could explicitly request various quality levels from the server based on client side

resources or personal preferences.

Our system has been tested only for HT'TP 1.0. It would be interesting to test
the impact of persistent connections using HT'TP 1.1. The connection set up time
is a major portion of the response time for small file sizes, so small objects can be

bundled together to provide a better response time to the client.

For multimedia, we used quality scaling as our scaling technique. A comparison
of other media scaling techniques can be made to find out the least resource intensive
scaling technique. Lastly, all the tests for the dynamic workload we performed were
with CGI. It would be interesting to measure the performance of other dynamic

technologies like FastCGI, ASP’s and Servlets.

62

Chapter 7

Conclusions

The phenomenal growth in the Internet traffic has placed a heavy load on the Web
servers. Servers are now at the center of an evolving E-commerce oriented, multime-
dia rich communication medium. Heavy bursts of traffic overload servers leading to
sluggish response times or rejection of requests. Current content adaptation tech-
niques are not particularly well suited to multimedia traffic and dynamic Web pages.
Both multimedia and dynamic Web pages have stringent processing, storage and de-
livery requirements. These technologies have a bounded delay associated with them.
Hence, serving such kind of files in a timely manner albeit at a lower quality is of

primary concern.

We proposed an adaptive content delivery system to serve varying quality of
content depending on the server load. We designed a system capable of quantifying
the load on the server and transparently adapting the delivered content dependent
the server load. We measured the load on the server in terms of its CPU, disk and
network utilization. We profiled the server to determine the thresholds of each of the

utilization values beyond which to switch content. We monitored the server period-

63

ically, to determine the instantaneous load and then switched content dynamically
according to the utilization measures. The content switching is done transparently
to both the client and the server. Our load monitoring and transparent content
switching are lightweight standalone processes. We designed a streaming MPEG
server and client which can react to the server load by scaling the quality of frames

transmitted.

We evaluated the performance of our system for static, dynamic and multimedia
workloads. We compared the performance of the adaptive content delivery system
with a non-adaptive system under similar conditions. We find our adaptive system
can serve as many as 25% more static clients. This increase in the throughput
is obtained by serving a less resource intensive version of the data. Our system
also serves 15% more dynamic clients and almost twice the number of multimedia
clients at acceptable frame rates than a non-adaptive server. The adaptive system
also shows significant savings in response times for the client. Our client-side ex-
periments performed on the Internet show that the response time savings from our

system are quite significant.

The main benefits of our approach include
e transparent content switching for content adaptation,
e alleviating server load by a graceful degradation of server performance and

e no requirement of modification to existing server software, browser or the

HTTP protocol.

64

Appendix A

Tools Used

A.1 httperf

Benchmarking has been regarded as a useful approach for analyzing and predict-
ing performance of computer systems. Several benchmarks have been proposed for
measuring hardware and software speed, including compilers and operating systems.

httperf is a tool to measure web server performance.

This section gives an introduction to the sample execution of httperf and an

interpretation of its results.

1. Sample execution of httperf :

A sample execution of httperf illustrates how to measure the request through-
put of a Web server. The simplest way to achieve this is to send requests to
the server at a fixed rate and to measure the rate at which replies arrive. Run-
ning the test several times and with monotonically increasing request rates,

one would expect to see the reply rate level off when the server becomes satu-

65

rated, i.e., when it is operating at its full capacity. To execute such a test, it is
necessary to invoke httperf on the client machines. Ideally, the tool should be
invoked simultaneously on all clients, but as long as the test runs for several
minutes, startup differences in the range of seconds do not cause significant

errors in the end result.

A sample command line is shown below:

httperf —server hostname —port 80 —uri /test.html —rate 150 -num-conn 2000
—num-call 1 —timeout 5 httperf —server nile.wpi.edu —port 8080 —uri /www-

root /filex.html -num-conns 1000 -rate 150

This command causes httperf to use the Web server on the host with IP name
nile.wpi.edu, running at port 8080. The Web page being retrieved is filex.html
and, in this simple test, the same page is retrieved repeatedly. The rate at
which requests are issued is 150 per second. The test involves initiating a total
of 1,000 TCP connections and on each connection one HT'TP call is performed
(a call consists of sending a request and receiving a reply). The timeout option
selects the number of seconds that the client is willing to wait for a reply from
the server. If this timeout expires, the tool considers the corresponding call to
have failed. Note that with a total of 1,000 connections and a rate of 150 per
second, the total test duration will be approximately 120 seconds, independent

of what load the server can actually sustain.

. Results Of the Test:

httperf —client=0/1 —server=nile.wpi.edu ~port=8080 —uri=/wwwroot /file115k.html
—send-buffer=4096 -recv-buffer=16384 —num-conns=1000 —num-calls=1

Maximum connects burst length: 1

66

Total: connections 1000 requests 1000 replies 1000 test-duration 119.179 s
Connection rate: 8.4 conn/s (119.2 ms/conn, j=1 concurrent connections)

Connection time [ms|: min 109.1 avg 119.2 max 246.9 median 117.5 stddev
8.1

Connection time [ms]: connect 1.1

Connection length [replies/conn]: 1.000

Request rate: 8.4 req/s (119.2 ms/req)

Request size [B]: 84.0

Reply rate [replies/s]: min 8.2 avg 8.4 max 8.6 stddev 0.1 (23 samples)
Reply time [ms|: response 2.8 transfer 115.3

Reply size [B]: header 233.0 content 117760.0 footer 0.0 (total 117993.0)
Reply status: 1xx=0 2xx=1000 3xx=0 4xx=0 5xx=0

CPU time [s]: user 44.76 system 70.53 (user 37.6% system 59.2% total 96.7%)
Net 1/0: 967.5 KB/s (7.9%106 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0

Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

67

Bibliography

[1] “Scaling the Internet Web Servers.”

http://www.cisco.com/warp/public/cc/pd/cxsr/400/tech/scale_wp.htm.
[2] “The Internet, Technology 1999, Analysis and Forecast, IEEE Spectrum.”
[3] “Hot 100 Sites. http://www.100hot.com.”
[4] “All Things Web, http://www.pantos.org/atw/35654.html.”

[6] A. Ortega, F. Caringnano, S. Ayer, M. Vetterli, “Soft Caching : Web Cache

Y

Management Techniques For Images,” in Proceeding of IEEE Signal Processing

Society 1997 Workshop on Multimedia Signal Processing, June 1997.

[6] J. Mogul , K.K. Ramakrishnan , “Eliminating Receive Likelock in an Interrupt-
Driven Kernel ,” in Proceedings of ACM Transcations on Computer Systems ,

pp. 217-252, August 1997.

[7] T. Abdelzaher, N. Bhatti, “Web Content Adaptation to Improve Server over-
load Behavior,” in Proceedings of The International World Wide Web Confer-
ence, May 1999.

[8] N. Bhatti, A. Bouch, A. Kuchinsky, “Integrating User Perceived Quality Into

Web Server Design,” tech. rep., January 2000.

68

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Colajanni, P. Yu, V. Cardellini, M.P. Papazoglou, M.Takiazawa, B.
Kramer,S. Chanson, “Dynamic Load Balancing in Geographically Distributed

Y

Heterogeneous Servers.,” in Proceedings of The 18th International Conference

on Distributed Computing Systems, May 1998.

D. Andersen, T. McCune, “Towards a Heirarchial Scheduling System for Dis-
tributed WWW Server Cluster,” in Proceedings of The Seventh International

Symposium on High Performance Distributed Computing, July 1998.

T. Abdelzaher, N. Bhatti, “Adaptive Content Delivery For Web Server QoS,”

in International Workshop On Quality of Service, June 1999.

A. Vahdat, P. Eastham, C. Yoshokawa, E. Belani, T. Anderson, D. Culler, and
M. Dahlin, “Web OS: Operating System Services for Wide Area Applications,”
in Proceedings of Seventh International Symposium on High Performance Dis-

tributed Computing, July 1998.

M. Stemm, S. Seshan, R. Katz, “Benefits of Transparent Content Negotia-
tion in HTTP,” in Proceedings of Global Internet Mini Conference, Globecom,
November 1998.

“The Apache Web Server Project. http://www.apache.org .”

M . Colajanni, P. Yu, V. Cardellini , “Scheduling Algorithms For Distributed
Web Server,” in Proceedings of 17th International Conference on Distributed

Computing Systems, May 1997.

A. Mourad and Huiqun -Liu, “Scalable Web Server Architectures,” in Proceed-
ings of The Second IEEE Symposium on computer and Communications, July

1997.

69

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

K. Bharat, A. Broder, “Mirror, Mirror on the Web : A Study of Host Pairs
with Replicated Content,” in Proceedings of The 8th International World Wide

Web Conference, May 1999.

A. Tyengar, E. MacNair and T. Nguyen, “An Analysis of Web Server Perfor-

mance,” in Globecom, vol. 3, nov 1997.

P. M. K.Kant, “Scalable Internet Servers : Issues and Challenges,” in Proceed-

ings of International Network Workshop 2001 Workshop, March 2001.

V. Almeroth, M. Ammar, and Z. Fei, “Scalable Delivery of Web Pages Us-
ing Cyclic Best-Effort (UDP) Multicast,” in Proceedings of IEEE INFOCOM,
March 1998.

M. S. Schechter, M. Krishnan, “Using Path Profiles to Predict http Requests,”
in Proceedings of Seventh International World Wide Web Conference, April
1998.

A. Fox, S. Gribble, Y. Chawathe and E. Brewer, “Adapting to Network and
Client variation using active proxies:lessons and perspectives,” in IEEE Per-

sonal Communications, pp. 8 — 17, Dec 1998.

Wei-Ying Ma, 1. Bedner, G. Chang, A. Kuchinsky, H.Zhang , “A Framework

7

for Adaptive Content Delivery in Heterogeneous Network Environments ,” in

Hewlett Packard Labs, May 2000.

“World Wide Web Consortium, Web Content Accessibility Guidelines 1.0.”
http://www.w3.org/TR/WAI-WEBCONTENT/.

“JPEG : Joint Pictures Expert Group. http://www.jpeg.org .”

“GIF : Graphics Interchange Format . http://www.gifworks.com .”

70

[27] “MPEG : Moving Pictures Expert Group. http://www.cselt.it/mpeg.”

[28] S. McCanne, M. Vetterli, V. Jacobson, “Low Complexity video Coding For
Receiver Driven Layered Multicast,” in IEEE JSAC, August 1997.

[29] “ HP OpenPix. http ://image.hp.com.”

[30] L. Bouthilliere, “Synchronized Multimedia on the Web ,” Web Techniques

Magazine.

[31] “W3C Synchronized Multimedia Integration Language.”
http://www.w3.org/TR/REC-smil/.

[32] “W3C Extensible Markup Language (XML). http://www.w3.org/TR/REC-

xml] .”

(33] “IETF Working Group on Content Negotiation.”

http://www.ietf.org/html.chaters/conneg-charter.html.

[34] “W3C Composite Capability/ Preference Profiles (CC/PP).”
http://www.w3.org/TR/NOTE-CCPP/.

[35] “W3C Resource Description Framework(RDF) Schema Specification.”
http://www.w3.org/TR/PR-rdf-schema.

[36] M. Claypool, B. Kothari , “Performance Analysis of Dynamic Web Page Gener-
ation Technologies,” in Proceedings of The International Network Conference,

July 2000.

[37] M. Claypool, Y. Liu, “Using Redundancy To Repair Video Damaged By Net-
work Data Loss ,” in Proceedings of ACM Multimedia Computing and Net-

working , January 2000.

71

[38] “The Berkeley MPEG Player.”

http://bmrc.berkeley.edu/frame/research/mpeg/mpeg_play.html.

[39] “The Parallel Berkeley Encoder.”

http://bmrc.berkeley.edu/frame/research /mpeg/mpeg_encode.html.

[40] D. Mosberger, T. Jin, “httperf - A Tool for Measuring Web Server Perfor-
mance,” in First Workshop on Internet Server Performance, pp. 59—67, ACM,
June 1998.

[41] Information Networks Division,HP, “Netperf - A Network Performance Bench-

mark.” http://www.netperf.org/netperf/NetperfPage.html.

[42] T. Bray, “Bonnie - A File Server Benchmark.”

http://www.textuality.com/bonnie/index.html.

[43] D. Menasce, V. Almeida, L. Dowdy, Capacity Planning and Performance Mod-
elling. Englewood Cliffs, N.J : Prentice Hall , 1994.

[44] J. Almeida, V. Almeida, D.Yates, “WebMonitor
Tool for Measuring World Wide Web Performance.”

http://www.firstmonday.dk/issues/issue2_7/almeida/.
[45] J. Neilsen, Usability Engineering. San Fancisco, Ca: Morgan Kaufmann, 1994.

[46] J. Brzozoski and R. McDonald, “MPEG Jitter,” Tech. Rep. Major Qualifying
Project MQP-MLC-MJ98, Worcester Polytechnic Institute, May 1999. Advisor

Mark Claypool.

[47] J. Almeida, V. Almeida, D. Yates, “Measuring The Behavior of a World Wide
Web Server,” in Proceedings of Seventh Conference on High Performance Net-

working (HPN), pp. 57-72, April 1997.

72

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

V. Almeida, A. Bestravos, M.Crovella, A. Oliveria , “Characterizing Reference
Locality in the WWW.” in Proceedings of IEEFE-ACM PDIS’96, December
1996.

M. Arlitt, C. Williamson, “Web Server Workload Characterization,” in Proceed-
ings of SIGMETRICS Conference on Measurement and Modelling of Computer
Systems, May 1996.

M. Crovella, A. Bestravos, “Self Similarity in World Wide Web,” in Proceed-
ings of SIGMETRICS Conference on Measurement and Modelling of Computer

Systems, May 1996.

J. Mogul, “Network Behavior of A Busy Web Server and its Clients ,” tech.
rep., October 1995.

J. Mogul, “Operating System Support for busy Internet Servers,” in Proceedings

of the Fifth Workshop on Hot Topics in Operating Systems, May 1995.

T. Abdelzaher, K. Shin, “QoS Provisioning with qContracts in Web and Mul-
timedia Servers,” in Proceedings of IEEE Real Time Systems Symposium, De-
cember 1999.

N. Bhatti ,R. Friedrich, “Web Server Support for Tiered Services ,” in IEFEE
Network, Oct 1999.

“Internet Content Adaptation Protocol. http://www.icap.com.”

Binzhang Liu, “Characterizing Web Response Time,” Master’s thesis, April

1998. Virginia Polytechnic & State University.

“Nortel Networks. http://www.nortelnetworks.com.”

73

[58]
[59]
[60]
[61]

[62]

“Cisco Systems. http://www.cisco.com.”

“Quickweb : Intel Corporation. http://www.intel.com/quickweb.”

“Inktomi Corporation. http://www.inktomi.com/products/network/.”
“Akamai Techologies. http://www.akamai.com.”

M. Ammar, K. Almeroth, R. Clark, and Z. Fei, “Multicast Delivery of Web
Pages,” in Proceedings of the Workshop on Internet Server Performance, June
1998.

74

