
Project Number: CS-MLC-VR98

VAMP – A Voice Activated Music Processor

A Major Qualifying Project Report
submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by

Kristopher T. Babic

Daniel P. Hebda

Brian A. Whitman

Date: December 18, 1988

Approved:

Professor Mark Claypool, Major Advisor

1. voice recognition
2. computer music
3. user interface

ii

iii

Abstract

This project developed and described a tool to control complex musical systems with voice
recognition. VAMP – A Voice Activated Music Processor, implements voice control as a
user interface, a music object representation system, and a musical meaning parser tied into
a prototyped computer sequencer. With VAMP as a framework, composers and musicians
can gain control of the complex dynamic properties of computer-controlled music by using
their voice.

iv

Acknowledgements & Notes

The VAMP group would like to thank their advisors, Professor Mark Claypool
and Professor Frederick Bianchi, for their guidance, help, and support.

They would also like to thank Tim Thompson, the developer of KeyKit, for his
help during the final stages of the project.

All work on this Major Qualifying Project was done equally by all members of
the group throughout the course of the project. Individually, Kris Babic
concentrated on the Voice Recognition module, Daniel Hebda the Parser
module, and Brian Whitman the Output / KeyKit module.

v

Table of Contents

ABSTRACT III

ACKNOWLEDGEMENTS & NOTES IV

TABLE OF CONTENTS V

TABLE OF FIGURES VI

1. INTRODUCTION 1

2. RELATED WORK 5

2.1 VOICE CONTROL APPLICATIONS 5

2.2 SEQUENCERS / INTERACTIVE MUSIC SYSTEMS 7

3. APPROACH TO PROJECT 10

3.1 VOICE RECOGNITION MODULE 12

3.2 PARSER MODULE 20

3.3 OUTPUT 23

4. EVALUATION 28

5. CONCLUSIONS 30

6. FUTURE WORK 31

REFERENCES 33

APPENDIX A: PLATFORM 35

APPENDIX B: LIST OF IMPLEMENTED INTERFACES 37

APPENDIX C: GRAMMAR 43

APPENDIX D: SOURCE CODE 46

vi

Table of Figures

Figure 1 - The Three Module System 10

Figure 2 – Screen shot displaying the user interface of the Speaker Selection screen of VAMP 16

Figure 3 – Screen shot displaying the user interface of the main form of VAMP 18

Figure 4 - Screen shot showing the menu layout of the main form of VAMP 19

Figure 5 - Screenshot showing VAMP and KeyKit sequencer 23

Figure 6 - VAMP-KeyKit Flow Diagram 24

Figure 7 - Main Form Source Code 46

Figure 8 - Wait Form Source Code 58

Figure 9 - Speaker Form Source Code 59

Figure 10 - Select Form Source Code 63

Figure 11 - Connect Form Source Code 66

Figure 12 - Edit Form Source Code 70

Figure 13 - Create Form Source Code 80

Figure 14 - Parser and TCP Module Code 93

1

1. Introduction

Since humans have communicated for thousands of years using language, we find it the easiest to

discuss, recommend, and control by merely talking. When computers and other information

systems appeared to the public in the mid-twentieth century, interfaces were designed not with the

user in mind but the machine: it was easier (and more possible) for an engineer to install four red

switches and two blinking lights than to have a text-based entry system. And as computers became

more powerful, that paradigm remained: the switches evolved to punch cards which evolved to the

keyboard, but even then the user had to work at the machine’s level. The earliest home computers

had their operators loading their spreadsheets or word processor using arcane disk commands, and

it was not until the advent of the sixteen-bit operating systems publicized by Apple (the

Macintosh), Atari (the ST series) and Commodore (the Amiga) that we were then freed from the

keyboard to use a much more natural mouse and window system.

Since then we have been only slightly improving on this model: the latest interfaces are merely

redesigns of a redesign. The public’s eventual goal, as so prophesized by that ubiquitous barometer

of technical advancements, HAL from the film 2001, is the natural voice recognition interface. We

would like to finally regain control of our machines and have them try to understand us instead of

the other way around.

Music has undoubtedly benefited a great deal from the introduction of computers: from the first

IBM machines and into the Internet, music composition and creation has been an artist’s “killer

2

application.” Music is notable for being both a history-long means of expression and also

mathematically describable. A composer that had to previously hand copy a score for each part now

loads up a scoring program. Sequencers control virtual instruments in real time, allowing for

quantization and step recording. Even the electronic age has affected the art: a musician can buy

programs that algorithmically generate music for as-yet-unheard patterns of tones and sounds, and

digital processing, emulation and recording software has expanded the artist’s palette to never-

before attainable variety. No competitive recording studio is without a computer system

complementing its ‘traditional’ instruments.

However, with all of these options available to a user, it becomes daunting to try to control them

all. Many studios have dozens of sound modules with hundreds of sounds in each, all with

hundreds of parameters that are called real-time from the computer system. For a user to try to

control them all is an exercise in futility, and most sequencers do not let users modify the user

interface to their tastes.

Since Voice Recognition has recently become possible, and the challenge and deadline HAL

presented us might just seem viable, a computer-based music sequencer controlled by voice

emerges as a natural solution to the problems listed above. With this solution, a composer can

control multiple dynamics at once as simply as they would talk to an orchestra. Variations that

would be impossible to do in real time with a mouse, such as lower the volume on all tracks with a

violin on the third measure, would be feasible without causing a break in the music. This is

important for power users, since by adding a voice system control, a user can convey a much larger

amount of information than by just using the mouse and keyboard combination. Since MIDI studios

3

have only gotten more complex, with multiple samplers and sound modules linked to the computer,

the prospect of voice control enables a higher level of efficiency from the user that has difficulty

controlling these all at once.

VAMP, a Voice Activated Music Processor, was developed out of these issues. The VAMP project

team developed a framework for controlling music commands through speech control. This

following paper discusses VAMP, a product that parses the speech of a conductor and outputs it to

a musical object language that a sequencer then understands.

The contributions of this project are:

1. The development of a parser for a musical grammar. Musical commands that a conductor or

composer would make are different from ‘standard’ English, since the object and attributes

have different properties. The Voice Activated Music Processor (VAMP) includes a parser that

identifies musical objects in a series of groups that are then sent to the music module.

2. The creation and implementation of a musical object representation. VAMP quickly and simply

integrates the parsed voice with the musical module by using intermediate musical objects. This

representation is generic and abstract enough to be upgraded and implemented on a number of

different platforms.

3. The application of voice recognition to a user interface. While many advancements have been

made in this field, it is still relatively new due to recent dramatic increases in computing speed

4

and capacity. Our voice recognition (VR) interface allows a user to control a large set of

musical objects by naturally voicing the command.

4. The development of a MIDI sequencer to demonstrate these goals. VAMP makes use of the

development kit “KeyKit” that allows VAMP and the parser to get at the music data within a

sequence. This sequencer link, while developed solely for demonstration purposes, is a

powerful realization of the tenets of this project.

5

2. Related Work

Voice control systems and interactive music devices are not a new field, but rather, the synthesis of

them is what makes this project unique. However, to fully understand the context of VAMP, one

should familiarize oneself with the background relating to these two topics.

2.1 Voice Control Applications

The promotional material that Dragon Systems, Inc. lists on their packages champions many

benefits towards voice recognition software. Voice Recognition “frees users hands and eyes for

other tasks… while simultaneously inputting data,” “simplifies computing for novice users,”

“improves data entry speed and accuracy,” “automates processes requiring instant data access,” and

“protects workers against repetitive stress injuries.” Those benefits are what is driving a new

industry that hopes to replace the keyboard or mouse as a standard means of inputting data and

controlling a computer.

Voice control applications come in various forms. The end-user packages, which retail from $50 to

$250 (USD), contain an learning program and hooks for a word processor. The learning program

runs the user through positioning a microphone and setting up the computer’s audio subsystem.

Usually, the user will spend a nominal amount of time (an hour or two) reading text from the screen

while the software analyzes the voice input. Once that initial training is completed, the user can

start dictation, but usually with poor results. Dictation occurs by starting a word processor that has

hooks for the particular voice control package and merely speaking into the microphone.

6

However, the more time the user spends talking to the computer, the better it will understand the

voice in the end. Even while dictation is occurring (not training), the voice subsystem is updating

its ‘voice print,’ or set of files that contain user voice information. So at first, VR systems seem to

provide users only an endless amount of errors and problems, but as a patient user continues to use

the system, rewards soon come in the form of up to (Dragon Systems package claimed) 95%

accuracy.

The January 1998 issue of Byte magazine features a roundup of the currently commercially

available voice recognition packages. At the time of the writing, Dragon’s NaturallySpeaking and

IBM’s ViaVoice were the two high-profile players. In real world situations, the reviewer rated

Dragon as having a 10.4% error rate after training, while Via Voice had a 13.3% rate. (Kay) Other

packages exist at a lower cost (and geared to simpler dictation needs). This particular review claims

Dragon’s accuracy a step above ViaVoice’s, but both are essentially similar programs.

Dragon Systems and other companies, perhaps sensing the future market for voice-controlled user

applications, supplies their customers with a development package based on the voice dictation

engine. A programmer inserts a custom control (essentially a C++ class) into their code and can

then access the speech output of the voice recognition system. Microsoft, Inc. has standardized this

output and called it SAPI (Speech Applications Programming Interface). This way, the user can

choose in the end which engine to use with their voice-controlled applications.

7

Other voice systems do exist, but they are on the industry scale, many costing tens of thousands of

dollars for commerce applications and operator routing. They also run on proprietary hardware.

Voice control, being that is a natural extension of human communication, has been the holy grail of

user interface designers, but only recently has it arrived practically for the home computer user.

This project is one of many that has recently begun to practically apply voice control to enhance a

user interface.

2.2 Sequencers / Interactive Music Systems

Computer music sequencers have been around since the advent of MIDI, the standard that allows

musical instruments and computers to interchange music data on a serial bus. Ikutaro Kakehashi,

Roland’s president, saw the need for a standard among all instruments in 1981. He communicated

with Tom Oberheim and Dave Smith from Sequential Circuits, and by 1983, the MIDI 1.0

specifications were released. (Chadabe, 195) MIDI paved the way for a large number of

instruments and computer programs that control music, due to the cross-platform standard. It didn’t

take long for computer programmers to realize that MIDI could be perfect for storing note data and

controlling synthesizers and other sound modules by a piece of software. Users could be able to

edit notes on screen and effortlessly modify and compose music.

Out of the short history of computer music sequencers that were to follow the advent of MIDI, our

present state includes two or three “major players” on each platform (PC and Macintosh). The PC

platform offers Twelve Tone System’s “Cakewalk,” geared towards home studio users and

8

hobbyists, or Steinberg’s “Cubase.” The Macintosh platform consists of “Digital Performer” or

“Studio Vision Pro,” as well as Cubase. Sequencers have evolved from merely acting as a database

for recorded MIDI data to being full-fledged workstations. Most also now allow a user to sequence

digital audio as well as MIDI data.

While the glut of sequencers available to the musician offers a large degree of choice, it also

confuses: most of the software above contains such wildly different user interfaces that it would

take weeks to migrate from one package to another. This is because music doesn’t transfer well

over to a windows-icons interface; it is classically a ‘hands on’ art. Realizing this, many music

manufacturers produce “MIDI Controllers,” hardware boxes that allow MIDI signals to be sent

from the user in a much different fashion than the keyboard-mouse way. For example, Peavey

Electronics, Inc. produces a controller with 16 hardware sliders: when “mixing down” a virtual

orchestra, a user can move the sliders instead of clicking on virtual sliders and dragging them on

screen. Other devices mimic instruments: one can purchase breath controllers for lifelike horn

dynamics, or simulated drum kits with MIDI-triggered pads instead of drum heads.

Robert Rowe’s Interactive Music Systems: Machine Listening and Composing outlines a new

science for musicians and computer scientists: machine control of sound and music. Throughout the

book, Rowe describes systems created on a development package for Macintosh, Opcode’s “Max”

that control various music and sound parameters through graphically described algorithms. The

systems he creates and describe mostly deal with computer-generated music, such as fractal

algorithms and other math-oriented composition, but the general idea is that of “no barriers:” with

9

Rowe’s ideas, coupled with the current state of the technology, it is easy to see the wealth of

opportunities these systems can offer us.

Software such as Max and its Windows counterpart Pure Data (Pd) allow a user to design a

controlled system by linking together various modules. Each module is treated as an object with its

own methods, parameters and output. Many proprietary “studio-specific” music problems a

composer might be having can easily be solved by using Max to model the system. Other similar

software, such as KeyKit (which is described in greater detail later) allows a user to actually

program the tools they need in a C-like programming language. This allows for greater control, but

is not as easy to understand and implement.

Some systems use a musical language representation to allow a developer to get at the data within.

These formalized grammars appear close to C++ in that they are object oriented with traces of

inheritance. A user controlling a package with such a grammar can understand the system easier,

since musical data is abstracted to a hierarchy much like music itself; notes are values with

properties that can be placed in groups of phrases or measures, which can be arranged into song

objects with their own properties as well.

The work done on these systems up to this point have been geared to the scientific community:

Max has yet to be accepted as a common tool for popular music composition. But as the need for

more complex systems grow, such as VAMP, interactive control of music by development-like

music “environments” will take center stage.

10

3. Approach to Project

Parser

KeyKit

Voice RecognitionTurn, Up, Violins,
and, Play

Spoken:
“Turn up violins
and play.”

Action: Up
Attribute: Volume
Part: Violins
-
Action: Play

Looks into sequence
in memory,
indentifies Violins,
raises the volume,
and plays the
sequence from the
start.

Out to MIDI equipment

TCP link, can travel
across networks or Internet,
or remain on same system.

Same program, although
VR section calls Dragon’s
SDK externally.

Figure 1 - The Three Module System

The VAMP project can viewed as one input to one output. At the head of the project is the voice

input by a user that has trained a system. Through various modules, iterations, and network links,

VAMP arrives at MIDI output to control music hardware. In between these two steps were our

concern, and to faciliate devlopment and outsider understanding of the problem, we split the project

into three modules as outlined above. Each module takes input from the previous module and

processes it. As shown in the figure above, the spoken voice is the first entry into the system, which

11

is processed by the Voice Recognition (VR) module. The VR module connects to the parser

module by shared code. The parser module takes the discrete words “spit out” by the VR module

and parses it into musical meaning. After this parsing is done, the object is sent to the external

sequencer through a TCP link. The external sequencer, for the demo purposes of VAMP,

indentifies the words and controls an object-oriented MIDI system through calling various

methods. The eventual output of the system is MIDI data sent to external music-making equipment.

The first module to tackle was the voice recognition system. Once that was operational, we moved

on to the natural language parser, then on to the implementation of the output. This system is

efficient for its modularity and its ease of understanding. The approach then is split on each

individual module, which are described below in detail.

12

3.1 Voice Recognition Module

Dragon Naturally Speaking Developer Suite is a Software Developer Kit (SDK) developed by

Dragon Systems, Inc to allow software developers to integrate Dragon’s voice recognition engine

into their own applications.

3.11 Useful Features of SDK

Speech Adaptability

The SDK has the feature of being able to adapt the voice recognition engine to the speaking style of

a user. It is able to do this by allowing a user to correct any errors that may arise in the voice

recognition. The method of correction is different depending on the application built using the

SDK. When a user corrects the voice recognition results the SDK allows the application to be able

update the users speech files with new information that will allow the voice recognition engine to

recognize the users voice with a higher accuracy.

This feature is useful because it allows the voice recognition of the product to become more reliable

with use. With prolonged use, the voice recognition engine will be able to accurately recognize

almost everything a user says. This feature allows the voice recognition interface of the application

to become a more useful tool.

Multiple Users

The Dragon SDK allows an application to be able to create and maintain multiple users and user

settings. This feature is important because of the complexity of recognizing voice input. Every

person has a different voice (i.e. accents, slurs, etc.), thus making it very difficult to create a

13

universal voice recognition program. To get around this problem it is imperative to keep separate

speech files for each user of the voice recognition problem. Those speech files can then be

configured to more accurately understand the different speaking styles of the individual users.

The usefulness of this feature lies in its ability to make a voice recognition application useful for

multiple people. It allows for a variety of people with different speaking styles to be able to user

the voice recognition interface easily and more accurately.

System Configuration

Dragon’s SDK allowed a voice recognition application to configure the audio components of a

users system for use with the voice recognition engine. This feature allows a user to be able to

change the audio components of his/her system and quickly setup up the new components for voice

recognition. It also allows multiple users to be able to use different audio components, such as

microphones, on the same computer.

Programming Language Choice

The SDK allows software developers to develop voice recognition applications in either C++ or

Microsoft Visual Basic.

This feature is very useful in the development of a voice recognition application. It gives the

developers of the voice recognition application a wider range of programming tools with which to

develop their software application.

14

3.1.2 Problems Encountered

One problem that we found during our use of Dragon’s developer suite was that the developer suite

itself was not completely implemented. At the time that our application was being developed

Dragon had not completely implemented all the features of the SDK. A partial list of the

implemented and non-implemented features as according to a help file included with the program

can be seen in Appendix B.

An example of this problem is with the feature of the SDK that allows the user to configure his/her

audio components for use with the voice recognition engine. Before a user is allowed to run the

voice recognition engine he/she must configure his/her audio components. Thus the SDK allows

an application to check to see if a user has completed an audio configuration. The problem is that

the SDK does not keep track of whether or not the user has run the audio configuration. This

problem causes the application to not know that the user has run the audio configuration and

therefore not allow the user to access the application.

We were able to overcome this problem by not checking to see if the audio setup had been

completed and to instead check to see if the user has been calibrated. For a user to have been

calibrated they must first successfully complete an audio setup. So by checking this property we

were able to bypass the problem with the audio setup.

3.1.3 User Interface Design

15

The user interface design is an important part of software development. The user interface is the

part of the software that will be seen by the user. Without a well-designed user interface, a useful

software product can become cumbersome and lose its usefulness.

Development of Interface

We first looked at what the application was going to be used for. When we did this, we saw that

the graphical user interface did not have to be very complex as the majority of the use of the

software is through a vocal interface.

The first thing that we needed to design was a user interface that allowed the user to create, select

and delete a user profile to be able to access the multiple user feature of the voice recognition

engine. We decided to model our interface on the interface that comes with Dragon

NaturallySpeaking. We decided on this course of action based on the fact that users tend to learn

how to use a program easier if the user interface is similar to others they have used.

Our user interface is show in Figure 2. As seen in the figure the user is shown a box on the left of

the screen that displays all currently available speakers. On the right side of the screen the user is

given the option of four action buttons. The cancel button, which cancels the selection of the user

is placed in a location that is similar to it location in many other software programs. The other

three buttons are placed in order of their projected use, with the buttons with the highest projected

use on top. The top button is the “Select Speaker” button, which sets the selected speaker as the

current speaker and then activates the main form of the program. We projected that this button

would get the most use, as a user will normally be selecting a previous user as they start up the

program. The next button is the “Create Speaker” button, which activates the create speaker form

16

to create a new speaker. We projected that this button should be placed underneath the “Select

Speaker” button, because each user will use it when they create their speaker profile. The third

button, the “Delete Speaker” button, which deletes the selected speaker and all related speech files

from the system. We projected that this button would get the least amount of use and by this

projected we put as the third action button on the screen.

Figure 2 – Screen shot displaying the user interface of the Speaker Selection screen of VAMP

The second thing that we needed to design was the vocal recognition interface for the user. We

wanted this interface to be as simple as possible as the user will be using voice input for the

majority of the time. So we looked at all the things that a user will need to have control over while

they are using our application. When this process was complete we determined that the user would

need to have control over the state of the microphone, the output of the voice recognition engine

and a manual method of sending the spoken command to our parser for use with the midi

sequencer.

As seen can be seen in Figure 3 we decided to use a simple text box to contain the output of the

voice recognition engine. Having a simple text box allows the user to be able to see the text output

17

of the engine and to be able to correct any errors in that may have occurred during the conversion

from speech to text.

To allow the user to be able to control the state of the microphone we used a button from Dragon’s

SDK that managed the microphone state. This button shows the current state of the microphone

through the use of changing icons on the button and by displaying a colored intensity bar, which

represents the level and intensity of the sound going into the microphone.

We used a simple action button to allow the user to be able to manually run a command that has

been recognized by the voice recognition engine and placed in the receiving text box. This button

allows a user to be able to shut of the microphone and still be able to run a command. This would

be ideal in a high noise situation where there is a lot of external noise that can be picked up by the

microphone.

The layout of these three buttons was determined by placing the buttons in different locations and

determining which layout was the most aesthetically pleasing. When we completed this

determination we were left with the layout as show in Figure 3.

18

VAMP – Voice Activated Music Processor

Figure 3 – Screen shot displaying the user interface of the main form of VAMP

The design of the menus, which can be seen in Figure 4, was based on the menu layout in Dragon

System’s NaturallySpeaking. This decision was also based on the idea of users learning a program

quicker if the interface is similar to one they have used before. The similarity in the interfaces is

the order of the “File”, “User”, “Tools” and “Help” menus.

The design of the “File” menu was simple, as the only function it needed to perform was to give the

user and option to exit the program. The design of the “User” menu is also taken from the

NaturallySpeaking user interface. It contains all of the commands for the maintenance of a user.

By using this menu the user is able to create a new speaker profile, open a different speaker profile

or to save the speech files of the current speaker profile. The “Tools” menu contains all of the tools

that our application allows a user to use. We added the features of being able to setup you audio

hardware for voice recognition, to increase voice recognition accuracy by training the voice

recognition engine, to edit the command lists that are used by our parser, and to connect to a

sequencer through a TCP connection. The order of the “Tools” menu was determined by putting

like commands together and by separating the connection tools from the audio/parser tools. The

19

“Help” configuration was taken from the design of most applications which have help files

incorporated into them.

Save Speaker Files

Figure 4 - Screen shot showing the menu layout of the main form of VAMP

Our graphical user interface does not depend on either the Dragon SDK or the form of the parser.

We could change voice recognition engines by simple changing the underlying code without

modification of the user interface. This ability is also present with the parser. Currently our parser

is activated when a user either gives a voice command or when the “Run Command” button is

pressed. When called the parser takes the string that is in the voice recognition output text box and

parses it. To incorporate a new parser into our system would be a simple task. We would only

have to set the input of the new parser to the text in the voice recognition output text box.

20

3.2 Parser Module

Before we could begin the parser, we first had to determine what grammar we would be allowing

and what we would be looking for within that grammar.

In order to formulate the legal grammar, we compiled a list of phrases commonly used in a

rehearsal setting. These phrases were collected through interviews, emails and live demonstrations

of professional conductors. Once we had the list compiled, we cross-referenced phrases with

similar meaning, paying special attention to the wording used.

Through this analysis a distinguishable reoccurring pattern was found. We noticed that there were

only a few key words in any given phrase. These key words were then broken down into four

categories: Location, Part, Attribute and Action.

The parser’s center is a text box. The text box serves as the entrance point for the sentence to be

parsed. The text box is important because it allows the user to easily tie the output of the voice

recognition into the input of the soon to be parser. As well, if a user did not want to control VAMP

with their voice, they could type in the natural language command.

A button is on the form for the user to signal that the sentence was complete and ready to be parsed.

When the button is pressed the string is passed to the parser module.

21

When the parser receives the string, it begins by looking for the word ‘and’. If it should find any, it

breaks the sentence into two parts, the “current” part, and the “rest” part. The current part holds the

information in the string which precedes the ‘and’. The rest part holds all information after the

‘and’, this section is passed recursively back to the parser until the word ‘and’ is not found.

The next section of the parser works on the current part mentioned above. This part looks for

spaces which may exist within a string. When a space is found the string is again broken into two

parts, the current part and the rest part. The rest part is passed recursively back to this section of the

parser. The current part is passed onto the next phase of the parser.

In the next phase, we check the word received to see if it belongs to one of the four allowed

categories. This is accomplished through the use of four lists, one for each category. The word is

compared against every word in each list, one at a time. If the word is found, it is immediately

placed in a temporary text box for storage, and this section is exited. If the word is not found, the

parser continues onto the next word.

Once each word in the sentence is checked against the lists, the parser constructs a command string

which will be sent to the sequencer via TCP. This construction is done through the use of four

temporary text boxes which are used to hold the words which matched the lists. We simply add one

text box to another, placing a colon in between each one. The final string is stored in another text

box, ready to be sent to the next section:

22

The other aspect of the parser is the handling of special cases. We found there to be two instances

where we needed to receive an argument along with a word. The parser checks for the word

‘measure’ and ‘track’ before the parser compares them to the lists. If one of the words is found, the

next word in the sentence is added to it, and they are both stored in the appropriate text box.

Location:Part:Attribute:Action

examples:
Measure 3:Violins::Play
:Violins:Volume:Turn Up

23

3.3 Output

Figure 5 - Screenshot showing VAMP and KeyKit sequencer

VAMP makes use of the publicly available KeyKit (see Figure 7), developed by Tim Thompson in

conjunction with AT&T. KeyKit is a cross-platform MIDI development kit that allows for a new

language of MIDI signals and allows users to build their own extensions to the software. For

prototyping a controllable sequencer, KeyKit proved to be simple and powerful at the same time.

For the purposes of VAMP, we both modified KeyKit’s sequencer (the middle of Figure 7) and

24

also created a new tool, called VAMP. (For confusion’s sake, we will refer to the KeyKit VAMP

tool as VAMP-KeyKit and the parser / voice recognition code as VAMP-VB.)

VAMP Tool
TCP

Listens on TCP socket 5862
for commands. When one
is received, it parses out the
“four boxes” and determines
musical meaning.

Group Tool (Seq.)

Other KeyKit Tool

MIDI Controllers

For the purposes of VAMP rev. 1, the voice
controls the Group Tool. But, due to KeyKit’s
object-oriented nature, it can also control other
KeyKit tools, and, by creating a new KeyKit
tool for the purpose, convert VAMP grammar
into abstracted MIDI controller data for transfer
to other systems and hardware.

(from VB core)

Figure 6 - VAMP-KeyKit Flow Diagram

As shown in Figure 8, VAMP-KeyKit was built as a “tool” in KeyKit to maintain KeyKit’s object-

based architecture. It listens on a TCP port and then parses out the strings it receives to control

another KeyKit object, which for demonstration purposes was a prototyped music sequencer.

However, this does not limit the entire VAMP system to control just a sequencer: on the startup of

VAMP, it asks the user which object to control; the user merely clicks with their mouse on the

KeyKit tool that VAMP will be sending signals to. In the future, different KeyKit objects can be

created that do a host of new musical processes, including converting VAMP objects into

abstracted MIDI data that other systems and hardware devices can understand.

25

The sequencer was built on KeyKit’s Group tool, a simple yet expansive sequencer. The Group tool

can standalone by itself and record MIDI data and play it back as any good sequencer through a

series of methods attached to the main Group class. Each method performs an action that can be

accessed by mouse control or through other tools, such as VAMP. The Group tool was enhanced

with new VAMP-specific methods for the purposes of the project, including seeking to a particular

measure, muting one particular track, and slowing down the tempo.

When the VAMP-KeyKit tool is invoked (either through KeyKit’s menu structure or by calling a

vamp() command from the Console window), it asks the user to select a controlled tool. At this

point a user should have the tool open that they wish to have controlled by voice. The tool is

selected by clicking on it with the mouse, which calls back the VAMP tool with a pointer to the

object. This pointer, which is referenced as tool throughout the VAMP-KeyKit code, is necessary

to access the object’s methods: for example, VAMP can now simply tell the sequencer to play by

invoking tool.playaudition(time1,time2).

After selecting the destination tool, VAMP sets up its server to listen on port 5862 on the system’s

TCP stack. From this point on, VAMP-KeyKit and VAMP-VB are connected through a TCP

networking link. TCP is a novel solution due to its ease of sending buffered strings across

networks: since we have to wait for the entire string to compose itself from the VR system, the

“buffer lag time” is not an issue. While all of our testing was done with both VAMP-VB and

VAMP-KeyKit on the same machine, there is no limit to the distance of the two modules. VAMP-

26

KeyKit can be on any computer connected to the Internet while VAMP-VB can be on a different

machine in the same room or thousands of miles away. When a connection is detected on port

5862, VAMP then begins waiting for a message.

A message is defined by VAMP-KeyKit as a string delimited by colons (:), followed by a carriage

return and line feed. This conforms to what the VAMP-VB sends the parsed message as. Every

time a command is issued from VAMP-VB, the KeyKit code interprets it and immediately breaks it

down again into the ‘four boxes.’ Multiple commands are processed in the order that they are

received. Upon receipt of a command and its subsequent parsing, VAMP begins its work:

The first revision of the VAMP system has a limited ‘musical meaning dictionary.’ It can play or

stop a sequence, mute or solo instruments, raise tempo or volume, and start at different measures.

Future revisions to the VAMP system can easily add functionality by modifying the VAMP-KeyKit

code, or developing another solution to receive VAMP-VB’s TCP messages. The reason for this

modularity was that, at the time of this writing, the better sequencers and music control software

appeared for Macintosh systems only, and the better voice recognition packages (i.e., Dragon) were

Psuedocode for VAMP-KeyKit’s musical meaning parser:

if action is “play”
if part

tool.solo(part)
if location

tool.setaudition(converttobeats(location), end)
tool.playaudition

. . .

27

only for Windows systems. A future application of VAMP would be to have the musical meaning

parser on the Macintosh platform while the voice recognition occurs on the Windows platform. The

two computers can then be simply linked over Ethernet.

KeyKit’s object-oriented nature allows for another advantage: these commands can occur in real

time, as a sequence is playing. The TCP-listener and VAMP module are set up as KeyKit ‘tasks’,

which are analogous to UNIX’s processes. A programmer can create or delete processes at will,

and they run until they are told to delete themselves. This ensures that the possibilities for musical

meaning parsing are endless.

28

4. Evaluation

In our final testing, VAMP performs as promised, with few minor issues. As described in the Voice

Recognition module section, the Dragon SDK has implementation errors that do not allow it to

retain the user’s audio setup from session to session. At the time of this writing, we are in contact

with Dragon to work on a fix. Otherwise, a properly trained test subject claimed a high rate of

accuracy from Dragon and therefore a good deal of success in controlling VAMP. The subset of

grammar implemented in VAMP musically performed well: we are able to control starting,

stopping, raising volume, muting and “soloing” (only playing) tracks, and also more detailed

editing operations: raising volume by measure, raising tempo, etc.

The connections between the three modules work flawlessly. Over a local system, where the

VAMP-VB and VAMP-KeyKit modules converse over TCP on port 5862, there is only lag from

the VR system determining speech. We estimate on average a lag time of 1-2 seconds from finished

spoken phrase to KeyKit’s response. This conforms to our feasibility research, in which we read

that a similar system (in which doctors were controlling an instructional surgery video from “the

floor”) had slightly longer lag periods, due to slower hardware at the time. As computers only get

faster, we expect this lag time to minimize to unsubstantial.

The accuracy of the VR system, while close to 90 percent, can be enhanced. We will discuss

possible future solutions below. Many of the mistakes that the system made, however, are parsed

29

out by the module and not sent to KeyKit. For the time being, then, misheard phrases have no effect

on the music.

In our view, the project is a success: an ultimately expandable framework for voice control of

music. Our demonstration proves the feasibility of such a task, while in the future we hope to see

many enhancements to turn VAMP into a practical and seamless connection between voice and

music.

30

5. Conclusions

As voice control becomes more ordinary to ordinary users, and developers are realizing that voice

is the most natural way to communicate, projects such as VAMP will become more prominent. One

view of the future of computing places small intelligent voice-activated devices to handle different

tasks, such as word processing, communications, development, and the arts. Each device can be

geared towards their particular function, since a task such as VAMP’s is extraordinarily different

from a simple ‘dictation’ package.

By developing musical grammar and implementing it in a practical situation, VAMP creates a new

paradigm for music control based on natural language. The voice connection only enhances this:

and while voice recognition can only get accurate, the number of users implementing voice

recognition in their day-to-day activities can only increase. ‘Expert’ users that require optimal

control of their systems need devices that accurately control their work (and art) will soon desire

products like VAMP, products that “understand them” without any need for complication.

VAMP’s modularity and expandability are its strong points: it would be foolish to assume that this

incarnation is the final one, and by allowing for hooks into all points of the process, it ensures that

it can grow with the technology. VAMP’s promise is far-reaching and pertinent, especially as

music systems and the computers that control them only get more complicated.

31

6. Future Work

By laying the framework for a speech to musical object solution, the field is now open for a vast

number of improvements and implementations. The VAMP core and current state allow it to

control a limited set of musical parameters, but it is ultimately expandable, both within the code

and through its Parser module. By adding new words to the vocabulary of the Parser, a new musical

command can arise, given that the programmer would also know KeyKit’s (or whatever the output

phase would be at that point) language to physically implement the command.

The placement of KeyKit in our project was simply for rapid development and prototyping

purposes. While KeyKit is a powerful and widely-supported program, it might not suit the needs of

all future users. The modularity of the system exists so that a new developer can replace the KeyKit

module with another MIDI solution, either off-the-shelf of self-coded. Opcode’s Max is a more

robust and better-supported solution, although it is only available for the Macintosh platform.

However, with the TCP link, a future group can enhance the project to include Max running on a

Macintosh while the VR module runs on a dedicated Windows machine. This can also enhance the

‘intelligence’ of VAMP: if the output module understands the user’s hardware (for example, if their

sound module can receive filter changes on channel 4 that make a sound ‘brighter’) then it can

make those adjustments directly to the hardware, giving a user even more complete control.

Other advancements can be made in the VR section of the project; it will accept any Microsoft

SAPI-compliant package, and as the technology and accuracy of these VR programs increase, the

‘old’ Dragon core in place now can be swapped out with little effort. To increase accuracy, a

32

developer can install a hardware device on the microphone to eliminate stray signals, or install a

noise-canceling device to eliminate background sounds interfering.

The parser can be made more robust, other than just the vocabulary: by keeping a buffer of voiced

commands, VAMP can ‘estimate’ what the user is trying to get across. For example, a user that said

“Make the violins louder” could then next say, “No, louder.” and VAMP would know to check the

previous statement. This would involve a small amount of ‘pseudo-intelligence,’ or could be

implemented from a publicly-available natural language parser.

33

References

Chadabe, Joel. Electric Sound: The Past and Promise of Electronic Music. New York: Prentice

Hall, 1996.

Cui, Weylou, et al. “Voice-Aware Support for Multimedia Applications.” Integrated Media

Systems Center, University of Southern California.

Dragon Systems, Inc. corporate web site: http://www.dragonsystems.com

Kay, Russell. “Do You Hear What I Say?” Byte, January 1998, pp 115-116.

Manes, Stephen. “Speech Recognition, Now You’re Talking!” PC World, October 1997. Web

resource: http://www2.pcworld.com/software/utility/articles/oct97/1510p400.html

Puckette, Miller. “Pure Data: Another Integrated Computer Music Environment.” Proceedings,

Second Intercollege Computer Music Conference, Tachikawa, pp 37-41.

Rowe, Robert. Interactive Music Systems: Machine Listening and Composing. Cambrdige: MIT

Press, 1993.

Schmandt, Christopher. Voice Communication With Computers: Conversational Systems. New

York: Van Hostrand Reinhold, 1994.

34

Smith, Ronnie. “An evaluation of strategies for selectively verifying utterance meanings in spoken

natural language dialog.” International Journal of Human-Computer Studies, 48, pp 627-

647.

Sudkamp, Thomas. Languages and Machines: Second Edition. Reading: Addison-Wesley, 1998.

35

Appendix A: Platform

The VAMP executable needs to run in a Windows 95 / 98 / NT system with Dragon

NaturallySpeaking installed. The VAMP installer takes care of all the support software you need,

and will attempt to detect the presence of NaturallySpeaking, letting the user know they need to

install it if it is not found. The VAMP installer also installs the following pieces of software:

1. The Parser / front end ‘core’ (Windows executable)

2. AT&T’s KeyKit with supporting VAMP-hooks

3. NaturallySpeaking developer hooks and training documentation

Upon starting VAMP for the first time, a user needs to train Dragon if they have not already done

so. If VAMP is being installed on a system different from the one the user has trained Dragon, the

user needs to move their ‘voice print’ over from the old system. This is accomplished by merely

copying the applicable directory over to the new system.

KeyKit requires that a MIDI-capable sound card be installed. This sound card can use its own

internal General MIDI voices or be configured through Windows’ MIDI Mapper to control various

outboard synthesizers and sound modules. KeyKit’s included documentation has more on this

topic.

It is possible that the system containing KeyKit and / or the sound modules and the VAMP system

be on separate machines, due to the TCP nature of the link between the two modules. This is

realized by entering in a different value than ‘Localhost’ in the TCP setup properties of the VAMP

36

software. KeyKit on the ‘listener’ machine does not need to be modified, it merely waits for a

message from any IP address and acts on it.

37

Appendix B: List of Implemented Interfaces

List of Implemented/Not Implemented Interfaces

Voice Command API (VCmd)

The Voice Command API (VCmd) allows users to control an application by speaking commands through an audio
input device, rather than by using the mouse or keyboard.

IVCmdAttributes: Implemented
 AutoGainEnableGet Implemented
 AutoGainEnableSet Implemented
 AwakeStateGet Implemented
 AwakeStateSet Implemented
 DeviceGet Implemented
 DeviceSet Implemented
 EnabledGet Implemented
 EnabledSet Implemented
 MicrophoneGet Implemented
 MicrophoneSet Implemented
 SpeakerGet Implemented
 SpeakerSet Implemented
 SRModeGet Implemented
 SRModeSet Implemented with caveat(s):
 Can't set to current mode ID.
 ThresholdGet Implemented
 ThresholdSet Implemented

IVCmdDialogs: Implemented
 AboutDlg Implemented
 GeneralDlg Implemented with caveat(s):
 This method hangs with Dragon NaturallySpeaking

 version 3.01.
 LexiconDlg Not implemented
 TrainGeneralDlg Not implemented
 TrainMicDlg Not implemented

IVCmdEnum: Implemented
 Clone Implemented
 Next Implemented
 Reset Implemented
 Skip Implemented

IVCmdMenu: Implemented
 Add Implemented
 Deactivate Implemented
 EnableItem Implemented
 Get Implemented
 ListSet Implemented
 ListGet Implemented
 Num Implemented
 Set Implemented

38

 SetItem Implemented
 TrainMenuDlg Not implemented
 Activate Implemented
 Remove Implemented

IVoiceCmd: Implemented
 CmdMimic Implemented
 MenuCreate Implemented
 MenuDelete Implemented
 MenuEnum Implemented
 Register Implemented

IVCmdNotifySink: Implemented
 AttribChanged Implemented
 CommandOther Implemented
 CommandRecognize Implemented
 CommandStart Implemented
 Interference Not implemented
 MenuActivate Implemented
 UtteranceBegin Implemented
 UtteranceEnd Implemented
 VUMeter Not implemented

Voice Text API (VTxt)

The Voice Text (VTxt) API provides simple text-to-speech (TTS) capabilities for applications.

Note: The Italian version of Dragon NaturallySpeaking does not provide a SAPI-compliant TTS engine. Developers
wishing to use the VTxt interfaces for Italian, must use a TTS engine other than the one provided with
NaturallySpeaking.

IVTxtAttributes: Implemented
 DeviceGet Implemented
 DeviceSet Implemented
 EnabledGet Implemented
 EnabledSet Implemented
 IsSpeaking Implemented
 SpeedGet Implemented
 SpeedSet Implemented
 TTSModeGet Implemented
 TTSModeSet Implemented

IVTxtDialogs: Implemented
 AboutDlg Implemented
 GeneralDlg Not implemented
 LexiconDlg Not implemented
 TranslateDlg Not implemented

IVTxtNotifySink: Implemented
 AttribChanged Implemented
 SpeakingDone Implemented
 Speak Implemented
 SpeakingStarted Implemented
 Visual Implemented

39

IVoiceText: Implemented
 Register Implemented
 Speak Implemented with caveat(s):

("") returns: 0x8007000E
 StopSpeaking Implemented
 AudioFastForward Implemented
 AudioPause Implemented
 AudioResume Implemented
 AudioRewind Implemented

Speech Recognition API (SR)

ISRCentral: Implemented
 GrammarLoad Implemented
 ModeGet Implemented
 Pause Implemented
 PosnGet Implemented
 Register Implemented
 Resume Implemented
 ToFileTime Implemented
 UnRegister Implemented

ISRDialogs: Implemented
 AboutDlg Implemented
 GeneralDlg Implemented with caveat(s):
 This method hangs with Dragon NaturallySpeaking

 version 3.01.
 LexiconDlg Not implemented
 TrainMicDlg Not implemented
 TrainGeneralDlg Not implemented

ISREnum: Implemented
 Clone Implemented
 Next Implemented
 Reset Implemented
 Select Implemented
 Skip Implemented

ISRFind: Not implemented
 Find Not Implemented
 Select Not Implemented

ISRGramCFG: Implemented
 LinkQuery Not implemented
 ListAppend Implemented
 ListGet Implemented
 ListQuery Implemented
 ListRemove Implemented
 ListSet Implemented

ISRGramCommon: Implemented
 Activate Implemented
 Archive Implemented
 BookMark Not implemented
 Deactivate Implemented

40

 DeteriorationGet Implemented
 DeteriorationSet Implemented
 TrainDlg Not implemented
 TrainPhrase Not implemented
 TrainQuery Not implemented

ISRGramDictation: Implemented
 Context Implemented
 Hint Not implemented
 Words Implemented

ISRGramInsertionGUI: Implemented
 Hide Implemented
 Move Implemented
 Show Implemented

ISRResAudio: Implemented
 GetWAV Implemented

ISRResBasic: Implemented
 FlagsGet Not implemented
 Identify Not implemented
 PhraseGet Implemented
 TimeGet Implemented with caveat(s):
 (NULL,NULL): expected E_INVALIDARG, got

 E_UNEXPECTED

ISRResCorrection: Implemented
 Correction Implemented
 Validate Implemented

ISRResEval: Implemented
 ReEvaluate Not implemented

ISRResGraph: Implemented
 BestPathPhoneme Not implemented
 BestPathWord Implemented
 GetPhonemeNode Not implemented
 GetWordNode Implemented with caveat(s):
 (dwWrdNde,&wrdnde,NULL,0,NULL):

 expected E_INVALIDARG, got S_OK
 PathScorePhoneme Not implemented
 PathScoreWord Not implemented

ISRResMemory: Implemented
 Free Implemented
 LockGet Implemented
 LockSet Implemented
 Get Not implemented

ISRResMerge: Implemented
 Merge Not implemented
 Split Implemented

ISRResModifyGUI: Not implemented
 Hide Not Implemented

41

 Move Not Implemented
 Show Not Implemented

ISRResScores: Not implemented
 GetPhraseScore Not Implemented
 GetWordScores Not Implemented

ISRResSpeaker: Not implemented
 Correction Not Implemented
 Identify Not Implemented
 IdentifyForFree Not Implemented
 Validate Not Implemented

ISRSpeaker: Implemented
 Delete Implemented
 Enum Implemented
 Merge Not implemented
 New Implemented
 Query Implemented with caveat(s):

 (szSpkr, 0, NULL): expected E_INVALIDARG,
 got S_OK

 Read Not implemented
 Revert Not implemented
 Select Implemented
 Write Not implemented

ISRAttributes: Implemented
 AutoGainEnableGet Implemented
 AutoGainEnableSet Implemented
 EchoGet Implemented
 EchoSet Implemented
 EnergyFloorGet Implemented
 EnergyFloorSet Implemented
 MicrophoneGet Implemented with caveat(s):
 (NULL,0,NULL): expected E_INVALIDARG, got S_OK
 MicrophoneSet Implemented
 RealTimeGet Implemented
 RealTimeSet Implemented
 SpeakerGet Implemented with caveat(s):
 (NULL,0,NULL): expected E_INVALIDARG, got S_OK
 SpeakerSet Implemented with caveat(s):
 (NULL): expected E_INVALIDARG, got E_UNEXPECTED
 ThresholdGet Implemented
 ThresholdSet Implemented
 TimeOutGet Implemented
 TimeOutSet Implemented

ILexPronounce: Implemented
 Add Implemented
 Get Implemented
 Remove Implemented

ISRGramNotifySink: Implemented
 BookMark Not implemented
 Paused Implemented
 PhraseFinish Implemented

42

 PhraseHypothesis Not implemented
 PhraseStart Implemented
 ReEvaluate Not implemented
 Training Not implemented
 UnArchive Not implemented

ISRNotifySink: Implemented
 AttribChanged Implemented
 Interference Not implemented
 Sound Not implemented
 UtteranceBegin Implemented
 UtteranceEnd Implemented
 VUMeter Not implemented

43

Appendix C: Grammar

We arranged our acceptable phrases into a generic grammar for ease of parsing. What follows is a
regular expression list of the grammar followed by two examples of each type.

[Instrument/Track][Less/More]*[Dynamic/Expression]*[Location [to Location]]*
Trumpets need to be louder at measure 12.
Violins need to be less staccato.

[Location [to Location]][Less/More]*[Dynamic/Expression]*[Instrument/Track]*
At the Coda I want more from the saxophones.
At Measure 3 I want more emphasis on the downbeat.

[Location [to Location]][Instrument/Track]*[Less/More]*[Dynamic/Expression]*
At measure 5 I want the cellos to play more passionately.
At the second ending I want the Tubas to play very gently.

[Location Directive][Location]*
Start at Measure 8.
Take if from the top.

* The asterisk represents any unrecognized words or phrases.

Following are example words for each of the groups that the parser can understand.
[Instrument/Track]

Track # [1,2,3,4…]
Cello
Violin
Viola
Bass
Trumpet
Tuba
Trombone
Etc.

[Dynamic/Expression]
Slow

Volume
Pianissimo
Piano
Mezzo Piano
Mezzo Forte
Forte
Fortissimo
Sforzando
Agitati
Anima Soul
Animato
Apassionato
Passionately

44

Brilliant
Sadly
Playful
Etc.

[Less/More]
Less
More
Not
Very
Don’t

[Location]
Measure # [1,2,3,4…]
Top of the page
Top
Edge
Andante
Allegro
Beginning
Coda
Segno
Largo
Lento
Adagio
Solo
Entrance
Page # [1,2,3,4…]
Etc.

[Location Directive / Action]
Start
Go
From
Play
Etc.

Examples:

Trumpets need to be louder at measure 12.
Violins need to be less staccato.
Get Louder at the tutti section.
Not so loud.
Don't use so much vibrato.
At the Coda I want more from the saxophones.

45

At Measure 3 I want more emphasis on the downbeat.
At measure 5 I want the cellos to play more passionately.
At the second ending I want the Tubas to play very gently.
Start at Measure 8.
Take if from the top.
Go Back to the top of the page.
From the top
Softer.
Louder.
Make the staccatos shorter.
Accents need to be louder.
Really decrescendo there.
Take it from the second ending.
We need more vibrato from the trumpets.
Make the crescendo stand out.
Not so loud clarinets.
More vibrato.
Don't use vibrato here, make it quite simple.
I need a brighter sound from the brass.

The scope of each verbal command is based upon the arguments received. If a conductor were to
say “Track 1 more volume”, then the increase in volume would be applied only to Track 1.
However, a conductor is allowed to say “LOUDER!” which would cause an increase in volume in
all tracks.

Any command affecting tempo would have to be applied to all tracks. It would not make sense to
slow down one instrument while maintaining the other’s speeds.

46

Appendix D: Source Code

Following is the Visual Basic source code for the VAMP-VB modules.

Figure 7 - Main Form Source Code

VERSION 5.00

Object = "{5C486340-2F92-11D1-A47C-00A024A3A678}#1.0#0"; "DNSTK10.DLL"

Object = "{33101C00-75C3-11CF-A8A0-444553540000}#1.0#0"; "CSWSK32.OCX"
Begin VB.Form frmmain
 Caption = "VAMP - Voice Activated Music Processor"
 ClientHeight = 2685
 ClientLeft = 165
 ClientTop = 450
 ClientWidth = 7485
 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 2685
 ScaleWidth = 7485
 StartUpPosition = 1 'CenterOwner
 Begin SocketWrenchCtrl.Socket Socket1
 Left = 480
 Top = 720
 _Version = 65536
 _ExtentX = 741
 _ExtentY = 741
 _StockProps = 0
 AutoResolve = -1 'True
 Backlog = 5
 Binary = -1 'True
 Blocking = -1 'True
 Broadcast = 0 'False
 BufferSize = 0
 HostAddress = ""
 HostFile = ""
 HostName = ""
 InLine = 0 'False
 Interval = 0
 KeepAlive = 0 'False
 Library = ""
 Linger = 0
 LocalPort = 0
 LocalService = ""
 Protocol = 0
 RemotePort = 0
 RemoteService = ""
 ReuseAddress = 0 'False
 Route = -1 'True
 Timeout = 0
 Type = 1
 Urgent = 0 'False
 End
 Begin VB.TextBox txtAct
 Height = 285

47

 Left = 4920
 TabIndex = 11
 Top = 240
 Visible = 0 'False
 Width = 1095
 End
 Begin VB.TextBox txtAtt
 Height = 285
 Left = 3720
 TabIndex = 10
 Top = 240
 Visible = 0 'False
 Width = 1095
 End
 Begin VB.TextBox txtPar
 Height = 285
 Left = 2400
 TabIndex = 9
 Top = 240
 Visible = 0 'False
 Width = 1095
 End
 Begin VB.TextBox txtLoc
 Height = 285
 Left = 1200
 TabIndex = 8
 Top = 240
 Visible = 0 'False
 Width = 1095
 End
 Begin VB.TextBox txtCom
 Height = 285
 Left = 1320
 TabIndex = 7
 Top = 2280
 Visible = 0 'False
 Width = 4575
 End
 Begin VB.CommandButton cmdRun
 Caption = "Run Command"
 Height = 495
 Left = 3960
 TabIndex = 6
 Top = 1680
 Width = 1215
 End
 Begin VB.ListBox List4
 Height = 255
 Left = 4800
 TabIndex = 5
 Top = 1320
 Visible = 0 'False
 Width = 1215
 End
 Begin VB.ListBox List3
 Height = 255
 Left = 3600
 TabIndex = 4
 Top = 1320
 Visible = 0 'False
 Width = 1215
 End
 Begin VB.ListBox List2
 Height = 255

48

 Left = 2400
 TabIndex = 3
 Top = 1320
 Visible = 0 'False
 Width = 1215
 End
 Begin VB.ListBox List1
 Height = 255
 Left = 1200
 TabIndex = 2
 Top = 1320
 Visible = 0 'False
 Width = 1215
 End
 Begin DNSToolsCtl.DgnDictEdit DgnDictEdit1
 Left = 6240
 OleObjectBlob = "main.frx":0000
 Top = 480
 End
 Begin DNSToolsCtl.DgnVoiceCmd DgnVoiceCmd1
 Left = 6240
 OleObjectBlob = "main.frx":0028
 Top = 720
 End
 Begin VB.TextBox txtVREntry
 Height = 615
 Left = 1080
 TabIndex = 1
 Top = 600
 Width = 5055
 End
 Begin DNSToolsCtl.DgnMicBtn DgnMicBtn1
 Height = 495
 Left = 2160
 OleObjectBlob = "main.frx":004C
 TabIndex = 0
 Top = 1680
 Width = 1335
 End
 Begin DNSToolsCtl.DgnEngineControl DgnEngineControl1
 Left = 6240
 OleObjectBlob = "main.frx":007C
 Top = 960
 End
 Begin VB.Menu mnuFile
 Caption = "&File"
 Begin VB.Menu smnuExit
 Caption = "E&xit"
 End
 End
 Begin VB.Menu mnuUser
 Caption = "&User"
 Begin VB.Menu mnuCreate
 Caption = "&New"
 End
 Begin VB.Menu mnuSelect
 Caption = "&Open"
 End
 Begin VB.Menu mnuBlank
 Caption = "-"
 End
 Begin VB.Menu mnuSave
 Caption = "&Save Speach Files"
 End

49

 End
 Begin VB.Menu mnuTools
 Caption = "&Tools"
 Begin VB.Menu mnuAudio
 Caption = "Run &Audio Setup"
 End
 Begin VB.Menu mnuGenTrain
 Caption = "Run &General Training"
 End
 Begin VB.Menu mnuEditLists
 Caption = "&Edit Command Lists"
 End
 Begin VB.Menu mnuBlank2
 Caption = "-"
 End
 Begin VB.Menu mnuNewConnection
 Caption = "&New Sequencer Connection"
 End
 End
 Begin VB.Menu mnuHelp
 Caption = "&Help"
 Begin VB.Menu mnuContents
 Caption = "Contents..."
 End
 Begin VB.Menu mnuIndex
 Caption = "Index..."
 End
 Begin VB.Menu mnuSearch
 Caption = "Search..."
 End
 End
End
Attribute VB_Name = "frmmain"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Compare Text

Dim VMenu As IVMenuAuto 'voice recognition command menu
Dim activated As Boolean 'hold if form has been activated

Const wake_up = 1 'command numbers
Const go_sleep = 2
Const run_com = 3

'---
'
'Function: Activate
'
'Purpose: Sets up form and all variables
'
'---

Public Sub Activate()

 Dim fnum As Integer
 Dim txt As String
 Dim Host As String

 Me.Enabled = True

 List1.Clear 'clear the list

50

 On Error GoTo ErrorHandler
 fnum = FreeFile
 Open App.Path & "\List1.dat" For Input As fnum
 'open a file for reading
 Do While Not EOF(fnum) 'go through the entire file
 Line Input #fnum, txt 'read a line of the file
 txt = Trim$(txt) 'set txt equal to the line
 If Len(txt) > 0 Then List1.AddItem txt
 Loop 'if txt exists then add it
 'to the list

 Close fnum

 List2.Clear 'clear the list

 fnum = FreeFile
 Open App.Path & "\List2.dat" For Input As fnum
 'open a file for reading
 Do While Not EOF(fnum) 'go through the entire file
 Line Input #fnum, txt 'read a line of the file
 txt = Trim$(txt) 'set txt equal to the line
 If Len(txt) > 0 Then List2.AddItem txt
 Loop 'if txt exists then add it
 'to the list
 Close fnum

 List3.Clear 'clear the list

 fnum = FreeFile
 Open App.Path & "\List3.dat" For Input As fnum
 'open a file for reading
 Do While Not EOF(fnum) 'go through the entire file
 Line Input #fnum, txt 'read a line of the file
 txt = Trim$(txt) 'set txt equal to the line
 If Len(txt) > 0 Then List3.AddItem txt
 Loop 'if txt exists then add it
 'to the list
 Close fnum

 List4.Clear 'clear the list

 fnum = FreeFile
 Open App.Path & "\List4.dat" For Input As fnum
 'open a file for reading
 Do While Not EOF(fnum) 'go through the entire file
 Line Input #fnum, txt 'read a line of the file
 txt = Trim$(txt) 'set txt equal to the line
 If Len(txt) > 0 Then List4.AddItem txt
 Loop 'if txt exists then add it
 'to the list

 Close fnum

 frmWait.Caption = "Creating Form" 'display wait dialog
 frmWait.lblWait.Caption = "Creating Form. Please Wait."
 Me.Show

 Me.Enabled = False

 frmWait.Show

51

 activated = True

 DgnEngineControl1.Register 'register voice recognition objects
 DgnMicBtn1.Register
 DgnVoiceCmd1.Register ""
 DgnDictEdit1.Register txtVREntry.hWnd

 'create and setup voice recognition command menu
 Set VMenu = DgnVoiceCmd1.MenuCreate("app", "menu", dgnlangUSEnglish, "", vcmdmc_CREATE_TEMP)

 VMenu.Add wake_up, WakeUp, "", ""
 VMenu.Add go_sleep, GoToSleep, "", ""
 VMenu.Add run_com, "run command", "", ""

 VMenu.hWndMenu = hWnd
 VMenu.Active = True

 Unload frmWait

 Me.Enabled = True
 Me.SetFocus

 DgnMicBtn1.Enabled = True 'initialize microphone
 DgnMicBtn1.MicState = dgnmicOff

 txtVREntry.SetFocus

 GoTo Quit

ErrorHandler:

 If Err.Number = E_NOTIMPL Then 'checks to see if error was caused by non-support of
dictation

 MsgBox "Your speach engine does not support dictation. Please install one with these
capabilites.", vbOKOnly, "Error"
 Unload frmWait
 Unload Me

 Else

 'displays general error message and exits
 MsgBox Str(Err) + " - " + Error$, vbOKOnly, "Error" ' show message
 Unload frmWait
 Unload Me

 End If

Quit:

 Socket1.AddressFamily = AF_INET 'sets up socket
 Socket1.Binary = False
 Socket1.Blocking = False
 Socket1.BufferSize = 1024
 Socket1.Protocol = IPPROTO_IP
 Socket1.SocketType = SOCK_STREAM

 Socket1.RemoteService = "echo"

 Socket1.HostFile = ""

 Socket1.HostName = "localhost" 'sets up defaul connection
 Socket1.RemotePort = 5862
 Socket1.LocalPort = IPPORT_ANY

52

 If Socket1.Connect <> 0 Then Exit Sub 'checks if connected

End Sub

'---
'
'Function: cmdRun_Click
'
'Purpose: Manually runs a command
'
'---

Private Sub cmdRun_Click()
 Dim AndStuff As ParseType

 AndStuff.Current = "" 'initialize the andstuff var
 AndStuff.LeftOver = txtVREntry
 Call ParseControl(AndStuff) 'call the parser with andstuff

 txtVREntry.SetFocus
 txtVREntry.Text = ""

End Sub

'---
'
'Function: DgnEnginecontrol1_DialogClosed
'
'Purpose: Is called when a DgnEngineControl function exits.
'
'Variables: Dialog - specifies which dialog has exited
' ExitCode - hold exit status of dialog
'
'---

Private Sub DgnEngineControl1_DialogClosed(Dialog As DNSToolsCtl.DgnDialogConstants, ExitCode As
Long)

 'check if general training has exited
 If Dialog = dgndlgGeneralTraining Then

 'display waiting dialog
 frmWait.Caption = "Saving User"
 frmWait.lblWait.Caption = "Saving " + frmWait.lblWait.Caption
 frmWait.Show

 'save speaker
 DgnEngineControl1.SpeakerSave

 Unload frmWait

 End If

 Me.Enabled = True
 Me.SetFocus

End Sub

'---
'
'Function: DgnVoiceCmd1_CommandRecognize

53

'

'Purpose: Executes the command that is recognized by the voice recognition
' engine.
'
'Variables: Command - name of command recognized
' ID - integer id of recognized command
' Action - contains string of action to be performed
' ListResults - results of voice recognition
'
'---

Private Sub DgnVoiceCmd1_CommandRecognize(Command As String, ID As Long, Action As String,
ListResults As DNSToolsCtl.DgnStrings)
 Dim AndStuff As ParseType

 If ID = wake_up Then 'check if command is microphone wake up command

 DgnMicBtn1.MicState = dgnmicOn

 Else

 If ID = go_sleep Then 'check if command is microphone sleep command

 DgnMicBtn1.MicState = dgnmicSleeping

 Else

 If ID = run_com Then 'check if command is run command command

 AndStuff.Current = "" 'initialize the andstuff var
 AndStuff.LeftOver = txtVREntry
 Call ParseControl(AndStuff) 'Call the parser with andstuff

 txtVREntry.SetFocus
 txtVREntry.Text = ""

 End If

 End If

 End If

End Sub

'---
'
'Function: Form_Load
'
'Purpose: Initializes variables and calls select speaker form
'
'---

Private Sub Form_Load()

 Dim spkrs As DgnStrings 'contains speaker names
 Dim i As Integer

 Me.Enabled = False

 'check to see if any speech engines are installed
 If DgnEngineControl1.SpeechEngines.Count = 0 Then

 MsgBox "A speach engine is not currently installed on this machine. Please install one and
try again.", vbOKOnly, "Error"

54

 Unload Me

 End If

 Set spkrs = DgnEngineControl1.Speakers

 'enters names of speakers into speaker list box
 For i = 1 To spkrs.Count

 frmSpeaker.lstSpeaker.AddItem spkrs(i)

 Next

 frmSpeaker.Show
 Me.Hide
 frmSpeaker.SetFocus

 'select first speaker
 If frmSpeaker.lstSpeaker.ListCount > 0 Then

 frmSpeaker.lstSpeaker.Selected(0) = True

 End If

 frmSpeaker.lstSpeaker.SetFocus

End Sub

'---
'
'Function: cmdRun_Click
'
'Purpose: Manually runs a command
'
'---

Private Sub Form_Unload(Cancel As Integer)

 If Socket1.Connected Then 'disconnect socket

 Socket1.Disconnect

 End If

 If activated Then 'check if form was activated

 'check if microphone was on
 If DgnMicBtn1.MicState = dgnmicOn Then

 DgnMicBtn1.MicState = dgnmicOff

 End If

 'check if speaker files have been modified

 If DgnEngineControl1.SpeakerModified Then

 If MsgBox("Do you want to save your speech files?", vbYesNo, "Save Speach Files") =
vbYes Then

 DgnEngineControl1.SpeakerSave

 End If

 End If

55

 End If

End Sub

'---
'
'Function: mnuAudio_Click
'
'Purpose: Runs audio setup wizard.
'
'---

Private Sub mnuAudio_Click()

 Me.Enabled = False
 DgnEngineControl1.AudioSetupWizard "" 'run audio setup wizard

End Sub

'---
'
'Function: mnuCreate_Click
'
'Purpose: Calls form to create a new user.
'
'---

Private Sub mnuCreate_Click()

 Me.Enabled = False
 frmCreate.Show 'call from to create new user
 frmCreate.SetReturn (1)

End Sub

'---
'
'Function: mnuEditLists_Click
'
'Purpose: Calls form to edit data lists
'
'---

Private Sub mnuEditLists_Click()

 Dim i As Integer

 For i = 0 To List1.ListCount - 1 'enter data into list on form

 frmEdit.lstBox1.AddItem (List1.List(i))

 Next

 For i = 0 To List2.ListCount - 1 'enter data into list on form

 frmEdit.lstBox2.AddItem (List2.List(i))

 Next

 For i = 0 To List3.ListCount - 1 'enter data into lists on form

 frmEdit.lstBox3.AddItem (List3.List(i))

56

 Next

 For i = 0 To List4.ListCount - 1 'enter data into lists on form

 frmEdit.lstBox4.AddItem (List4.List(i))

 Next

 Me.Enabled = False
 frmEdit.Show

End Sub

'---
'
'Function: mnuGenTrain_Click
'
'Purpose: Runs general training.
'
'---

Private Sub mnuGenTrain_Click()

 Me.Enabled = False
 DgnEngineControl1.GeneralTraining "" 'run general training

End Sub

'---
'
'Function: mnuNewConnection_Click()
'
'Purpose: Connects to a new sequencer
'
'---

Private Sub mnuNewConnection_Click()

 frmConnect.Show

End Sub

'---
'
'Function: mnuSave_Click
'
'Purpose: Manually runs a command
'
'---

Private Sub mnuSave_Click()

 Me.Enabled = False

 'display wait dialog
 frmWait.Caption = "Saving Speaker"
 frmWait.lblWait.Caption = "Saving " + frmWait.lblWait.Caption
 frmWait.Show

 DgnEngineControl1.SpeakerSave 'save speaker

 Me.Enabled = True
 Me.SetFocus
 Unload frmWait

57

End Sub

'---
'
'Function: mnuSelect_Click
'
'Purpose: Selects a speaker file to use.
'
'---

Private Sub mnuSelect_Click()

 Dim spkrs As DgnStrings 'contains names of speaker
 Dim i As Integer

 Set spkrs = DgnEngineControl1.Speakers

 For i = 1 To spkrs.Count

 frmSelect.lstSpeaker.AddItem spkrs(i)

 Next

 Me.Enabled = False
 frmSelect.Show

End Sub

'---
'Purpose:
'
'
'
'---

Private Sub smnuExit_Click()
 Unload Me
End Sub

'---
'
'Function: CheckList
'
'Purpose: Checks the word recieved for a match in one of the lists
' if one is found, then the word is placed in the appropriate
' text box
'
'Variables: OneWord - Holds a word to be compared against the lists

'---

Public Sub CheckList(OneWord As String)
 Dim i As Integer

 For i = 0 To List1.ListCount - 1 'Go through each item in the list
 If List1.List(i) = OneWord Then 'If the word in the list matches
 txtLoc = OneWord 'the word sent to the procedure
 Exit Sub 'add it to the text box and exit
 End If
 Next i

 For i = 0 To List2.ListCount - 1 'Go through each item in the list
 If List2.List(i) = OneWord Then 'If the word in the list matches
 txtPar = OneWord 'the word sent to the procedure

58

 Exit Sub 'add it to the text box and exit

 End If
 Next i

 For i = 0 To List3.ListCount - 1 'Go through each item in the list
 If List3.List(i) = OneWord Then 'If the word in the list matches
 txtAtt = OneWord 'the word sent to the procedure
 Exit Sub 'add it to the text box and exit
 End If
 Next i

 For i = 0 To List4.ListCount - 1 'Go through each item in the list
 If List4.List(i) = OneWord Then 'If the word in the list matches
 txtAct = OneWord 'the word sent to the procedure
 Exit Sub 'add it to the text box and exit
 End If
 Next i
End Sub

Figure 8 - Wait Form Source Code

VERSION 5.00

Begin VB.Form frmWait

 ClientHeight = 1770

 ClientLeft = 60

 ClientTop = 345
 ClientWidth = 5400
 LinkTopic = "Form1"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 1770
 ScaleWidth = 5400
 StartUpPosition = 1 'CenterOwner
 Begin VB.Label lblWait
 Caption = "Speaker Please Wait..."
 BeginProperty Font
 Name = "Times New Roman"
 Size = 18
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 975
 Left = 1440
 TabIndex = 0
 Top = 360
 Width = 2775
 End
End
Attribute VB_Name = "frmWait"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

59

Figure 9 - Speaker Form Source Code

VERSION 5.00

Begin VB.Form frmSpeaker

 Caption = "Speaker Selection "

 ClientHeight = 2625

 ClientLeft = 60

 ClientTop = 345

 ClientWidth = 4875

 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 2625
 ScaleWidth = 4875
 StartUpPosition = 2 'CenterScreen
 Begin VB.CommandButton cmdSelect
 Caption = "Select Speaker"
 Default = -1 'True
 Height = 375
 Left = 3360
 TabIndex = 4
 Top = 480
 Width = 1335
 End
 Begin VB.CommandButton cmdDelete
 Caption = "Delete Speaker"
 Height = 375
 Left = 3360
 TabIndex = 3
 Top = 1440
 Width = 1335
 End

 Begin VB.CommandButton cmdCreate

 Caption = "Create Speaker"
 Height = 375
 Left = 3360
 TabIndex = 2
 Top = 960
 Width = 1335
 End
 Begin VB.CommandButton cmdCancel
 Caption = "Cancel"
 Height = 375
 Left = 3360
 TabIndex = 1
 Top = 1920
 Width = 1335
 End
 Begin VB.ListBox lstSpeaker
 Height = 1815
 Left = 240
 TabIndex = 0
 Top = 480
 Width = 2775
 End

60

 Begin VB.Label lblUser

 Caption = "Speaker:"
 Height = 255
 Left = 240
 TabIndex = 5
 Top = 120
 Width = 735
 End
End
Attribute VB_Name = "frmSpeaker"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim complete As Boolean 'is true if can be exited without exiting full program

'---
'
'Function: cmdCancel_Click
'
'Purpose: Exits speaker select
'
'---

Private Sub cmdCancel_Click()

 Unload Me

End Sub

'---
'
'Function: cmdCreate_Click
'
'Purpose: Calls form to create a new user
'
'---

Private Sub cmdCreate_Click()

 Me.Enabled = False 'call create new user form

 frmCreate.SetReturn (0)

 frmCreate.Show

End Sub

'---
'
'Function: cmdDelete_Click
'
'Purpose: Deletes the selected speaker
'
'---

Private Sub cmdDelete_Click()

 On Error GoTo ErrorHandler

 Dim i As Integer

 If lstSpeaker.SelCount = 0 Then 'check to see if selected speaker

 MsgBox "A speaker was not selected!", vbOKOnly, "Error"

61

 Else

 i = 0
 'get i-value of selected speaker
 While Not (i = lstSpeaker.ListCount) And Not (lstSpeaker.Selected(i))

 i = i + 1

 Wend

 'verify that user wants to delete speaker
 If MsgBox("Are you sure you want to delete speaker: " + lstSpeaker.List(i), vbYesNo, "Delete
User") = vbYes Then

 'delete speaker
 frmmain.DgnEngineControl1.SpeakerDelete lstSpeaker.List(i)
 lstSpeaker.RemoveItem (i)

 End If

 End If

 GoTo CmdExit

ErrorHandler:

 'display error message
 MsgBox Str(Err) + " - " + Error$, vbOKOnly, "Error" ' show message

CmdExit:

End Sub

'---
'
'Function: activated
'
'Purpose: Sets complete variable to true
'
'---

Public Sub activated()

 complete = True

End Sub

'---
'
'Function: cmdSelect_Click
'
'Purpose: Opens the selected user and runs the main form
'
'---

Private Sub cmdSelect_Click()

 Dim i As Integer

 If lstSpeaker.SelCount = 0 Then 'check if selected speaker

 MsgBox "A speaker was not selected!", vbOKOnly, "Error"

 Else

62

 i = 0

 'get i-value of selected user
 While Not (i = lstSpeaker.ListCount) And Not (lstSpeaker.Selected(i))

 i = i + 1

 Wend

 'display wait dialog
 frmWait.Caption = "Loading Speaker: " + lstSpeaker.List(i)
 frmWait.lblWait.Caption = "Loading " + frmWait.lblWait.Caption
 frmWait.Show

 'load speaker
 frmmain.DgnEngineControl1.Speaker = lstSpeaker.List(i)

 'check if speaker has completed an audio setup
' If Not frmmain.DgnEngineControl1.AudioSetupComplete Then

' MsgBox "You have not completed the audio setup. You will be given a chance to do so
now.", vbOKOnly, "Incomplete Audio Setup"

' frmSpeaker.Enabled = False

' frmCreate.Show 'run create user to finish audio setup
' frmCreate.SetName (lstSpeaker.List(i))
' frmCreate.txtSpeaker.Text = lstSpeaker.List(i)
' frmCreate.SetReturn (2)
' frmCreate.OffState1
' frmCreate.State3
' frmCreate.SetState (3)

' Exit Sub

' End If

 'check if speaker has been calibrated
 If Not frmmain.DgnEngineControl1.SpeakerCalibrated Then

 Unload frmWait

 MsgBox "You have not gone through general training yet. You must do this to calibrate
your speach files. You will be given the chance to do so now.", vbOKOnly, "Speaker Uncalibrated"

 frmSpeaker.Enabled = False

 frmCreate.Show 'run create user to finish calibration
 frmCreate.SetReturn (2)
 frmCreate.OffState1
 frmCreate.State4
 frmCreate.SetState (4)
 frmCreate.SetName (lstSpeaker.List(i))
 frmCreate.txtSpeaker.Text = lstSpeaker.List(i)

 Exit Sub

 End If

 Unload frmWait

 frmmain.Enabled = True

63

 frmmain.Activate
 complete = True
 Unload Me

 End If

End Sub

'---
'
'Function: Form_Unload
'
'Purpose: Unloads the form
'
'---

Private Sub Form_Unload(Cancel As Integer)

 If Not complete Then 'check if completed speaker selection

 Unload frmmain

 End If

End Sub

'---
'
'Function: lstSpeaker_DblClick
'
'Purpose: Selects the user by double clicking on list
'
'---

Private Sub lstSpeaker_DblClick()

 cmdSelect_Click

End Sub

Figure 10 - Select Form Source Code

VERSION 5.00

Begin VB.Form frmSelect

 Caption = "Select Speaker"

 ClientHeight = 2925

 ClientLeft = 60

 ClientTop = 345

64

 ClientWidth = 4110

 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 2925
 ScaleWidth = 4110
 ShowInTaskbar = 0 'False
 StartUpPosition = 2 'CenterScreen
 Begin VB.CommandButton cmdCancel
 Caption = "&Cancel"
 Height = 375
 Left = 2520
 TabIndex = 2
 Top = 2280
 Width = 1215
 End
 Begin VB.CommandButton cmdSelect
 Caption = "&Select"
 Default = -1 'True
 Height = 375
 Left = 2520
 TabIndex = 1
 Top = 1800
 Width = 1215
 End
 Begin VB.ListBox lstSpeaker
 Height = 2010
 Left = 360
 TabIndex = 0
 Top = 600
 Width = 1815
 End
 Begin VB.Label lblSpeaker
 Caption = "Speaker:"

 Height = 255

 Left = 360
 TabIndex = 3
 Top = 240
 Width = 855
 End
End
Attribute VB_Name = "frmSelect"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

'---
'
'Function: cmdCancel_Click
'
'Purpose: Cancels form
'
'---

Private Sub cmdCancel_Click()

 frmmain.Enabled = True 'set focus back to the main form and exit
 frmmain.SetFocus
 Unload Me

End Sub

'---

65

'

'Function: cmdSelect_Click
'
'Purpose: Selects a speaker and load that speakers speech files
'
'---

Private Sub cmdSelect_Click()

 Dim i As Integer

 If lstSpeaker.SelCount = 0 Then 'check to see if a speaker was selected

 MsgBox "A speaker was not selected!", vbOKOnly, "Error"

 Else

 'check to see if user wants to save the current speaker
 If MsgBox("Do you want to save your current speaker?", vbYesNo, "Save Speaker") = vbYes Then

 Me.Enabled = False 'display wait dialog
 frmWait.Caption = "Saving Speaker"
 frmWait.lblWait.Caption = "Saving " + frmWait.lblWait.Caption

 frmmain.DgnEngineControl1.SpeakerSave

 Unload frmWait

 Me.Enabled = True
 Me.SetFocus

 End If

 i = 0

 'get i-value of selected speaker

 While Not (i = lstSpeaker.ListCount) And Not (lstSpeaker.Selected(i))

 i = i + 1

 Wend

 'load speaker
 frmWait.Caption = "Loading Speaker: " + lstSpeaker.List(i)
 frmWait.lblWait.Caption = "Loading " + frmWait.lblWait.Caption
 frmWait.Show

 frmmain.DgnEngineControl1.Speaker = lstSpeaker.List(i)

 Unload frmWait

 'check if audio setup has been completed
 If Not frmmain.DgnEngineControl1.AudioSetupComplete Then

 MsgBox "You have not completed the audio setup. You will be given a chance to do so
now.", vbOKOnly, "Incomplete Audio Setup"

 frmSelect.Enabled = False

 frmCreate.Show 'call up create speaker form
 frmCreate.SetStatus (True)
 frmCreate.SetName (lstSpeaker.List(i))
 frmCreate.txtSpeaker.Text = lstSpeaker.List(i)
 frmCreate.SetReturn (3)
 frmCreate.OffState1

66

 frmCreate.State3

 frmCreate.SetState (3)

 Exit Sub

 End If

 'check if speaker has been calibrated
 If Not frmmain.DgnEngineControl1.SpeakerCalibrated Then

 MsgBox "You have not gone through general training yet. You must do this to calibrate
your speach files. You will be given the chance to do so now.", vbOKOnly, "Speaker Uncalibrated"

 frmSelect.Enabled = False

 frmCreate.Show 'call up create speaker form
 frmCreate.SetStatus (True)
 frmCreate.SetReturn (3)
 frmCreate.OffState1
 frmCreate.State4
 frmCreate.SetState (4)
 frmCreate.SetName (lstSpeaker.List(i))
 frmCreate.txtSpeaker.Text = lstSpeaker.List(i)

 Exit Sub

 End If

 frmmain.Enabled = True
 frmmain.SetFocus

 Unload Me

 End If

End Sub

'---
'
'Function: lstSpeaker_DblClick
'
'Purpose: Select speaker when list is double clicked
'
'---

Private Sub lstSpeaker_DblClick()

 cmdSelect_Click

End Sub

Figure 11 - Connect Form Source Code

VERSION 5.00

67

Begin VB.Form frmConnect

 Caption = "Connect to Sequencer"

 ClientHeight = 2610

 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 3885
 LinkTopic = "Form1"
 ScaleHeight = 2610
 ScaleWidth = 3885
 StartUpPosition = 3 'Windows Default
 Begin VB.TextBox txtPort
 Height = 375
 Left = 2040
 TabIndex = 4
 Top = 1320
 Width = 1215
 End
 Begin VB.TextBox txtName
 Height = 375
 Left = 2040
 TabIndex = 3
 Top = 360
 Width = 1215
 End
 Begin VB.TextBox txtID
 Height = 375
 Left = 2040

 TabIndex = 2

 Top = 840
 Width = 1215
 End
 Begin VB.CommandButton cmdCancel
 Caption = "Cancel"
 Height = 495
 Left = 2040
 TabIndex = 1
 Top = 1920
 Width = 1215
 End
 Begin VB.CommandButton cmdConnect
 Caption = "Connect"
 Height = 495
 Left = 720
 TabIndex = 0
 Top = 1920
 Width = 1215
 End
 Begin VB.Line Line3
 X1 = 3360
 X2 = 3360
 Y1 = 480
 Y2 = 1080
 End
 Begin VB.Line Line2
 X1 = 3240
 X2 = 3360
 Y1 = 1080
 Y2 = 1080
 End
 Begin VB.Line Line1
 X1 = 3240

68

 X2 = 3360

 Y1 = 480
 Y2 = 480
 End
 Begin VB.Label Label3
 Caption = "Port:"
 Height = 255
 Left = 720
 TabIndex = 7
 Top = 1320
 Width = 1215
 End
 Begin VB.Label Label2
 Caption = "IP Address:"
 Height = 255
 Left = 720
 TabIndex = 6
 Top = 840
 Width = 1215
 End
 Begin VB.Label Label1
 Caption = "Host Name:"
 Height = 255
 Left = 720
 TabIndex = 5
 Top = 360

 Width = 1215

 End
End
Attribute VB_Name = "frmConnect"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

'---
'
'Function: cmdCancel_Click
'
'Purpose: Exits form
'
'---

Private Sub cmdCancel_Click()

 frmmain.SetFocus
 Unload Me

End Sub

'---
'
'Function: cmdConnect_Click
'
'Purpose: Connects to a new sequencer
'
'---

Private Sub cmdConnect_Click()

 txtName.Text = Trim$(txtName.Text) 'fix variables
 txtID.Text = Trim$(txtID.Text)
 txtPort.TabIndex = Trim$(txtPort.Text)

69

 'check if have id and port
 If (txtName.Text = "") And (Not (txtID.Text = "")) And (Not (txtPort.Text = "")) Then

 If frmmain.Socket1.Connected Then 'check if already have connection

 frmmain.Socket1.Disconnect

 End If

 'set up socket
 frmmain.Socket1.HostAddress = Trim$(txtID.Text)
 frmmain.Socket1.RemotePort = Val(Trim$(txtPort.Text))

 'check if connection
 If frmmain.Socket1.Connect <> 0 Then

 MsgBox "Error", "Could not connect to sequencer!"
 Exit Sub

 End If

 Else

 If Not (txtPort.Text = "") Then 'check if have port and host name

 'check if already connected

 If frmmain.Socket1.Connected Then

 frmmain.Socket1.Disconnect

 End If

 'set up socket
 frmmain.Socket1.Hostname = Trim$(txtName.Text)
 frmmain.Socket1.RemotePort = Val(Trim$(txtPort.Text))

 'check if connected
 If frmmain.Socket1.Connect <> 0 Then

 MsgBox "Error", "Could not connect to sequencer!"
 Exit Sub

 End If

 Else
 Exit Sub

 End If
 End If

 Unload Me

End Sub

'---
'
'Function: Form_Load
'
'Purpose: Initializes screen
'
'---

Private Sub Form_Load()

70

 txtID.Text = frmmain.Socket1.HostAddress
 txtPort.Text = Trim$(Str$(frmmain.Socket1.RemotePort))

End Sub

'---
'
'Function: txtId_Change
'
'Purpose: Removes host name
'
'---

Private Sub txtID_Change()

 txtName.Text = ""

End Sub

'---
'
'Function: txtName_Change
'
'Purpose: Removes id
'

'---

Private Sub txtName_Change()

 txtID.Text = ""

End Sub

Figure 12 - Edit Form Source Code

VERSION 5.00

Begin VB.Form frmEdit

 Caption = "Edit Command Lists"

 ClientHeight = 5655

 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 9045
 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 5655
 ScaleWidth = 9045
 StartUpPosition = 2 'CenterScreen
 Begin VB.TextBox txt4
 Height = 375
 Left = 6600

71

 TabIndex = 22

 Top = 3120
 Width = 1815
 End
 Begin VB.TextBox txt3
 Height = 375
 Left = 4560
 TabIndex = 21
 Top = 3120
 Width = 1695
 End
 Begin VB.TextBox txt2
 Height = 375
 Left = 2520
 TabIndex = 20
 Top = 3120
 Width = 1815
 End
 Begin VB.TextBox txt1
 Height = 375
 Left = 480
 TabIndex = 19
 Top = 3120
 Width = 1815
 End
 Begin VB.CommandButton cmdCancel
 Caption = "Cancel"
 Height = 495

 Left = 5880

 TabIndex = 14
 Top = 4800
 Width = 1215
 End
 Begin VB.CommandButton cmdDone
 Caption = "Done"
 Default = -1 'True
 Height = 495
 Left = 7200
 TabIndex = 13
 Top = 4800
 Width = 1215
 End
 Begin VB.CommandButton cmdSave
 Caption = "Save"
 Height = 495
 Left = 4560
 TabIndex = 12
 Top = 4800
 Width = 1215
 End
 Begin VB.CommandButton cmdAdd4
 Caption = "Add Word"
 Height = 375
 Left = 6600
 TabIndex = 11
 Top = 3600
 Width = 1815
 End
 Begin VB.CommandButton cmdRemove4
 Caption = "Remove Word"
 Height = 375
 Left = 6600
 TabIndex = 10
 Top = 4080

72

 Width = 1815

 End
 Begin VB.CommandButton cmdRemove3
 Caption = "Remove Word"
 Height = 375
 Left = 4560
 TabIndex = 9
 Top = 4080
 Width = 1695
 End
 Begin VB.CommandButton cmdAdd3
 Caption = "Add Word"
 Height = 375
 Left = 4560
 TabIndex = 8
 Top = 3600
 Width = 1695
 End
 Begin VB.CommandButton cmdAdd2
 Caption = "Add Word"
 Height = 375
 Left = 2520
 TabIndex = 7
 Top = 3600

 Width = 1815

 End
 Begin VB.CommandButton cmdRemove2
 Caption = "Remove Word"
 Height = 375
 Left = 2520
 TabIndex = 6
 Top = 4080
 Width = 1815
 End
 Begin VB.CommandButton cmdAdd1
 Caption = "Add Word"
 Height = 375
 Left = 480
 TabIndex = 5
 Top = 3600
 Width = 1815
 End
 Begin VB.CommandButton cmdRemove1
 Caption = "Remove Word"
 Height = 375
 Left = 480
 TabIndex = 4
 Top = 4080
 Width = 1815
 End
 Begin VB.ListBox lstBox4
 Height = 2205
 Left = 6600
 TabIndex = 3
 Top = 720
 Width = 1815
 End
 Begin VB.ListBox lstBox3
 Height = 2205
 Left = 4560
 TabIndex = 2
 Top = 720
 Width = 1815
 End

73

 Begin VB.ListBox lstBox2

 Height = 2205
 Left = 2520
 TabIndex = 1
 Top = 720
 Width = 1815
 End
 Begin VB.ListBox lstBox1
 Height = 2205
 Left = 480
 TabIndex = 0
 Top = 720
 Width = 1815
 End
 Begin VB.Label Label4
 Caption = "Action"
 Height = 255
 Left = 6600
 TabIndex = 18
 Top = 360
 Width = 1215
 End
 Begin VB.Label Label3
 Caption = "Attribute"

 Height = 255

 Left = 4560
 TabIndex = 17
 Top = 360
 Width = 1215
 End
 Begin VB.Label Label2
 Caption = "Part"
 Height = 255
 Left = 2520
 TabIndex = 16
 Top = 360
 Width = 1215
 End
 Begin VB.Label Label1
 Caption = "Location"
 Height = 255
 Left = 480
 TabIndex = 15
 Top = 360
 Width = 1215
 End
End
Attribute VB_Name = "frmEdit"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim edited As Boolean 'hold if data has been edited

'---
'
'Function: cmdAdd1_Click
'
'Purpose: Adds data to the first list box
'
'---

Private Sub cmdAdd1_Click()

74

 If Not txt1.Text = "" Then 'check to see if data was entered

 lstBox1.AddItem (txt1.Text) 'add data to list box
 txt1.Text = ""

 edited = True

 End If

End Sub

'---
'
'Function: cmdAdd2_Click
'
'Purpose: Adds data to the second list box
'
'---

Private Sub cmdAdd2_Click()

 If Not txt2.Text = "" Then 'check to see if data was entered

 lstBox2.AddItem (txt2.Text) 'add data to list box

 txt2.Text = ""

 edited = True

 End If

End Sub

'---
'
'Function: cmdAdd3_Click
'
'Purpose: Adds data to the third list box
'
'---

Private Sub cmdAdd3_Click()

 If Not txt3.Text = "" Then 'check to see if data was entered

 lstBox3.AddItem (txt3.Text) 'add data to list box
 txt3.Text = ""

 edited = True

 End If

End Sub

'---
'
'Function: cmdAdd4_Click
'
'Purpose: Adds data to the forth list box
'
'---

Private Sub cmdAdd4_Click()

 If Not txt4.Text = "" Then 'check to see if data was entered

75

 lstBox4.AddItem (txt4.Text) 'add data to list box
 txt4.Text = ""

 edited = True

 End If

End Sub

'---
'
'Function: cmdCancel_Click
'
'Purpose: Cancels from the editing form
'
'---

Private Sub cmdCancel_Click()

 frmmain.Enabled = True 'enable main form and unload
 frmmain.SetFocus
 edited = False

 Unload Me

End Sub

'---
'
'Function: cmdDone_Click
'
'Purpose: Adds data to the first list box
'
'---

Private Sub cmdDone_Click()
 Dim i As Integer

 If edited Then 'check to see if data was edited

 'check to see if user wants to save edits
 If MsgBox("Do you want to save the word lists?", vbYesNo, "Save Word Lists") = vbYes Then

 frmmain.Enabled = True

 frmmain.List1.Clear 'clear main form lists
 frmmain.List2.Clear
 frmmain.List3.Clear
 frmmain.List4.Clear

 'save contents of list1 to main form
 For i = 0 To lstBox1.ListCount - 1

 frmmain.List1.AddItem (lstBox1.List(i))

 Next

 'save contents of list2 to main form
 For i = 0 To lstBox2.ListCount - 1

 frmmain.List2.AddItem (lstBox2.List(i))

 Next

76

 'save contents of list3 to main form
 For i = 0 To lstBox3.ListCount - 1

 frmmain.List3.AddItem (lstBox3.List(i))

 Next

 'save contents of list4 to main form
 For i = 0 To lstBox4.ListCount - 1

 frmmain.List4.AddItem (lstBox4.List(i))

 Next

 frmmain.Enabled = False

 edited = False

'
'
' SAVE TO FILE STUFF GOES HERE
'
'
 Call Save_Files 'Saves the contents of the lists

 End If

 End If

 frmmain.Enabled = True 'set focus back to main form and unload
 frmmain.SetFocus
 Unload Me

End Sub

'---
'
'Function: RemoveAll
'
'Purpose: Removes all data from list boxes
'
'---

Private Sub RemoveAll()

 lstBox1.Clear 'remove all data
 lstBox2.Clear
 lstBox3.Clear
 lstBox4.Clear

End Sub

'---
'
'Function: cmdRemove1_Click
'
'Purpose: Removes selelcted item from list box
'
'---

Private Sub cmdRemove1_Click()

 Dim i As Integer

77

 If lstBox1.SelCount > 0 Then 'check to see if selected item

 i = 0

 'gets i-value of selected item
 While Not (i = lstBox1.ListCount) And Not (lstBox1.Selected(i))

 i = i + 1

 Wend

 lstBox1.RemoveItem (i) 'remove selected item
 edited = True

 End If

End Sub

'---
'
'Function: cmdRemove2_Click
'
'Purpose: Removes selelcted item from list box
'
'---

Private Sub cmdRemove2_Click()

 Dim i As Integer

 'check if selected item
 If lstBox2.SelCount > 0 Then

 i = 0

 'gets i-value of selected item
 While Not (i = lstBox2.ListCount) And Not (lstBox2.Selected(i))

 i = i + 1

 Wend

 lstBox2.RemoveItem (i) 'remove selected item
 edited = True

 End If

End Sub

'---
'
'Function: cmdRemove3_Click
'
'Purpose: Removes selelcted item from list box
'
'---

Private Sub cmdRemove3_Click()

 Dim i As Integer

 If lstBox3.SelCount > 0 Then 'check if selected item

 i = 0

78

 'gets i-value of selected item
 While Not (i = lstBox3.ListCount) And Not (lstBox3.Selected(i))

 i = i + 1

 Wend

 lstBox3.RemoveItem (i) 'remove selected item
 edited = True

 End If

End Sub

'---
'

'Function: cmdRemove4_Click

'
'Purpose: Removes selelcted item from list box
'
'---

Private Sub cmdRemove4_Click()

 Dim i As Integer

 If lstBox4.SelCount > 0 Then 'checks if selected item

 i = 0
 'gets i-value of selected item
 While Not (i = lstBox4.ListCount) And Not (lstBox4.Selected(i))

 i = i + 1

 Wend

 lstBox4.RemoveItem (i) 'remove selected item
 edited = True

 End If

End Sub

'---
'
'Function: cmdSave_Click
'
'Purpose: Saves data.
'
'---

Private Sub cmdSave_Click()

 Dim i As Integer

 frmmain.Enabled = True

 frmmain.List1.Clear 'clears all data in main form
 frmmain.List2.Clear
 frmmain.List3.Clear
 frmmain.List4.Clear

 For i = 0 To lstBox1.ListCount - 1 'save data to main form

79

 frmmain.List1.AddItem (lstBox1.List(i))

 Next

 For i = 0 To lstBox2.ListCount - 1 'save data to main form

 frmmain.List2.AddItem (lstBox2.List(i))

 Next

 For i = 0 To lstBox3.ListCount - 1 'save data to main form

 frmmain.List3.AddItem (lstBox3.List(i))

 Next

 For i = 0 To lstBox4.ListCount - 1 'save data to main form

 frmmain.List4.AddItem (lstBox4.List(i))

 Next

 frmmain.Enabled = False

 edited = False
'
'
' SAVE TO FILE STUFF GOES HERE
'
'
 Call Save_Files 'Saves the contents of the lists
End Sub

'---
'
'Function: Form_Load
'
'Purpose: Initialize all variables
'
'---

Private Sub Form_Load()

 edited = False

End Sub

'---
'
'Function: Form_Unload
'
'Purpose: Removes all data from list boxes
'
'---

Private Sub Form_Unload(Cancel As Integer)

 RemoveAll

End Sub

'---
'

80

'Function: Save_Files

'
'Purpose: Writes each list to a file so that it is saved for
' later access
'---

Private Sub Save_Files()
 Dim fnum As Integer
 Dim i As Integer

 fnum = FreeFile

 Open App.Path & "\List1.dat" For Output As fnum

 'sets the variable for output to a file
 For i = 0 To frmmain.List1.ListCount - 1
 Print #fnum, frmmain.List1.List(i)
 Next i 'goes through the list, putting each item
 'in the file

 Close fnum 'close the file after output

 fnum = FreeFile
 Open App.Path & "\List2.dat" For Output As fnum
 'sets the variable for output to a file
 For i = 0 To frmmain.List2.ListCount - 1
 Print #fnum, frmmain.List2.List(i)
 Next i 'goes through the list, putting each item
 'in the file

 Close fnum 'close the file after output

 fnum = FreeFile
 Open App.Path & "\List3.dat" For Output As fnum
 'sets the variable for output to a file
 For i = 0 To frmmain.List3.ListCount - 1
 Print #fnum, frmmain.List3.List(i)
 Next i 'goes through the list, putting each item
 'in the file

 Close fnum 'close the file after output

 fnum = FreeFile
 Open App.Path & "\List4.dat" For Output As fnum
 'sets the variable for output to a file
 For i = 0 To frmmain.List4.ListCount - 1
 Print #fnum, frmmain.List4.List(i)
 Next i 'goes through the list, putting each item
 'in the file

 Close fnum 'close the file after output

End Sub

Figure 13 - Create Form Source Code

VERSION 5.00

81

Object = "{5C486340-2F92-11D1-A47C-00A024A3A678}#1.0#0"; "DNSTK10.DLL"

Begin VB.Form frmCreate
 BorderStyle = 1 'Fixed Single
 Caption = "Create A New User"
 ClientHeight = 3750
 ClientLeft = 45
 ClientTop = 330
 ClientWidth = 7230

 KeyPreview = -1 'True

 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 3750
 ScaleWidth = 7230
 ShowInTaskbar = 0 'False
 StartUpPosition = 2 'CenterScreen
 Begin DNSToolsCtl.DgnEngineControl DgnEngineControl1
 Left = 6000
 OleObjectBlob = "create.frx":0000
 Top = 2880
 End
 Begin VB.CommandButton cmdFinish
 Caption = "Finish Setup"
 Enabled = 0 'False
 Height = 375
 Left = 2880
 TabIndex = 13
 Top = 1680
 Visible = 0 'False
 Width = 2775
 End
 Begin VB.CommandButton cmdGenTrain
 Caption = "Run General Training"
 Height = 375
 Left = 2880
 TabIndex = 11
 Top = 1080
 Visible = 0 'False
 Width = 2775
 End
 Begin VB.CommandButton cmdAudio
 Caption = "Run Audio Setup"
 Height = 375
 Left = 2880
 TabIndex = 10
 Top = 1320
 Visible = 0 'False
 Width = 2775
 End
 Begin VB.TextBox txtSpeaker
 Height = 375
 Left = 3240
 TabIndex = 8
 Top = 1320
 Visible = 0 'False
 Width = 3255
 End
 Begin VB.Frame frmMenu
 Height = 2775
 Left = 120
 TabIndex = 3
 Top = 0
 Width = 1575
 Begin VB.Label lblMenu4
 Caption = "Train Voice Recognition Engine"

82

 Height = 735

 Left = 120
 TabIndex = 7
 Top = 1920
 Width = 1215
 End
 Begin VB.Label lblMenu3
 Caption = "Run Audio Setup Wizard"

 Height = 495

 Left = 120
 TabIndex = 6
 Top = 1320
 Width = 1215
 End
 Begin VB.Label lblMenu2
 Caption = "Create User Speech File"
 Height = 495
 Left = 120
 TabIndex = 5
 Top = 720
 Width = 1215
 End
 Begin VB.Label lblMenu1
 Caption = "Welcome"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 8.25
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 120
 TabIndex = 4
 Top = 360
 Width = 1215
 End
 End
 Begin VB.CommandButton cmdCancel
 Caption = "Cancel"
 Height = 375
 Left = 4680
 TabIndex = 2
 Top = 3240
 Width = 1215
 End
 Begin VB.CommandButton cmdNext
 Caption = "Next&>"
 Height = 375
 Left = 2400
 TabIndex = 1
 Top = 3240
 Width = 1215
 End
 Begin VB.CommandButton cmdBack
 Caption = "&<Back"
 Enabled = 0 'False
 Height = 375
 Left = 1200
 TabIndex = 0
 Top = 3240
 Width = 1215

83

 End

 Begin VB.Label lblWelcome
 Caption = $"create.frx":0024
 Height = 2175
 Left = 2160
 TabIndex = 12
 Top = 480
 Width = 4575

 End

 Begin VB.Label lblSpeaker
 Caption = "User Name:"
 Height = 255
 Left = 2040
 TabIndex = 9
 Top = 1440
 Visible = 0 'False
 Width = 975
 End
End
Attribute VB_Name = "frmCreate"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim state As Integer 'current create screen
Dim speaker_name As String 'created speaker name
Dim return_form As Integer 'name of form to return to when finished
Dim opened As Boolean 'if the main form is already opened
Dim valid As Boolean 'true if audio setup has been completed
Dim created As Boolean 'a user has been created

Const retSpeaker = 0 'return form constants
Const retMain = 1
Const retSpeaker2 = 2
Const retCreate = 3

'---
'
'Function: cmdAudio_Click

'Purpose: runs audio setup wizard when audio button is clicked
'
'---

Private Sub cmdAudio_Click()

 DgnEngineControl1.AudioSetupWizard ""

End Sub

'---
'
'Function: SetReturn
'
'Purpose: Sets the return form variable
'
'Variables: return_to - number to set return form variable to
'
'---

Public Sub SetReturn(return_to As Integer)

 return_form = return_to

84

End Sub

'---
'
'Function: cmdBack_Click
'
'Purpose: Changes the screen state to the previous screen when the
' back button is pressed.

'

'---

Private Sub cmdBack_Click()

 If state = 2 Then 'set second screen up

 OffState2
 State1

 Else

 If state = 3 Then 'set thirds screen up

 OffState3
 State2

 Else

 If state = 4 Then 'set fourth screen up

 OffState4
 State3

 End If

 End If

 End If

 state = state - 1

End Sub

'---
'
'Function: SetState
'
'Purpose: Sets the number of the current screen state.
'
'Variables: s - the number to set the current state to
'
'---

Public Sub SetState(s As Integer)

 state = s

End Sub

'---
'
'Function: cmdCancel_Click
'
'Purpose: Cancels the create speaker process.
'

85

'---

Private Sub cmdCancel_Click()

 'check to see if a speaker has been created or is being modified
 If created = True Or return_form = retSpeaker2 Or return_form = retCreate Then

 'check to see if user wants to cancel
 If MsgBox("If you cancel now your speaker settings will not be saved. Do you still want to
cancel?", vbYesNo, "Cancel Operation") = vbYes Then

 'check if called from select speaker function from the main form
 If return_form = retCreate Then

 frmSelect.Enabled = True
 CloseForm

 End If

 frmSpeaker.Enabled = True
 CloseForm 'exit create speaker form

 End If

 Else

 frmSpeaker.Enabled = True
 CloseForm 'exit create speaker form

 End If

End Sub

'---
'
'Function: CloseForm
'
'Purpose: Sets focus back to called form and exits
'
'---

Private Sub CloseForm()

 'checks to see if return for is speaker select form
 If return_form = retSpeaker Or return_form = retSpeaker2 Then

 frmSpeaker.SetFocus 'set focus to speaker select form and exit
 frmSpeaker.Enabled = True
 Unload Me

 Else

 If return_form = retCreate Then

 frmSelect.SetFocus 'set focus to select form and exit
 frmSelect.Enabled = True
 Unload Me

 Else

 frmmain.Enabled = True 'set focus to main form and exit
 frmmain.SetFocus
 Unload Me

86

 End If

 End If

End Sub

'---
'
'Function: cmdFinish_Click
'
'Purpose: Finishes creating a speaker, saves the speaker and activates
' the main form.
'
'---

Private Sub cmdFinish_Click()

 'displays waiting form
 frmWait.Caption = "Saving Speaker"
 frmWait.lblWait.Caption = "Saving " + frmWait.lblWait.Caption
 Me.Enabled = False
 frmWait.Show

 'checks to see if just modifying a speaker
 If return_form = retSpeaker2 Or return_from = retCreate Then

 frmmain.DgnEngineControl1.SpeakerSave

 Else

 DgnEngineControl1.SpeakerSave

 End If

 Unload frmWait 'close waiting form

 If opened Then 'check to see if main form already opened

 frmmain.Enabled = True 'sets focus back to main form
 frmmain.SetFocus

 Else

 frmSpeaker.activated 'activates main form and set the focus to it
 Unload frmSpeaker
 frmmain.Activate

 End If

 If return_form = retCreate Then 'check to see if called from select speaker from main form

 Unload frmSelect

 End If

 Unload Me 'close the form

End Sub

'---
'
'Function: cmdGenTrain_Click
'
'Purpose: Runs general training

87

'
'---

Private Sub cmdGenTrain_Click()

 DgnEngineControl1.GeneralTraining ""

End Sub

'---
'
'Function: State1
'
'Purpose: Sets the screen as the welcome screen
'
'---

Private Sub State1()

 cmdBack.Enabled = False
 lblMenu1.FontBold = True
 lblWelcome.Visible = True

End Sub

'---
'
'Function: OffState1
'
'Purpose: Removes all elements of the first state
'
'
'
'---

Public Sub OffState1()

 cmdBack.Enabled = True
 lblMenu1.FontBold = False
 lblWelcome.Visible = False
 cmdNext.Default = True

End Sub

'---
'
'Function: State2
'
'Purpose: Sets up the screen as the enter speaker name screen.
'
'---

Private Sub State2()

 lblSpeaker.Visible = True 'displays elements of set name screen
 txtSpeaker.Visible = True
 lblMenu2.FontBold = True

 If txtSpeaker.Text = "" Then 'check to see if a name has been entered

 cmdNext.Enabled = False

 End If

88

 txtSpeaker.SetFocus

End Sub

'---
'
'Function: OffState2
'
'Purpose: Removes all elements of the second state
'
'---

Private Sub OffState2()

 lblSpeaker.Visible = False 'removes all elements from display
 txtSpeaker.Visible = False
 lblMenu2.FontBold = False
 cmdNext.Enabled = True

End Sub

'---
'
'Function: State3
'
'Purpose: Sets up the screen to display the audio setup screen
'
'---

Public Sub State3()

 lblMenu3.FontBold = True 'display audio screen elements
 cmdAudio.Visible = True
 cmdAudio.SetFocus
 cmdAudio.Default = True

 'check to see if audio setup has already been run
 If Not DgnEngineControl1.AudioSetupComplete And Not valid Then

 cmdNext.Enabled = False

 End If

End Sub

'---
'
'Function: OffState3
'
'Purpose: Remove all elements of state 3 from being displayed
'
'---

Private Sub OffState3()

 lblMenu3.FontBold = False 'remove elelments
 cmdAudio.Visible = False
 cmdAudio.Default = False
 cmdNext.Enabled = True

89

End Sub

'---
'
'Function: State4
'
'Purpose: Setup general training and final display state
'
'---

Public Sub State4()

 cmdNext.Enabled = False 'add elements to display
 lblMenu4.FontBold = True
 cmdGenTrain.Visible = True
 cmdFinish.Visible = True
 cmdGenTrain.Default = True

 'check to see if speaker has been calibrated
 If DgnEngineControl1.SpeakerCalibrated Then

 cmdFinish.Enabled = True

 Else

 cmdFinish.Enabled = False

 End If

End Sub

'---
'
'Function: OffState4
'
'Purpose: Remove all elements of state 4
'
'---

Private Sub OffState4()

 cmdNext.Enabled = True 'remove elements
 lblMenu4.FontBold = False
 cmdGenTrain.Visible = False
 cmdFinish.Visible = False
 cmdFinish.Enabled = False

End Sub

'---
'
'Function: cmdNext_Click
'
'Purpose: Increments to the next display state when the next button
' is clicked.
'
'
'---

Private Sub cmdNext_Click()

90

 On Error GoTo ErrorHandler

 If state = 1 Then 'check if current state is state 1

 OffState1 'setup state 2
 State2

 Else

 If state = 2 Then 'check if current state is state 2

 'check is speaker has already been created
 If Not txtSpeaker.Text = speaker_name Then

 Me.Enabled = False
 created = True

 'display waiting dialog
 frmWait.Caption = "Creating User: " + txtSpeaker.Text
 frmWait.lblWait.Caption = "Creating " + frmWait.lblWait.Caption
 frmWait.Show

 'create speaker
 DgnEngineControl1.SpeakerCreate txtSpeaker.Text
 speaker_name = txtSpeaker.Text
 DgnEngineControl1.Speaker = txtSpeaker.Text

 Unload frmWait

 Me.Enabled = True
 Me.SetFocus

 'check to see if called from select speaker form
 If return_form = retSpeaker Then

 frmSpeaker.lstSpeaker.AddItem (txtSpeaker.Text)

 End If

 End If

 OffState2 'setup state 3
 State3

 Else

 If state = 3 Then 'check for current state as state 3

 OffState3 'setup state 4
 State4

 End If

 End If

 End If

 state = state + 1

 GoTo ExitSub

ErrorHandler: 'handles any error that may happen during run time

91

 'check to see error is "user already exists"
 If Err.Number = -2147220444 Then

 Unload frmWait 'display error dialog
 MsgBox "User already exists.", vbOKOnly, "Error"
 Me.Enabled = True
 Me.SetFocus

 Exit Sub

 Else
 'display general error message and exit
 MsgBox Str(Err) + " - " + Error$, vbOKOnly, "Error" ' show message

 Unload Me

 End If

ExitSub:

End Sub

'---
'
'Function: DgnEnginecontrol1_DialogClosed
'
'Purpose: Is called when a DgnEngineControl function exits.
'
'Variables: Dialog - specifies which dialog has exited
' ExitCode - hold exit status of dialog
'
'---

Private Sub DgnEngineControl1_DialogClosed(Dialog As DNSToolsCtl.DgnDialogConstants, ExitCode As
Long)

 'check if audio wizard has closed
 If Dialog = dgndlgAudioSetupWizard Then

 'check if audio setup has been completed
 If DgnEngineControl1.AudioSetupComplete Then

 cmdNext.Enabled = True 'enable next button
 cmdNext.Default = True

 Else

 'check if setup has been completed but has not yet been set
 If ExitCode = 0 Then

 valid = True 'enable next button
 cmdNext.Enabled = True
 cmdNext.Default = True

 End If

 End If

 Else

 'check if general training has closed
 If Dialog = dgndlgGeneralTraining Then

92

 'check if speaker has been calibrated
 If DgnEngineControl1.SpeakerCalibrated Then

 cmdFinish.Enabled = True 'enable finish button

 End If

 End If

 End If

End Sub

'---
'
'Function: SetName
'
'Purpose: Saves the name of the user being created.
'
'Variables: name - contains the name to save
'
'---

Public Sub SetName(name As String)

 speaker_name = name

End Sub

'---
'
'Function: Save
'
'Purpose: Saves the current speaker's speach files
'
'---

Private Sub Save()

 DgnEngineControl1.SpeakerSave

End Sub

'---
'
'Function: Form_Load
'
'Purpose: Initailizes all setting for creating a speaker
'
'---

Private Sub Form_Load()

 state = 1 'initialize variables
 speaker_name = ""
 opened = False
 valid = False
 created = False

End Sub

'---
'

93

'Function: SetStatus
'
'Purpose: Sets the current status of the form
'
'---

Public Sub SetStatus(status As Boolean)

 opened = status

End Sub

'---
'
'Function: txtSpeaker_Change
'
'Purpose: Checks to see if the a speaker name has been entered into the
' speaker name field
'
'
'
'---

Private Sub txtSpeaker_Change()

 'check if text box is empty
 If Not txtSpeaker.Text = "" Then

 cmdNext.Enabled = True 'enable next button
 cmdNext.Default = True

 Else

 cmdNext.Enabled = False 'disable next button

 End If

End Sub

Figure 14 - Parser and TCP Module Code

Attribute VB_Name = "mdlParser"

'--

'

' Catalyst SocketWrench 2.15
' Copyright 1995-1998, Catalyst Development Corp. All rights reserved.
'
' This file contains the constants and function declarations used
' with the SocketWrench control for Visual Basic 5.0

94

'
'--

'
' General constants used with most of the controls
'
Public Const INVALID_HANDLE = -1
Public Const CONTROL_ERRIGNORE = 0
Public Const CONTROL_ERRDISPLAY = 1

'
' SocketWrench Control Actions
'
Public Const SOCKET_OPEN = 1
Public Const SOCKET_CONNECT = 2
Public Const SOCKET_LISTEN = 3
Public Const SOCKET_ACCEPT = 4
Public Const SOCKET_CANCEL = 5
Public Const SOCKET_FLUSH = 6
Public Const SOCKET_CLOSE = 7
Public Const SOCKET_DISCONNECT = 7
Public Const SOCKET_ABORT = 8
'
' SocketWrench Control States
'
Public Const SOCKET_NONE = 0
Public Const SOCKET_IDLE = 1
Public Const SOCKET_LISTENING = 2
Public Const SOCKET_CONNECTING = 3
Public Const SOCKET_ACCEPTING = 4
Public Const SOCKET_RECEIVING = 5
Public Const SOCKET_SENDING = 6
Public Const SOCKET_CLOSING = 7
'
' Socket Address Families
'
Public Const AF_UNSPEC = 0
Public Const AF_UNIX = 1
Public Const AF_INET = 2
'
' Socket Types
'
Public Const SOCK_STREAM = 1
Public Const SOCK_DGRAM = 2
Public Const SOCK_RAW = 3
Public Const SOCK_RDM = 4
Public Const SOCK_SEQPACKET = 5
'
' Protocol Types
'
Public Const IPPROTO_IP = 0
Public Const IPPROTO_ICMP = 1
Public Const IPPROTO_GGP = 2
Public Const IPPROTO_TCP = 6
Public Const IPPROTO_PUP = 12
Public Const IPPROTO_UDP = 17
Public Const IPPROTO_IDP = 22
Public Const IPPROTO_ND = 77
Public Const IPPROTO_RAW = 255
Public Const IPPROTO_MAX = 256
'
' Well-Known Port Numbers
'
Public Const IPPORT_ANY = 0

95

Public Const IPPORT_ECHO = 7
Public Const IPPORT_DISCARD = 9
Public Const IPPORT_SYSTAT = 11
Public Const IPPORT_DAYTIME = 13
Public Const IPPORT_NETSTAT = 15
Public Const IPPORT_FTP = 21
Public Const IPPORT_TELNET = 23
Public Const IPPORT_SMTP = 25
Public Const IPPORT_TIMESERVER = 37
Public Const IPPORT_NAMESERVER = 42
Public Const IPPORT_WHOIS = 43
Public Const IPPORT_MTP = 57
Public Const IPPORT_FINGER = 79
Public Const IPPORT_HTTP = 80
Public Const IPPORT_TFTP = 69
Public Const IPPORT_RESERVED = 1024
Public Const IPPORT_USERRESERVED = 5000
'
' Network Addresses
'
Public Const INADDR_ANY = "0.0.0.0"
Public Const INADDR_LOOPBACK = "127.0.0.1"
Public Const INADDR_NONE = "255.255.255.255"
'
' Shutdown Values
'
Public Const SOCKET_READ = 0
Public Const SOCKET_WRITE = 1
Public Const SOCKET_READWRITE = 2
'
' SocketWrench Error Response
'
Public Const SOCKET_ERRIGNORE = 0
Public Const SOCKET_ERRDISPLAY = 1
'
' SocketWrench Error Codes
'
Public Const WSABASEERR = 24000
Public Const WSAEINTR = 24004
Public Const WSAEBADF = 24009
Public Const WSAEACCES = 24013
Public Const WSAEFAULT = 24014
Public Const WSAEINVAL = 24022
Public Const WSAEMFILE = 24024
Public Const WSAEWOULDBLOCK = 24035
Public Const WSAEINPROGRESS = 24036
Public Const WSAEALREADY = 24037
Public Const WSAENOTSOCK = 24038
Public Const WSAEDESTADDRREQ = 24039
Public Const WSAEMSGSIZE = 24040
Public Const WSAEPROTOTYPE = 24041
Public Const WSAENOPROTOOPT = 24042
Public Const WSAEPROTONOSUPPORT = 24043
Public Const WSAESOCKTNOSUPPORT = 24044
Public Const WSAEOPNOTSUPP = 24045
Public Const WSAEPFNOSUPPORT = 24046
Public Const WSAEAFNOSUPPORT = 24047
Public Const WSAEADDRINUSE = 24048
Public Const WSAEADDRNOTAVAIL = 24049
Public Const WSAENETDOWN = 24050
Public Const WSAENETUNREACH = 24051
Public Const WSAENETRESET = 24052
Public Const WSAECONNABORTED = 24053
Public Const WSAECONNRESET = 24054

96

Public Const WSAENOBUFS = 24055
Public Const WSAEISCONN = 24056
Public Const WSAENOTCONN = 24057
Public Const WSAESHUTDOWN = 24058
Public Const WSAETOOMANYREFS = 24059
Public Const WSAETIMEDOUT = 24060
Public Const WSAECONNREFUSED = 24061
Public Const WSAELOOP = 24062
Public Const WSAENAMETOOLONG = 24063
Public Const WSAEHOSTDOWN = 24064
Public Const WSAEHOSTUNREACH = 24065
Public Const WSAENOTEMPTY = 24066
Public Const WSAEPROCLIM = 24067
Public Const WSAEUSERS = 24068
Public Const WSAEDQUOT = 24069
Public Const WSAESTALE = 24070
Public Const WSAEREMOTE = 24071
Public Const WSASYSNOTREADY = 24091
Public Const WSAVERNOTSUPPORTED = 24092
Public Const WSANOTINITIALISED = 24093
Public Const WSAHOST_NOT_FOUND = 25001
Public Const WSATRY_AGAIN = 25002
Public Const WSANO_RECOVERY = 25003
Public Const WSANO_DATA = 25004
Public Const WSANO_ADDRESS = 25004

'
' RAS Control Actions
'
Public Const RAS_ACTION_CONNECT = 1
Public Const RAS_ACTION_DISCONNECT = 2
Public Const RAS_ACTION_RESET = 3
'
' RAS Control States
'
Public Const RAS_UNUSED = -1
Public Const RAS_OPENPORT = 0
Public Const RAS_PORTOPENED = 1
Public Const RAS_CONNECTDEV = 2
Public Const RAS_DEVCONNECTED = 3
Public Const RAS_ALLDEVCONNECTED = 4
Public Const RAS_AUTHENTICATE = 5
Public Const RAS_AUTHENTICATED = 14
Public Const RAS_PREPCALLBACK = 15
Public Const RAS_MODEMRESET = 16
Public Const RAS_WAITFORCALL = 17
Public Const RAS_PROJECTED = 18
Public Const RAS_PAUSED = 4096
Public Const RAS_RETRYAUTH = 4097
Public Const RAS_CALLBACK = 4098
Public Const RAS_PASSEXPIRED = 4099
Public Const RAS_CONNECTED = 8192
Public Const RAS_DISCONNECTED = 8193

'
' RAS Control Error Codes
'
' These error codes are returned by the LastError property and
' passed as an argument to the LastError event. These are the
' same codes returned by the RAS library, with 25000 added to the
' base value
'
Public Const ERROR_INVALID_PORT_HANDLE = 25601
Public Const ERROR_PORT_ALREADY_OPEN = 25602

97

Public Const ERROR_BUFFER_TOO_SMALL = 25603
Public Const ERROR_WRONG_INFO_SPECIFIED = 25604
Public Const ERROR_CANNOT_SET_PORT_INFO = 25605
Public Const ERROR_PORT_NOT_CONNECTED = 25606
Public Const ERROR_EVENT_INVALID = 25607
Public Const ERROR_DEVICE_DOES_NOT_EXIST = 25608
Public Const ERROR_DEVICETYPE_DOES_NOT_EXIST = 25609
Public Const ERROR_INVALID_BUFFER = 25610
Public Const ERROR_ROUTE_NOT_AVAILABLE = 25611
Public Const ERROR_ROUTE_NOT_ALLOCATED = 25612
Public Const ERROR_INVALID_COMPRESSION_SPECIFIED = 25613
Public Const ERROR_OUT_OF_BUFFERS = 25614
Public Const ERROR_PORT_NOT_FOUND = 25615
Public Const ERROR_ASYNC_REQUEST_PENDING = 25616
Public Const ERROR_ALREADY_DISCONNECTING = 25617
Public Const ERROR_PORT_NOT_OPEN = 25618
Public Const ERROR_PORT_DISCONNECTED = 25619
Public Const ERROR_NO_ENDPOINTS = 25620
Public Const ERROR_CANNOT_OPEN_PHONEBOOK = 25621
Public Const ERROR_CANNOT_LOAD_PHONEBOOK = 25622
Public Const ERROR_CANNOT_FIND_PHONEBOOK_ENTRY = 25623
Public Const ERROR_CANNOT_WRITE_PHONEBOOK = 25624
Public Const ERROR_CORRUPT_PHONEBOOK = 25625
Public Const ERROR_CANNOT_LOAD_STRING = 25626
Public Const ERROR_KEY_NOT_FOUND = 25627
Public Const ERROR_DISCONNECTION = 25628
Public Const ERROR_REMOTE_DISCONNECTION = 25629
Public Const ERROR_HARDWARE_FAILURE = 25630
Public Const ERROR_USER_DISCONNECTION = 25631
Public Const ERROR_INVALID_SIZE = 25632
Public Const ERROR_PORT_NOT_AVAILABLE = 25633
Public Const ERROR_CANNOT_PROJECT_CLIENT = 25634
Public Const ERROR_UNKNOWN = 25635
Public Const ERROR_WRONG_DEVICE_ATTACHED = 25636
Public Const ERROR_BAD_STRING = 25637
Public Const ERROR_REQUEST_TIMEOUT = 25638
Public Const ERROR_CANNOT_GET_LANA = 25639
Public Const ERROR_NETBIOS_ERROR = 25640
Public Const ERROR_SERVER_OUT_OF_RESOURCES = 25641
Public Const ERROR_NAME_EXISTS_ON_NET = 25642
Public Const ERROR_SERVER_GENERAL_NET_FAILURE = 25643
Public Const ERROR_AUTH_INTERNAL = 25645
Public Const ERROR_RESTRICTED_LOGON_HOURS = 25646
Public Const ERROR_ACCT_DISABLED = 25647
Public Const ERROR_PASSWD_EXPIRED = 25648
Public Const ERROR_NO_DIALIN_PERMISSION = 25649
Public Const ERROR_SERVER_NOT_RESPONDING = 25650
Public Const ERROR_FROM_DEVICE = 25651
Public Const ERROR_UNRECOGNIZED_RESPONSE = 25652
Public Const ERROR_MACRO_NOT_FOUND = 25653
Public Const ERROR_MACRO_NOT_DEFINED = 25654
Public Const ERROR_MESSAGE_MACRO_NOT_FOUND = 25655
Public Const ERROR_DEFAULTOFF_MACRO_NOT_FOUND = 25656
Public Const ERROR_FILE_COULD_NOT_BE_OPENED = 25657
Public Const ERROR_DEVICENAME_TOO_LONG = 25658
Public Const ERROR_DEVICENAME_NOT_FOUND = 25659
Public Const ERROR_NO_RESPONSES = 25660

Public Const ERROR_NO_COMMAND_FOUND = 25661

Public Const ERROR_WRONG_KEY_SPECIFIED = 25662
Public Const ERROR_UNKNOWN_DEVICE_TYPE = 25663

98

Public Const ERROR_ALLOCATING_MEMORY = 25664

Public Const ERROR_PORT_NOT_CONFIGURED = 25665
Public Const ERROR_DEVICE_NOT_READY = 25666
Public Const ERROR_READING_INI_FILE = 25667
Public Const ERROR_NO_CONNECTION = 25668
Public Const ERROR_BAD_USAGE_IN_INI_FILE = 25669
Public Const ERROR_READING_SECTIONNAME = 25670
Public Const ERROR_READING_DEVICETYPE = 25671
Public Const ERROR_READING_DEVICENAME = 25672
Public Const ERROR_READING_USAGE = 25673
Public Const ERROR_READING_MAXCONNECTBPS = 25674
Public Const ERROR_READING_MAXCARRIERBPS = 25675
Public Const ERROR_LINE_BUSY = 25676
Public Const ERROR_VOICE_ANSWER = 25677
Public Const ERROR_NO_ANSWER = 25678
Public Const ERROR_NO_CARRIER = 25679
Public Const ERROR_NO_DIALTONE = 25680
Public Const ERROR_IN_COMMAND = 25681
Public Const ERROR_WRITING_SECTIONNAME = 25682
Public Const ERROR_WRITING_DEVICETYPE = 25683
Public Const ERROR_WRITING_DEVICENAME = 25684
Public Const ERROR_WRITING_MAXCONNECTBPS = 25685
Public Const ERROR_WRITING_MAXCARRIERBPS = 25686
Public Const ERROR_WRITING_USAGE = 25687
Public Const ERROR_WRITING_DEFAULTOFF = 25688
Public Const ERROR_READING_DEFAULTOFF = 25689
Public Const ERROR_EMPTY_INI_FILE = 25690
Public Const ERROR_AUTHENTICATION_FAILURE = 25691
Public Const ERROR_PORT_OR_DEVICE = 25692
Public Const ERROR_NOT_BINARY_MACRO = 25693
Public Const ERROR_DCB_NOT_FOUND = 25694
Public Const ERROR_STATE_MACHINES_NOT_STARTED = 25695
Public Const ERROR_STATE_MACHINES_ALREADY_STARTED = 25696
Public Const ERROR_PARTIAL_RESPONSE_LOOPING = 25697
Public Const ERROR_UNKNOWN_RESPONSE_KEY = 25698
Public Const ERROR_RECV_BUF_FULL = 25699
Public Const ERROR_CMD_TOO_LONG = 25700
Public Const ERROR_UNSUPPORTED_BPS = 25701
Public Const ERROR_UNEXPECTED_RESPONSE = 25702
Public Const ERROR_INTERACTIVE_MODE = 25703
Public Const ERROR_BAD_CALLBACK_NUMBER = 25704
Public Const ERROR_INVALID_AUTH_STATE = 25705
Public Const ERROR_WRITING_INITBPS = 25706
Public Const ERROR_INVALID_WIN_HANDLE = 25707
Public Const ERROR_NO_PASSWORD = 25708
Public Const ERROR_NO_USERNAME = 25709
Public Const ERROR_CANNOT_START_STATE_MACHINE = 25710
Public Const ERROR_GETTING_COMMSTATE = 25711
Public Const ERROR_SETTING_COMMSTATE = 25712
Public Const ERROR_COMM_FUNCTION = 25713
Public Const ERROR_CONFIGURATION_PROBLEM = 25714
Public Const ERROR_X25_DIAGNOSTIC = 25715
Public Const ERROR_TOO_MANY_LINE_ERRORS = 25716
Public Const ERROR_OVERRUN = 25717
Public Const ERROR_ACCT_EXPIRED = 25718
Public Const ERROR_CHANGING_PASSWORD = 25719
Public Const ERROR_NO_ACTIVE_ISDN_LINES = 25720

Public Const ERROR_NO_ISDN_CHANNELS_AVAILABLE = 25721

'
' Declarations for functions to encode and decode files, typically
' used as with attachments to mail messages or news articles
'

99

Declare Function DecodeFile Lib "UUCODE32.DLL" Alias "DecodeFileA" (ByVal InputFile As String, ByVal
OutputFile As String) As Long

Declare Function EncodeFile Lib "UUCODE32.DLL" Alias "EncodeFileA" (ByVal InputFile As String, ByVal
OutputFile As String) As Long
Declare Function DecodeBase64File Lib "UUCODE32.DLL" Alias "DecodeBase64FileA" (ByVal InputFile As
String, ByVal OutputFile As String) As Long
Declare Function EncodeBase64File Lib "UUCODE32.DLL" Alias "EncodeBase64FileA" (ByVal InputFile As
String, ByVal OutputFile As String) As Long

Type ParseType 'user defined type used to hold
 Current As String 'the commands storing the current piece
 LeftOver As String 'as well as what is left over
End Type

'---
'
'Function: FindAnd
'
'Purpose: Breaks up each command around the ands, and calls the
' word parser for each one
'
'Variables: AndStuff - User defined variable holding the information
' which needs to be parsed
'---

Sub FindAnd(AndStuff As ParseType)

 Dim Pos, Leng As Long
 Dim UntilSpc As ParseType
 Dim sBuffer As String

 frmmain.txtCom = "" 'initialize the text boxes
 frmmain.txtLoc = ""
 frmmain.txtPar = ""
 frmmain.txtAtt = ""
 frmmain.txtAct = ""
 Pos = InStr(1, AndStuff.LeftOver, "and", 1) 'check for an "and"
 Leng = Len(AndStuff.LeftOver) 'store the length

 If Pos <> 0 Then 'if and and was found then
 'reset the andstuff var
 AndStuff.Current = Mid(AndStuff.LeftOver, 1, Pos - 2)
 AndStuff.LeftOver = Mid(AndStuff.LeftOver, Pos + 4, Leng - Pos + 1)
 'itialize untilspc
 UntilSpc.Current = ""
 UntilSpc.LeftOver = AndStuff.Current
 Call ParseME(UntilSpc)
 'build the text box that
 'will be used to send the
 'command to the sequencer
 frmmain.txtCom = frmmain.txtCom + frmmain.txtLoc + ":"
 frmmain.txtCom = frmmain.txtCom + frmmain.txtPar + ":"
 frmmain.txtCom = frmmain.txtCom + frmmain.txtAtt + ":"
 frmmain.txtCom = frmmain.txtCom + frmmain.txtAct

 sBuffer = frmmain.txtCom.Text + Chr(13) + Chr(10)

 frmmain.Socket1.Write sBuffer, Len(sBuffer)

 'make a recursive call
 Call FindAnd(AndStuff)
 Else

100

 UntilSpc.Current = "" 'initialize untilspc

 UntilSpc.LeftOver = AndStuff.LeftOver
 Call ParseME(UntilSpc)
 frmmain.txtCom = frmmain.txtCom + frmmain.txtLoc + ":"
 frmmain.txtCom = frmmain.txtCom + frmmain.txtPar + ":"
 frmmain.txtCom = frmmain.txtCom + frmmain.txtAtt + ":"
 frmmain.txtCom = frmmain.txtCom + frmmain.txtAct

 sBuffer = LCase(frmmain.txtCom.Text + Chr(13) + Chr(10))

 frmmain.Socket1.Write sBuffer, Len(sBuffer)

 'build the text box that
 'will be used to send the
 'command to the sequencer
 Exit Sub
 End If

End Sub

'---
'
'Function: ParseControl
'
'Purpose: Calls FindAnd with AndStuff
'
'---

Sub ParseControl(AndStuff As ParseType)

 Call FindAnd(AndStuff)

End Sub

'---
'
'Function: ParseME
'
'Purpose: Breaks up each command into individual words
' Then calls checklist to see if the words are in any
' of the lists
'
'Variables: UntilSpc - User defined variable holding the information
' which needs to be parsed
'---

Sub ParseME(UntilSpc As ParseType)

Dim Pos, Leng As Long
Dim strTemp As String

 Pos = InStr(1, UntilSpc.LeftOver, " ", 1) 'check for a space
 Leng = Len(UntilSpc.LeftOver) 'store the length of the string
 strTemp = "" 'initialize strTemp
 If Pos <> 0 Then 'if a space exists
 'initialize untilspc
 UntilSpc.Current = Mid(UntilSpc.LeftOver, 1, Pos - 1)

 UntilSpc.LeftOver = Mid(UntilSpc.LeftOver, Pos + 1, Leng - Pos + 1)

 If (UntilSpc.Current = "measure") Then 'check for a special case
 'if it exists store it
 Pos = InStr(1, UntilSpc.LeftOver, " ", 1)
 If Pos = 0 Then

101

 Pos = Len(UntilSpc.LeftOver) + 1

 End If
 strTemp = UntilSpc.Current + " " + Mid(UntilSpc.LeftOver, 1, Pos - 1)
 frmmain.txtLoc = strTemp
 End If
 If (UntilSpc.Current = "track") Then 'check for a special case
 'if it exists store it
 Pos = InStr(1, UntilSpc.LeftOver, " ", 1)
 If Pos = 0 Then
 Pos = Len(UntilSpc.LeftOver) + 1
 End If
 strTemp = UntilSpc.Current + " " + Mid(UntilSpc.LeftOver, 1, Pos - 1)
 frmmain.txtPar = strTemp
 End If
 If (strTemp = "") Then 'if no special case was found
 'call checklist
 Call frmmain.CheckList(UntilSpc.Current)
 End If
 Call ParseME(UntilSpc) 'recurse ParseME
 Else
 'call checklist
 Call frmmain.CheckList(UntilSpc.LeftOver)
 Exit Sub
 End If

End Sub

