Project Number: CS-MLC-VR98

VAMP — A Voice Activated Music Processor

A Major Qualifying Project Report
submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by

Kristopher T. Babic

Daniel P. Hebda

Brian A. Whitman

Date: December 18, 1988

Approved:

Professor Mark Claypool, Mgor Advisor

1. voice recognition
2. computer music
3. user interface

Abstract

This project developed and described atool to control complex musical systems with voice
recognition. VAMP — A Voice Activated Music Processor, implements voice control as a
user interface, a music object representation system, and a musical meaning parser tied into
a prototyped computer sequencer. With VAMP as a framework, composers and musicians
can gain control of the complex dynamic properties of computer-controlled music by using
their voice.

Acknowledgements & Notes

The VAMP group would like to thank their advisors, Professor Mark Claypool
and Professor Frederick Bianchi, for their guidance, help, and support.

They would also like to thank Tim Thompson, the developer of KeyKit, for his
help during the final stages of the project.

All work on this Mgor Qualifying Project was done equally by all members of
the group throughout the course of the project. Individually, Kris Babic
concentrated on the Voice Recognition module, Daniel Hebda the Parser
module, and Brian Whitman the Output / KeyKit module.

Table of Contents

ABSTRACT
ACKNOWLEDGEMENTS & NOTES
TABLE OF CONTENTS

TABLE OF FIGURES

1. INTRODUCTION

2. RELATED WORK

2.1 VOICE CONTROL APPLICATIONS
2.2 SEQUENCERS/ INTERACTIVE MUSIC SYSTEMS
3. APPROACH TO PROJECT

3.1 VOICE RECOGNITION MODULE
3.2 PARSER MODULE

3.3 OuTPUT

4. EVALUATION

5. CONCLUSIONS

6. FUTURE WORK

REFERENCES

APPENDIX A: PLATFORM

APPENDIX B: LIST OF IMPLEMENTED INTERFACES

APPENDIX C: GRAMMAR

APPENDIX D: SOURCE CODE

10

12

20

23

28

30

31

33

35

37

43

46

Table of Figures

Figure1 - The Three Module System

Figure 2 — Screen shot displaying the user interface of the Speaker Selection screen of VAMP
Figure 3 — Screen shot displaying the user interface of the main form of VAMP
Figure 4 - Screen shot showing the menu layout of the main form of VAMP
Figure 5 - Screenshot showing VAMP and K eyKit sequencer

Figure 6 - VAMP-K eyKit Flow Diagram

Figure 7 - Main Form Sour ce Code

Figure 8 - Wait Form Sour ce Code

Figure 9 - Speaker Form Sour ce Code

Figure 10 - Select Form Sour ce Code

Figure 11 - Connect Form Sour ce Code

Figure 12 - Edit Form Source Code

Figure 13 - Create Form Source Code

Figure 14 - Parser and TCP Module Code

10

18

19

23

24

46

58

59

63

66

70

80

93

vi

1. Introduction

Since humans have communicated for thousands of years using language, we find it the easiest to
discuss, recommend, and control by merely talking. When computers and other information
systems appeared to the public in the mid-twentieth century, interfaces were designed not with the
user in mind but the machine: it was easier (and more possible) for an engineer to install four red
switches and two blinking lights than to have a text-based entry system. And as computers became
more powerful, that paradigm remained: the switches evolved to punch cards which evolved to the
keyboard, but even then the user had to work at the machine's level. The earliest home computers
had their operators loading their spreadsheets or word processor using arcane disk commands, and
it was not until the advent of the sixteen-bit operating systems publicized by Apple (the
Macintosh), Atari (the ST series) and Commodore (the Amiga) that we were then freed from the

keyboard to use a much more natural mouse and window system.

Since then we have been only dlightly improving on this model: the latest interfaces are merely
redesigns of a redesign. The public’s eventual goal, as so prophesized by that ubiquitous barometer
of technical advancements, HAL from the film 2001, is the natural voice recognition interface. We
would like to finally regain control of our machines and have them try to understand us instead of

the other way around.

Music has undoubtedly benefited a great deal from the introduction of computers. from the first

IBM machines and into the Internet, music composition and creation has been an artist’s “killer

application.” Music is notable for being both a history-long means of expresson and also
mathematically describable. A composer that had to previously hand copy a score for each part now
loads up a scoring program. Sequencers control virtua instruments in real time, allowing for
guantization and step recording. Even the electronic age has affected the art: a musician can buy
programs that algorithmically generate music for as-yet-unheard patterns of tones and sounds, and
digital processing, emulation and recording software has expanded the artist’s palette to never-
before attainable variety. No competitive recording studio is without a computer system

complementing its ‘traditiona’ instruments.

However, with all of these options available to a user, it becomes daunting to try to control them
al. Many studios have dozens of sound modules with hundreds of sounds in each, al with
hundreds of parameters that are called real-time from the computer system. For a user to try to
control them all is an exercise in futility, and most sequencers do not let users modify the user

interface to their tastes.

Since Voice Recognition has recently become possible, and the challenge and deadline HAL
presented us might just seem viable, a computer-based music sequencer controlled by voice
emerges as a natural solution to the problems listed above. With this solution, a composer can
control multiple dynamics at once as simply as they would talk to an orchestra. Variations that
would be impossible to do in real time with a mouse, such as lower the volume on al tracks with a
violin on the third measure, would be feasible without causing a break in the music. This is
important for power users, since by adding a voice system control, a user can convey a much larger

amount of information than by just using the mouse and keyboard combination. Since MIDI studios

have only gotten more complex, with multiple samplers and sound modules linked to the computer,
the prospect of voice control enables a higher level of efficiency from the user that has difficulty

controlling these all at once.

VAMP, aVoice Activated Music Processor, was developed out of these issues. The VAMP project
team developed a framework for controlling music commands through speech control. This
following paper discusses VAMP, a product that parses the speech of a conductor and outputs it to

amusical object language that a sequencer then understands.

The contributions of this project are:

1. The development of a parser for a musical grammar. Musical commands that a conductor or
composer would make are different from ‘standard’ English, since the object and attributes
have different properties. The Voice Activated Music Processor (VAMP) includes a parser that

identifies musical objects in a series of groups that are then sent to the music module.

2. The creation and implementation of a musical object representation. VAMP quickly and simply
integrates the parsed voice with the musical module by using intermediate musical objects. This
representation is generic and abstract enough to be upgraded and implemented on a number of

different platforms.

3. The application of voice recognition to a user interface. While many advancements have been

made in this field, it is still relatively new due to recent dramatic increases in computing speed

and capacity. Our voice recognition (VR) interface alows a user to control a large set of

musical objects by naturally voicing the command.

. The development of a MIDI sequencer to demonstrate these goals. VAMP makes use of the
development kit “ KeyKit” that allows VAMP and the parser to get at the music data within a
sequence. This sequencer link, while developed solely for demonstration purposes, is a

powerful realization of the tenets of this project.

2. Related Work

Voice control systems and interactive music devices are not a new field, but rather, the synthesis of
them is what makes this project unique. However, to fully understand the context of VAMP, one

should familiarize oneself with the background relating to these two topics.

2.1 Voice Control Applications

The promotional material that Dragon Systems, Inc. lists on their packages champions many
benefits towards voice recognition software. Voice Recognition “frees users hands and eyes for
other tasks... while simultaneously inputting data,” “simplifies computing for novice users,”
“improves data entry speed and accuracy,” “automates processes requiring instant data access,” and
“protects workers against repetitive stress injuries.” Those benefits are what is driving a new
industry that hopes to replace the keyboard or mouse as a standard means of inputting data and

controlling a computer.

Voice control applications come in various forms. The end-user packages, which retail from $50 to
$250 (USD), contain an learning program and hooks for a word processor. The learning program
runs the user through positioning a microphone and setting up the computer’s audio subsystem.
Usually, the user will spend a nominal amount of time (an hour or two) reading text from the screen
while the software analyzes the voice input. Once that initial training is completed, the user can
start dictation, but usually with poor results. Dictation occurs by starting a word processor that has

hooks for the particular voice control package and merely speaking into the microphone.

However, the more time the user spends talking to the computer, the better it will understand the
voice in the end. Even while dictation is occurring (not training), the voice subsystem is updating
its ‘voice print,” or set of files that contain user voice information. So at first, VR systems seem to
provide users only an endless amount of errors and problems, but as a patient user continues to use
the system, rewards soon come in the form of up to (Dragon Systems package claimed) 95%

accuracy.

The January 1998 issue of Byte magazine features a roundup of the currently commercially
available voice recognition packages. At the time of the writing, Dragon’s NaturallySpeaking and
IBM’s ViaVoice were the two high-profile players. In real world situations, the reviewer rated
Dragon as having a 10.4% error rate after training, while Via VVoice had a 13.3% rate. (Kay) Other
packages exist at alower cost (and geared to simpler dictation needs). This particular review claims

Dragon’'s accuracy a step above Viavoice's, but both are essentialy similar programs.

Dragon Systems and other companies, perhaps sensing the future market for voice-controlled user
applications, supplies their customers with a development package based on the voice dictation
engine. A programmer inserts a custom control (essentially a C++ class) into their code and can
then access the speech output of the voice recognition system. Microsoft, Inc. has standardized this
output and called it SAPI (Speech Applications Programming Interface). This way, the user can

choose in the end which engine to use with their voice-controlled applications.

Other voice systems do exist, but they are on the industry scale, many costing tens of thousands of
dollars for commerce applications and operator routing. They also run on proprietary hardware.
Voice control, being that is a natural extension of human communication, has been the holy grail of
user interface designers, but only recently has it arrived practically for the home computer user.
This project is one of many that has recently begun to practically apply voice control to enhance a

user interface.

2.2 Sequencers/ Interactive Music Systems

Computer music sequencers have been around since the advent of MIDI, the standard that allows
musical instruments and computers to interchange music data on a serial bus. Ikutaro Kakehashi,
Roland’ s president, saw the need for a standard among al instruments in 1981. He communicated
with Tom Oberheim and Dave Smith from Sequential Circuits, and by 1983, the MIDI 1.0
specifications were released. (Chadabe, 195) MIDI paved the way for a large number of
instruments and computer programs that control music, due to the cross-platform standard. It didn’t
take long for computer programmers to realize that MI1DI could be perfect for storing note data and
controlling synthesizers and other sound modules by a piece of software. Users could be able to

edit notes on screen and effortlessly modify and compose music.

Out of the short history of computer music sequencers that were to follow the advent of MIDI, our
present state includes two or three “ mgjor players’ on each platform (PC and Macintosh). The PC

platform offers Twelve Tone System’'s “ Cakewalk,” geared towards home studio users and

hobbyists, or Steinberg's “ Cubase” The Macintosh platform consists of “Digital Performer” or
“Studio Vision Pro,” as well as Cubase. Sequencers have evolved from merely acting as a database
for recorded MIDI data to being full-fledged workstations. Most also now allow a user to sequence

digital audio aswell as MIDI data.

While the glut of sequencers available to the musician offers a large degree of choice, it also
confuses. most of the software above contains such wildly different user interfaces that it would
take weeks to migrate from one package to another. This is because music doesn’t transfer well
over to a windows-icons interface; it is classically a ‘hands on’ art. Redlizing this, many music
manufacturers produce “ MIDI Controllers,” hardware boxes that allow MIDI signals to be sent
from the user in a much different fashion than the keyboard-mouse way. For example, Peavey
Electronics, Inc. produces a controller with 16 hardware diders: when “mixing down” a virtual
orchestra, a user can move the dliders instead of clicking on virtual sliders and dragging them on
screen. Other devices mimic instruments. one can purchase breath controllers for lifelike horn

dynamics, or simulated drum kits with M1DI-triggered pads instead of drum heads.

Robert Rowe's Interactive Music Systems: Machine Listening and Composing outlines a new

science for musicians and computer scientists: machine control of sound and music. Throughout the
book, Rowe describes systems created on a development package for Macintosh, Opcode's “ Max’
that control various music and sound parameters through graphically described algorithms. The
systems he creates and describe mostly deal with computer-generated music, such as fractal

algorithms and other math-oriented composition, but the general idea is that of “no barriers.” with

Rowe's ideas, coupled with the current state of the technology, it is easy to see the wealth of

opportunities these systems can offer us.

Software such as Max and its Windows counterpart Pure Data (Pd) allow a user to design a
controlled system by linking together various modules. Each module is treated as an object with its
own methods, parameters and output. Many proprietary “studio-specific’ music problems a
composer might be having can easily be solved by using Max to model the system. Other similar
software, such as KeyKit (which is described in greater detail later) alows a user to actualy
program the tools they need in a C-like programming language. This alows for greater control, but

is not as easy to understand and implement.

Some systems use a musical language representation to allow a developer to get at the data within.
These formalized grammars appear close to C++ in that they are object oriented with traces of
inheritance. A user controlling a package with such a grammar can understand the system easier,
since musical data is abstracted to a hierarchy much like music itself; notes are values with
properties that can be placed in groups of phrases or measures, which can be arranged into song

objects with their own properties as well.

The work done on these systems up to this point have been geared to the scientific community:
Max has yet to be accepted as a common tool for popular music composition. But as the need for
more complex systems grow, such as VAMP, interactive control of music by development-like

music “environments’ will take center stage.

3. Approach to Project

Spoken:

“Turn up violins
and play.”

Turn, Up, Vioalins,
and, Play

V oice Recognition

Same program, athough
VR section calls Dragon’s
Action: Up SDK externally.
Attribute: Volume
Part: Violins

- Parser
Action: Play

TCPIlink, can travel
:© across networks or Internet,
© or remain on same system.

Looksinto sequence
in memory,
indentifies Violins, KeyKit
raises the volume,
and playsthe
sequence fromthe
Start.

Out to MIDI equipment

Figure 1 - The Three Module System

The VAMP project can viewed as one input to one output. At the head of the project is the voice
input by a user that has trained a system. Through various modules, iterations, and network links,
VAMP arrives at MIDI output to control music hardware. In between these two steps were our
concern, and to faciliate deviopment and outsider understanding of the problem, we split the project
into three modules as outlined above. Each module takes input from the previous module and

processes it. As shown in the figure above, the spoken voice is the first entry into the system, which

10

is processed by the Voice Recognition (VR) module. The VR module connects to the parser
module by shared code. The parser module takes the discrete words “spit out” by the VR module
and parses it into musical meaning. After this parsing is done, the object is sent to the external
sequencer through a TCP link. The externa sequencer, for the demo purposes of VAMP,
indentifies the words and controls an object-oriented MIDI system through calling various

methods. The eventual output of the system is MIDI data sent to external music-making equipment.

The first module to tackle was the voice recognition system. Once that was operational, we moved
on to the natural language parser, then on to the implementation of the output. This system is
efficient for its modularity and its ease of understanding. The approach then is split on each

individual module, which are described below in detail.

11

3.1 Voice Recognition Module

Dragon Naturally Speaking Developer Suite is a Software Developer Kit (SDK) developed by
Dragon Systems, Inc to allow software developers to integrate Dragon’s voice recognition engine

into their own applications.

3.11 Useful Features of SDK

Speech Adaptability

The SDK has the feature of being able to adapt the voice recognition engine to the speaking style of
a user. It is able to do this by allowing a user to correct any errors that may arise in the voice
recognition. The method of correction is different depending on the application built using the
SDK. When auser corrects the voice recognition results the SDK allows the application to be able
update the users speech files with new information that will allow the voice recognition engine to

recognize the users voice with a higher accuracy.

This feature is useful because it allows the voice recognition of the product to become more reliable
with use. With prolonged use, the voice recognition engine will be able to accurately recognize
amost everything a user says. This feature alows the voice recognition interface of the application
to become a more useful tool.

Multiple Users

The Dragon SDK allows an application to be able to create and maintain multiple users and user
settings. This feature is important because of the complexity of recognizing voice input. Every

person has a different voice (i.e. accents, durs, etc.), thus making it very difficult to create a

12

universal voice recognition program. To get around this problem it is imperative to keep separate
speech files for each user of the voice recognition problem. Those speech files can then be

configured to more accurately understand the different speaking styles of the individual users.

The usefulness of this feature lies in its ability to make a voice recognition application useful for
multiple people. It alows for a variety of people with different speaking styles to be able to user
the voice recognition interface easily and more accurately.

System Configuration

Dragon’s SDK allowed a voice recognition application to configure the audio components of a
users system for use with the voice recognition engine. This feature alows a user to be able to
change the audio components of his’her system and quickly setup up the new components for voice
recognition. It also alows multiple users to be able to use different audio components, such as
microphones, on the same computer.

Programming L anguage Choice

The SDK allows software developers to develop voice recognition applications in either C++ or

Microsoft Visual Basic.

This feature is very useful in the development of a voice recognition application. It gives the

developers of the voice recognition application a wider range of programming tools with which to

develop their software application.

13

3.1.2 Problems Encountered

One problem that we found during our use of Dragon’s developer suite was that the developer suite
itself was not completely implemented. At the time that our application was being developed
Dragon had not completely implemented all the features of the SDK. A partia list of the
implemented and non-implemented features as according to a help file included with the program

can be seen in Appendix B.

An example of this problem is with the feature of the SDK that allows the user to configure his’her
audio components for use with the voice recognition engine. Before a user is allowed to run the
voice recognition engine he/she must configure his’her audio components. Thus the SDK allows
an application to check to see if a user has completed an audio configuration. The problem is that
the SDK does not keep track of whether or not the user has run the audio configuration. This
problem causes the application to not know that the user has run the audio configuration and

therefore not allow the user to access the application.

We were able to overcome this problem by not checking to see if the audio setup had been

completed and to instead check to see if the user has been calibrated. For a user to have been

calibrated they must first successfully complete an audio setup. So by checking this property we

were able to bypass the problem with the audio setup.

3.1.3 User Interface Design

14

The user interface design is an important part of software development. The user interface is the
part of the software that will be seen by the user. Without a well-designed user interface, a useful
software product can become cumbersome and lose its usefulness.

Development of | nterface

We first looked at what the application was going to be used for. When we did this, we saw that
the graphical user interface did not have to be very complex as the majority of the use of the

software is through a vocal interface.

The first thing that we needed to design was a user interface that allowed the user to create, select
and delete a user profile to be able to access the multiple user feature of the voice recognition
engine. We decided to model our interface on the interface that comes with Dragon
NaturallySpeaking. We decided on this course of action based on the fact that users tend to learn

how to use a program easier if the user interface is similar to others they have used.

Our user interface is show in Figure 2. As seen in the figure the user is shown a box on the left of
the screen that displays all currently available speakers. On the right side of the screen the user is
given the option of four action buttons. The cancel button, which cancels the selection of the user
is placed in a location that is similar to it location in many other software programs. The other
three buttons are placed in order of their projected use, with the buttons with the highest projected
use on top. The top button is the “Select Speaker” button, which sets the selected speaker as the
current speaker and then activates the main form of the program. We projected that this button
would get the most use, as a user will normally be selecting a previous user as they start up the

program. The next button is the “Create Speaker” button, which activates the create speaker form

15

to create a new speaker. We projected that this button should be placed underneath the “ Select
Speaker” button, because each user will use it when they create their speaker profile. The third
button, the “ Delete Speaker” button, which deletes the selected speaker and all related speech files
from the system. We projected that this button would get the least amount of use and by this

projected we put as the third action button on the screen.

i, Speaker Selection HiE E3
Speaker:
Babster Select Speaker

Create Speaker

Cancel

Figure 2 — Screen shot displaying the user interface of the Speaker Selection screen of VAMP

The second thing that we needed to design was the vocal recognition interface for the user. We
wanted this interface to be as simple as possible as the user will be using voice input for the
majority of the time. So we looked at all the things that a user will need to have control over while
they are using our application. When this process was complete we determined that the user would
need to have control over the state of the microphone, the output of the voice recognition engine
and a manual method of sending the spoken command to our parser for use with the midi

sequencer.

As seen can be seen in Figure 3 we decided to use a smple text box to contain the output of the

voice recognition engine. Having a simple text box allows the user to be able to see the text output

16

of the engine and to be able to correct any errors in that may have occurred during the conversion

from speech to text.

To alow the user to be able to control the state of the microphone we used a button from Dragon’s
SDK that managed the microphone state. This button shows the current state of the microphone
through the use of changing icons on the button and by displaying a colored intensity bar, which

represents the level and intensity of the sound going into the microphone.

We used a simple action button to alow the user to be able to manually run a command that has
been recognized by the voice recognition engine and placed in the receiving text box. This button
alows a user to be able to shut of the microphone and still be able to run a command. This would
be ideal in a high noise situation where there is a lot of external noise that can be picked up by the

microphone.

The layout of these three buttons was determined by placing the buttons in different locations and

determining which layout was the most aesthetically pleasing. When we completed this

determination we were left with the layout as show in Figure 3.

17

w. VAMP — Voice Activated Music Processor
File Uger Toolz Help

-Ibﬂ | | Run Command

Figure 3 — Screen shot displaying the user interface of the main form of VAMP

The design of the menus, which can be seen in Figure 4, was based on the menu layout in Dragon
System’s NaturallySpeaking. This decision was aso based on the idea of users learning a program
quicker if the interface is similar to one they have used before. The similarity in the interfaces is

the order of the “File”, “Usa”, “ Tools’ and “ Help” menus.

The design of the “File” menu was simple, as the only function it needed to perform was to give the
user and option to exit the program. The design of the “User” menu is aso taken from the
NaturallySpeaking user interface. It contains all of the commands for the maintenance of a user.
By using this menu the user is able to create a new speaker profile, open a different speaker profile
or to save the speech files of the current speaker profile. The“Tools’ menu contains al of the tools
that our application allows a user to use. We added the features of being able to setup you audio
hardware for voice recognition, to increase voice recognition accuracy by training the voice
recognition engine, to edit the command lists that are used by our parser, and to connect to a
sequencer through a TCP connection. The order of the “Tools” menu was determined by putting

like commands together and by separating the connection tools from the audio/parser tools. The

18

“Help” configuration was taken from the design of most applications which have help files

incorporated into them.

in. YAMP - Yoice Aclivated Music Procezsor
. YAMP - Yoice Activated Music Processor

SN Llzer Toolz Help
Help

Run Audio Setup
Fun General Training
Edit Command Liztz

E it File User g

Hew Hew Sequencer Connechion
Dpen i, YAMP - Yoice Achivated Music Pro
Save Speaker Files File User Took BAENS

Contents. ..

Indes...

Search...

Figure 4 - Screen shot showing the menu layout of the main form of VAMP

Our graphical user interface does not depend on either the Dragon SDK or the form of the parser.
We could change voice recognition engines by simple changing the underlying code without
modification of the user interface. This ability is also present with the parser. Currently our parser
is activated when a user either gives a voice command or when the “Run Command” button is
pressed. When called the parser takes the string that is in the voice recognition output text box and
parses it. To incorporate a new parser into our system would be a smple task. We would only

have to set the input of the new parser to the text in the voice recognition output text box.

19

3.2 Parser Module

Before we could begin the parser, we first had to determine what grammar we would be allowing

and what we would be looking for within that grammar.

In order to formulate the legal grammar, we compiled a list of phrases commonly used in a
rehearsal setting. These phrases were collected through interviews, emails and live demonstrations
of professiona conductors. Once we had the list compiled, we cross-referenced phrases with

similar meaning, paying special attention to the wording used.

Through this analysis a distinguishable reoccurring pattern was found. We noticed that there were
only a few key words in any given phrase. These key words were then broken down into four

categories. Location, Part, Attribute and Action.

The parser’s center is a text box. The text box serves as the entrance point for the sentence to be
parsed. The text box is important because it allows the user to easly tie the output of the voice
recognition into the input of the soon to be parser. As well, if auser did not want to control VAMP

with their voice, they could type in the natural language command.

A button is on the form for the user to signal that the sentence was complete and ready to be parsed.

When the button is pressed the string is passed to the parser module.

20

When the parser receives the string, it begins by looking for the word ‘and’. If it should find any, it
breaks the sentence into two parts, the “current” part, and the “rest” part. The current part holds the
information in the string which precedes the ‘and’. The rest part holds all information after the

‘and’, this section is passed recursively back to the parser until the word ‘and’ is not found.

The next section of the parser works on the current part mentioned above. This part looks for
spaces which may exist within a string. When a space is found the string is again broken into two
parts, the current part and the rest part. The rest part is passed recursively back to this section of the

parser. The current part is passed onto the next phase of the parser.

In the next phase, we check the word received to see if it belongs to one of the four alowed
categories. This is accomplished through the use of four lists, one for each category. The word is
compared against every word in each list, one at a time. If the word is found, it is immediately
placed in a temporary text box for storage, and this section is exited. If the word is not found, the

parser continues onto the next word.

Once each word in the sentence is checked against the lists, the parser constructs a command string
which will be sent to the sequencer via TCP. This construction is done through the use of four
temporary text boxes which are used to hold the words which matched the lists. We simply add one
text box to another, placing a colon in between each one. The final string is stored in another text

box, ready to be sent to the next section:

21

Location: Part: Attri bute: Action

exanpl es:
Measure 3:Violins::Play
:Violins: Vol ume: Turn Up

The other aspect of the parser is the handling of specia cases. We found there to be two instances
where we needed to receive an argument along with a word. The parser checks for the word
‘measure’ and ‘track’ before the parser compares them to the lists. If one of the words is found, the

next word in the sentence is added to it, and they are both stored in the appropriate text box.

22

3.3 Output

&= KeyKit EEE
Mouse HMatrix 1 note |

YiHE File [View][Edit] Nornallud Sudfud P14
Merﬁed I Hame: Hew # Tracks: 3

TI m_pnigﬂﬁﬂ‘ﬁ Hl 8 ['_

Trk 1 ||_||_|[_| Hone | -

Tempeid 8583244 8|

Trk 2 ||_||_|[_| Hone |

L

Trk 3 ||_||_|[_| None l

- Y - k.2 D - T

I
Th

key> vamp()}

———————————————————————————————————— UAHPB.1 12/13/98
Please click on the object UAMP will be controlling.

Figure5 - Screenshot showing VAMP and K eyKit sequencer

VAMP makes use of the publicly available KeyKit (see Figure 7), developed by Tim Thompson in
conjunction with AT&T. KeyKit is a cross-platform MIDI development kit that allows for a new
language of MIDI signals and allows users to build their own extensions to the software. For
prototyping a controllable sequencer, KeyKit proved to be simple and powerful at the same time.

For the purposes of VAMP, we both modified KeyKit’s sequencer (the middle of Figure 7) and

23

also created a new tool, called VAMP. (For confusion’s sake, we will refer to the KeyKit VAMP

tool as VAMP-KeyKit and the parser / voice recognition code as VAMP-VB.)

-(Other KeyKit Tool

TCP

(from VB core)

VAMP Tool Group Tool (Seq.)

Listens on TCP socket 5862 (" MIDI Controllers
for commands. When one

isreceived, it parses out the

“four boxes’ and determines For the purposes of VAMP rev. 1, the voice

musical meaning. controls the Group Tool. But, due to KeyKit's
object-oriented nature, it can aso control other
KeyKit tools, and, by creating a new KeyKit
tool for the purpose, convert VAMP grammar
into abstracted MIDI controller data for transfer
to other systems and hardware.

Figure 6 - VAMP-K eyKit Flow Diagram

As shown in Figure 8, VAMP-KeyKit was built as a “tool” in KeyKit to maintain KeyKit’s object-
based architecture. It listens on a TCP port and then parses out the strings it receives to control
another KeyKit object, which for demonstration purposes was a prototyped music sequencer.
However, this does not limit the entire VAMP system to control just a sequencer: on the startup of
VAMP, it asks the user which object to control; the user merely clicks with their mouse on the
KeyKit tool that VAMP will be sending signals to. In the future, different KeyKit objects can be
created that do a host of new musical processes, including converting VAMP objects into

abstracted MIDI datathat other systems and hardware devices can understand.

24

The sequencer was built on KeyKit’s Group tool, a simple yet expansive sequencer. The Group tool
can standalone by itself and record MIDI data and play it back as any good sequencer through a
series of methods attached to the main Group class. Each method performs an action that can be
accessed by mouse control or through other tools, such as VAMP. The Group tool was enhanced
with new VAM P-specific methods for the purposes of the project, including seeking to a particular

measure, muting one particular track, and slowing down the tempo.

When the VAMP-KeyKit tool is invoked (either through KeyKit’s menu structure or by calling a
vamp() command from the Console window), it asks the user to select a controlled tool. At this
point a user should have the tool open that they wish to have controlled by voice. The tool is
selected by clicking on it with the mouse, which calls back the VAMP tool with a pointer to the
object. This pointer, which is referenced as tool throughout the VAMP-KeyKit code, is necessary
to access the object’s methods: for example, VAMP can now simply tell the sequencer to play by

invoking tool.playaudition(timel,time2).

After selecting the destination tool, VAMP sets up its server to listen on port 5862 on the system’'s
TCP stack. From this point on, VAMP-KeyKit and VAMP-VB are connected through a TCP
networking link. TCP is a novel solution due to its ease of sending buffered strings across
networks: since we have to wait for the entire string to compose itself from the VR system, the
“buffer lag time” is not an issue. While all of our testing was done with both VAMP-VB and

VAMP-KeyKit on the same machine, there is no limit to the distance of the two modules. VAMP-

25

KeyKit can be on any computer connected to the Internet while VAMP-VB can be on a different
machine in the same room or thousands of miles away. When a connection is detected on port

5862, VAMP then begins waiting for a message.

A message is defined by VAMP-KeyKit as a string delimited by colons (:), followed by a carriage
return and line feed. This conforms to what the VAMP-VB sends the parsed message as. Every
time a command is issued from VAMP-VB, the KeyKit code interprets it and immediately breaks it
down again into the ‘four boxes.” Multiple commands are processed in the order that they are

received. Upon receipt of acommand and its subsequent parsing, VAMP begins its work:

Psuedocode for VAMP-KeyKit’s nusical neani ng parser

if action is “play”
if part
t ool . sol o(part)
if location
tool . setaudi ti on(converttobeats(location), end)
t ool . pl ayaudi ti on

The first revision of the VAMP system has a limited ‘musical meaning dictionary.’ It can play or
stop a sequence, mute or solo instruments, raise tempo or volume, and start at different measures.
Future revisions to the VAMP system can easily add functionality by modifying the VAMP-KeyKit
code, or developing another solution to receive VAMP-VB’s TCP messages. The reason for this
modularity was that, at the time of this writing, the better sequencers and music control software

appeared for Macintosh systems only, and the better voice recognition packages (i.e., Dragon) were

26

only for Windows systems. A future application of VAMP would be to have the musical meaning
parser on the Macintosh platform while the voice recognition occurs on the Windows platform. The

two computers can then be simply linked over Ethernet.

KeyKit's object-oriented nature allows for another advantage: these commands can occur in real
time, as a sequence is playing. The TCP-listener and VAMP module are set up as KeyKit ‘tasks,
which are analogous to UNIX’s processes. A programmer can create or delete processes at will,
and they run until they are told to delete themselves. This ensures that the possibilities for musical

meaning parsing are endless.

27

4. Evaluation

In our final testing, VAMP performs as promised, with few minor issues. As described in the Voice
Recognition module section, the Dragon SDK has implementation errors that do not alow it to
retain the user’s audio setup from session to session. At the time of this writing, we are in contact
with Dragon to work on a fix. Otherwise, a properly trained test subject claimed a high rate of
accuracy from Dragon and therefore a good deal of success in controlling VAMP. The subset of
grammar implemented in VAMP musically performed well: we are able to control starting,
stopping, raising volume, muting and “soloing” (only playing) tracks, and also more detailed

editing operations:. raising volume by measure, raising tempo, etc.

The connections between the three modules work flawlessly. Over a local system, where the
VAMP-VB and VAMP-KeyKit modules converse over TCP on port 5862, there is only lag from
the VR system determining speech. We estimate on average a lag time of 1-2 seconds from finished
spoken phrase to KeyKit’s response. This conforms to our feasibility research, in which we read
that a similar system (in which doctors were controlling an instructional surgery video from “the
floor”) had dightly longer lag periods, due to slower hardware at the time. As computers only get

faster, we expect this lag time to minimize to unsubstantial.

The accuracy of the VR system, while close to 90 percent, can be enhanced. We will discuss

possible future solutions below. Many of the mistakes that the system made, however, are parsed

28

out by the module and not sent to KeyKit. For the time being, then, misheard phrases have no effect

on the music.

In our view, the project is a success: an ultimately expandable framework for voice control of
music. Our demonstration proves the feasihility of such a task, while in the future we hope to see
many enhancements to turn VAMP into a practical and seamless connection between voice and

music.

29

5. Conclusions

As voice control becomes more ordinary to ordinary users, and developers are realizing that voice
is the most natural way to communicate, projects such as VAMP will become more prominent. One
view of the future of computing places small intelligent voice-activated devices to handle different
tasks, such as word processing, communications, development, and the arts. Each device can be
geared towards their particular function, since a task such as VAMP's is extraordinarily different

from a simple ‘dictation’ package.

By developing musical grammar and implementing it in a practical situation, VAMP creates a new
paradigm for music control based on natural language. The voice connection only enhances this:
and while voice recognition can only get accurate, the number of users implementing voice
recognition in their day-to-day activities can only increase. ‘Expert’ users that require optimal
control of their systems need devices that accurately control their work (and art) will soon desire

products like VAMP, products that “understand them” without any need for complication.

VAMP s modularity and expandability are its strong points: it would be foolish to assume that this
incarnation is the final one, and by allowing for hooks into all points of the process, it ensures that
it can grow with the technology. VAMP's promise is far-reaching and pertinent, especialy as

music systems and the computers that control them only get more complicated.

30

6. Future Work

By laying the framework for a speech to musical object solution, the field is now open for a vast
number of improvements and implementations. The VAMP core and current state alow it to
control a limited set of musical parameters, but it is ultimately expandable, both within the code
and through its Parser module. By adding new words to the vocabulary of the Parser, a new musical
command can arise, given that the programmer would also know KeyKit's (or whatever the output

phase would be at that point) language to physically implement the command.

The placement of KeyKit in our project was simply for rapid development and prototyping
purposes. While KeyKit is a powerful and widely-supported program, it might not suit the needs of
all future users. The modularity of the system exists so that a new developer can replace the KeyKit
module with another MIDI solution, either off-the-shelf of self-coded. Opcode’'s Max is a more
robust and better-supported solution, although it is only available for the Macintosh platform.
However, with the TCP link, a future group can enhance the project to include Max running on a
Macintosh while the VR module runs on a dedicated Windows machine. This can also enhance the
‘intelligence’ of VAMP: if the output module understands the user’ s hardware (for example, if their
sound module can receive filter changes on channel 4 that make a sound ‘brighter’) then it can

make those adjustments directly to the hardware, giving a user even more complete control.

Other advancements can be made in the VR section of the project; it will accept any Microsoft

SAPI-compliant package, and as the technology and accuracy of these VR programs increase, the

‘old’ Dragon core in place now can be swapped out with little effort. To increase accuracy, a

31

developer can install a hardware device on the microphone to eliminate stray signals, or install a

noise-canceling device to eliminate background sounds interfering.

The parser can be made more robust, other than just the vocabulary: by keeping a buffer of voiced
commands, VAMP can ‘estimate’ what the user istrying to get across. For example, a user that said
“ Make the violins louder” could then next say, “ No, louder.” and VAMP would know to check the
previous statement. This would involve a small amount of ‘pseudo-intelligence,” or could be

implemented from a publicly-available natural language parser.

32

References

Chadabe, Jodl. Electric Sound: The Past and Promise of Electronic Music. New Y ork: Prentice

Hall, 1996.

Cui, Weylou, et a. “ Voice-Aware Support for Multimedia Applications.” Integrated Media

Systems Center, University of Southern California.

Dragon Systems, Inc. corporate web site: http://www.dragonsystems.com

Kay, Russell. “Do You Hear What | Say?’ Byte, January 1998, pp 115-116.

Manes, Stephen. “Speech Recognition, Now Y ou're Talking!” PC World, October 1997. Web

resource: http://www?2.pcworld.com/software/utility/articles/oct97/1510p400.html

Puckette, Miller. “Pure Data: Another Integrated Computer Music Environment.” Proceedings,

Second I ntercollege Computer Music Conference, Tachikawa, pp 37-41.

Rowe, Robert. Interactive Music Systems: Machine Listening and Composing. Cambrdige: MIT

Press, 1993.

Schmandt, Christopher. V oice Communication With Computers: Conversational Systems. New

Y ork: Van Hostrand Reinhold, 1994.

33

Smith, Ronnie. “ An evaluation of strategies for selectively verifying utterance meanings in spoken
natural language dialog.” International Journa of Human-Computer Studies, 48, pp 627-

647.

Sudkamp, Thomas. Languages and Machines. Second Edition. Reading: Addison-Wesley, 1998.

Appendix A: Platform

The VAMP executable needs to run in a Windows 95 / 98 / NT system with Dragon
NaturallySpeaking installed. The VAMP installer takes care of all the support software you need,
and will attempt to detect the presence of NaturallySpeaking, letting the user know they need to

install it if it is not found. The VAMP installer also installs the following pieces of software:

1. TheParser/ front end ‘core’ (Windows executable)
2. AT&T’'sKeyKit with supporting VAMP-hooks

3. NaturalySpeaking developer hooks and training documentation

Upon starting VAMP for the first time, a user needs to train Dragon if they have not already done
so. If VAMP is being installed on a system different from the one the user has trained Dragon, the
user needs to move their ‘voice print’ over from the old system. This is accomplished by merely

copying the applicable directory over to the new system.

KeyKit requires that a MIDI-capable sound card be installed. This sound card can use its own
internal General MIDI voices or be configured through Windows MIDI Mapper to control various
outboard synthesizers and sound modules. KeyKit’s included documentation has more on this

topic.

It is possible that the system containing KeyKit and / or the sound modules and the VAMP system
be on separate machines, due to the TCP nature of the link between the two modules. This is

realized by entering in a different value than ‘Localhost’ in the TCP setup properties of the VAMP

35

software. KeyKit on the ‘listener’ machine does not need to be modified, it merely waits for a

message from any | P address and actsonit.

36

Appendix B: List of Implemented Interfaces

List of Implemented/Not I mplemented | nter faces
Voice Command API (VCmd)

The Voice Command API (VCmd) allows usersto control an application by speaking commands through an audio
input device, rather than by using the mouse or keyboard.

IVCmdAttributes: I mplemented
AutoGainEnableGet Implemented
AutoGainEnableSet Implemented
AwakeStateGet Implemented
AwakeStateSet Implemented
DeviceGet Implemented
DeviceSet Implemented
EnabledGet I mplemented
EnabledSet Implemented
MicrophoneGet Implemented
MicrophoneSet Implemented
SpeakerGet Implemented
SpeakerSet Implemented
SRModeGet Implemented
SRModeSet Implemented with caveat(s):

Can't set to current mode ID.
ThresholdGet I mplemented
ThresholdSet Implemented
IVCmdDialogs: I mplemented
AboutDlIg Implemented
GeneralDlg Implemented with caveat(s):
This method hangs with Dragon NaturallySpeaking
version 3.01.

LexiconDlg Not implemented

TrainGeneralDlg Not implemented

TrainMicDlg Not implemented

[VCmdEnum: I mplemented
Clone Implemented
Next Implemented
Reset Implemented
Skip Implemented

[VCmdM enu: I mplemented
Add Implemented
Desctivate Implemented
Enableltem Implemented
Get I mplemented
ListSet I mplemented
ListGet Implemented
Num Implemented
Set I mplemented

37

Setltem Implemented
TrainMenuDlg Not implemented
Activate Implemented
Remove I mplemented
IVoiceCmd: I mplemented
CmdMimic Implemented
MenuCreate I mplemented
MenuDelete Implemented
MenuEnum I mplemented
Register Implemented
IVCmdNotifySink: I mplemented
AttribChanged Implemented
CommandOther Implemented
CommandRecognize Implemented
CommandStart Implemented
Interference Not implemented
MenuActivate Implemented
UtteranceBegin Implemented
UtteranceEnd Implemented
VUMeter Not implemented

Voice Text APl (VTxt)
The Voice Text (VTxt) API provides simple text-to-speech (TTS) capabilities for applications.
Note: The Italian version of Dragon NaturallySpeaking does not provide a SAPI-compliant TTS engine. Developers

wishing to use the VTxt interfaces for Italian, must use a TTS engine other than the one provided with
NaturallySpeaking.

IVTxtAttributes: I mplemented
DeviceGet Implemented
DeviceSet I mplemented
EnabledGet I mplemented
EnabledSet Implemented
| sSpeaking Implemented
SpeedGet Implemented
SpeedSet I mplemented
TTSModeGet I mplemented
TTSModeSet I mplemented

IVTxtDialogs: I mplemented
AboutDlIg Implemented
GeneralDlg Not implemented
LexiconDlg Not implemented
TrandateDIg Not implemented

IVTxtNotifySink: I mplemented
AttribChanged Implemented
SpeakingDone Implemented
Speak Implemented
SpeakingStarted Implemented
Visual Implemented

38

IVoiceT ext:
Register
Speak

StopSpeaking

AudioFastForward

AudioPause
AudioResume
AudioRewind

Speech Recognition API (SR)

| SRCentral:
GrammarLoad
ModeGet
Pause
PosnGet
Register
Resume
ToFileTime
UnRegister

I SRDialogs:
AboutDlIg
GeneralDlg

LexiconDlg
TrainMicDlg
TrainGeneralDlg

| SREnum:
Clone
Next
Reset
Select
Skip

| SRFind:
Find
Select

| SRGramCFG:
LinkQuery
ListAppend
ListGet
ListQuery
ListRemove
ListSet

| SRGramCommon:

Activate
Archive
BookMark
Deactivate

I mplemented
Implemented

Implemented with caveat(s):
("") returns: 0x8007000E

Implemented
Implemented
I mplemented
I mplemented
Implemented

I mplemented
Implemented
Implemented
I mplemented
Implemented
I mplemented
I mplemented
I mplemented
Implemented

I mplemented
Implemented

Implemented with caveat(s):
This method hangs with Dragon NaturallySpeaking

version 3.01.

Not implemented
Not implemented
Not implemented

I mplemented
Implemented
Implemented
Implemented
Implemented
Implemented

Not implemented
Not Implemented
Not Implemented

I mplemented
Not implemented
Implemented
Implemented
Implemented

I mplemented
Implemented

I mplemented
Implemented
Implemented
Not implemented
Implemented

39

DeteriorationGet Implemented

DeteriorationSet Implemented
TrainDlg Not implemented
TrainPhrase Not implemented
TrainQuery Not implemented

| SRGrambDictation: I mplemented
Context I mplemented
Hint Not implemented
Words I mplemented

| SRGraml nsertionGUI: I mplemented
Hide Implemented
Move Implemented
Show Implemented

| SRResAudio: I mplemented
GetWAV Implemented

| SRResBasic: I mplemented
HagsGet Not implemented
[dentify Not implemented
PhraseGet Implemented
TimeGet Implemented with caveat(s):

(NULL,NULL): expected E_INVALIDARG, got
E_UNEXPECTED

| SRResCorrection: I mplemented
Correction I mplemented
Validate Implemented

| SRResEval: I mplemented
ReEvauate Not implemented

| SRResGraph: I mplemented
BestPathPhoneme Not implemented
BestPathword Implemented
GetPhonemeNode Not implemented
GetWordNode Implemented with caveat(s):

(dwWrdNde,&wrdnde,NULL,0,NULL):
expected E_INVALIDARG, got S OK

PathScorePhoneme Not implemented
PathScoreWord Not implemented
| SRResM emory: I mplemented
Free Implemented
LockGet Implemented
LockSet Implemented
Get Not implemented
|SRResMerge: I mplemented
Merge Not implemented
Split Implemented
| SRResM odifyGUI: Not implemented

Hide Not Implemented

Move
Show

| SRResScores:
GetPhraseScore
GetWordScores

| SRResSpeaker:
Correction
| dentify
| dentifyForFree
Validate

| SRSpeaker:
Delete
Enum
Merge
New
Query

Read
Revert
Select
Write

| SRAttributes:

AutoGainEnableGet
AutoGainEnableSet
EchoGet

EchoSet
EnergyFloorGet
EnergyFl oor Set
MicrophoneGet

MicrophoneSet
Real TimeGet
Real TimeSet
SpeakerGet

SpeakerSet

ThresholdGet
ThresholdSet
TimeOutGet
TimeOutSet

| L exPronounce:
Add
Get
Remove

| SRGramNotifySink:

BookMark
Paused
PhraseFinish

Not Implemented
Not Implemented

Not implemented
Not Implemented
Not Implemented

Not implemented
Not Implemented
Not Implemented
Not Implemented
Not Implemented

I mplemented

Implemented

Implemented

Not implemented

I mplemented

Implemented with caveat(s):
(szSpkr, 0, NULL): expected E_INVALIDARG,
got S OK

Not implemented

Not implemented
Implemented

Not implemented

I mplemented

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented with caveat(s):

(NULL,O,NULL): expected E_INVALIDARG, got S OK
Implemented

I mplemented

Implemented

Implemented with caveat(s):

(NULL,O,NULL): expected E_INVALIDARG, got S OK
Implemented with caveat(s):

(NULL): expected E_INVALIDARG, got E UNEXPECTED
I mplemented

I mplemented

I mplemented

I mplemented

I mplemented
I mplemented
I mplemented
Implemented

I mplemented
Not implemented
I mplemented
Implemented

41

PhraseHypothesis
PhraseStart
ReEvauate
Training
UnArchive

| SRNotifySink:
AttribChanged
Interference
Sound
UtteranceBegin
UtteranceEnd
VUMeter

Not implemented
Implemented

Not implemented
Not implemented
Not implemented

I mplemented

I mplemented
Not implemented
Not implemented
Implemented
Implemented

Not implemented

42

Appendix C: Grammar

We arranged our acceptable phrases into a generic grammar for ease of parsing. What follows is a
regular expression list of the grammar followed by two examples of each type.

[Instrument/T rack][L ess/M or €]* [Dynamic/Expr ession]*[L ocation [to L ocation]]*
Trumpets need to be louder at measure 12.
Violins need to be less staccato.

[Location [to L ocation]][L ess/M or e]* [Dynamic/Expr ession]*[I nstrument/T r ack]*
At the Codal want more from the saxophones.
At Measure 3 | want more emphasis on the downbeat.

[Location [to L ocation]][I nstrument/Track]* [L ess/M or €]* [Dynamic/Expr ession]*
At measure 5 | want the cellos to play more passionately.
At the second ending | want the Tubasto play very gently.

[Location Directive][L ocation]*
Start at Measure 8.
Take if from the top.

* The asterisk represents any unrecognized words or phrases.

Following are example words for each of the groups that the parser can understand.
[Instrument/Track]

Track #[1,2,3,4...]

Cello

Violin

Viola

Bass

Trumpet

Tuba

Trombone

Etc.

[Dynamic/Expression]
Slow
Volume
Pianissimo
Piano
Mezzo Piano
Mezzo Forte
Forte
Fortissmo
Sforzando
Agitati
Anima Soul
Animato
Apassionato
Passionately

43

Brilliant
Sadly
Playful
Etc.

[LessMore]
Less
More
Not
Very
Don't

[Location]
Measure #[1,2,3,4...]
Top of the page
Top
Edge
Andante
Allegro
Beginning
Coda
Segno
Largo
Lento
Adagio
Solo
Entrance
Page#[1,2,3/4...]
Etc.

[Location Directive/ Action]
Start
Go
From
Play
Etc.

Examples:

Trumpets need to be louder at measure 12.
Violins need to be less staccato.

Get Louder at the tutti section.

Not so loud.

Don't use so much vibrato.

At the Coda | want more from the saxophones.

At Measure 3 | want more emphasis on the downbeat.

At measure 5 | want the cellos to play more passionately.
At the second ending | want the Tubas to play very gently.
Start at Measure 8.

Take if from the top.

Go Back to the top of the page.

From the top

Softer.

Louder.

Make the staccatos shorter.

Accents need to be louder.

Really decrescendo there.

Take it from the second ending.

We need more vibrato from the trumpets.

Make the crescendo stand out.

Not so loud clarinets.

More vibrato.

Don't use vibrato here, make it quite smple.

| need a brighter sound from the brass.

The scope of each verbal command is based upon the arguments received. If a conductor were to
say “Track 1 more volume’, then the increase in volume would be applied only to Track 1.
However, a conductor is allowed to say “LOUDER!” which would cause an increase in volume in
all tracks.

Any command affecting tempo would have to be applied to all tracks. It would not make sense to
slow down one instrument while maintaining the other’s speeds.

45

Appendix D: Source Code

Following is the Visual Basic source code for the VAMP-VB modules.

Figure 7 - Main Form Source Code

VERSI ON 5. 00
Obj ect = "{5C486340- 2F92- 11D1- A47C- 00A024A3A678} #1. O#0"; " DNSTK10. DLL"

Obj ect = "{33101C00- 75C3- 11CF- ABAD- 444553540000} #1. 0#0"; " CSWBK32. OCX"
Begi n VB. Form frmmain

Caption = "VAWP - Voice Activated Music Processor"
Cl i ent Hei ght = 2685

Clientleft = 165

Client Top = 450

CientWdth = 7485

Li nkTopi c = " For nmL"

MaxBut t on = 0 ' Fal se

Scal eHei ght = 2685

Scal eW dt h = 7485

Start UpPosi tion 1 ' CenterOaner
Begi n Socket WenchCtrl. Socket Socket1

Left = 480

Top = 720

_Version = 65536

_ExtentX = 741

_ExtentY = 741

_St ockProps = 0

Aut oResol ve = -1 'True

Backl og = 5

Bi nary = -1 'True

Bl ocki ng = -1 'True

Br oadcast = 0 ' Fal se

Buf f er Si ze = 0

Host Addr ess = "

HostFil e = "

Host Nanme = "

I nLi ne = 0 ' Fal se

I nterval = 0

KeepAlive = 0 ' Fal se

Li brary = "

Li nger = 0

Local Port = 0

Local Servi ce = "

Pr ot ocol = 0

Renot ePor t = 0

Renot eSer vi ce = "

ReuseAddr ess = 0 ' Fal se

Rout e = -1 "True

Ti meout = 0

Type = 1

Ur gent = 0 ' Fal se
End

Begi n VB. Text Box t xt Act
Hei ght = 285

Left = 4920
Tabl ndex = 11
Top = 240
Visible = 0 ' Fal se
W dth = 1095

End

Begi n VB. Text Box txtAtt
Hei ght = 285
Left = 3720
Tabl ndex = 10
Top = 240
Visible = 0 ' Fal se
W dt h = 1095

End

Begi n VB. Text Box txt Par
Hei ght = 285
Left = 2400
Tabl ndex = 9
Top = 240
Visible = 0 ' Fal se
W dt h = 1095

End

Begi n VB. Text Box txtLoc
Hei ght = 285
Left = 1200
Tabl ndex = 8
Top = 240
Visible = 0 ' Fal se
W dt h = 1095

End

Begi n VB. Text Box txt Com
Hei ght = 285
Left = 1320
Tabl ndex = 7
Top = 2280
Visible = 0 ' Fal se
W dt h = 4575

End

Begi n VB. CommandButt on cndRun
Caption = "Run Conmmand"
Hei ght = 495
Left = 3960
Tabl ndex = 6
Top = 1680
W dt h = 1215

End

Begi n VB. Li st Box List4
Hei ght = 255
Left = 4800
Tabl ndex = 5
Top = 1320
Visible = 0 ' Fal se
W dt h = 1215

End

Begi n VB. Li st Box List3
Hei ght = 255
Left = 3600
Tabl ndex = 4
Top = 1320
Visible = 0 ' Fal se
W dt h = 1215

End

Begi n VB. Li st Box List2
Hei ght = 255

47

Left = 2400
Tabl ndex = 3
Top = 1320
Visible = 0 ' Fal se
W dth = 1215
End
Begin VB.ListBox Listl
Hei ght = 255
Left = 1200
Tabl ndex = 2
Top = 1320
Visible = 0 ' Fal se
W dt h = 1215
End
Begi n DNSTool sCt|.DgnDi ct Edit DgnDi ctEdit1
Left = 6240
A eoj ect Bl ob = "main. frx":0000
Top = 480
End
Begi n DNSTool sCt| . DgnVoi ceCnd DgnVoi ceCmd1
Left = 6240
A eoj ect Bl ob = "main. frx":0028
Top = 720
End
Begi n VB. Text Box txtVREntry
Hei ght = 615
Left = 1080
Tabl ndex = 1
Top = 600
W dt h = 5055
End
Begi n DNSTool sCt|.DgnM cBtn DgnM cBt nl
Hei ght = 495
Left = 2160
A eoj ect Bl ob = "main. frx":004C
Tabl ndex = 0
Top = 1680
W dt h = 1335
End
Begi n DNSTool sCt | . DgnEngi neCont rol DgnEngi neControl 1
Left = 6240
A eoj ect Bl ob = "main. frx":007C
Top = 960
End
Begi n VB. Menu muFil e
Caption = "&File"
Begi n VB. Menu smukExi t
Caption = "E&xit"
End
End
Begi n VB. Menu muUser
Caption = " &User"
Begi n VB. Menu mmuCr eat e
Caption = " &New"
End
Begi n VB. Menu mmuSel ect
Caption = " &pen"
End
Begi n VB. Menu mmuBl ank
Caption = e
End
Begi n VB. Menu mmuSave
Caption = "&Save Speach Fil es"
End

48

End
Begi n VB. Menu muTool s

Caption = " &Tool s"
Begi n VB. Menu mmuAudi o
Caption = "Run &Audi o Set up"
End
Begi n VB. Menu muGenTr ai n
Caption = "Run &General Training"
End
Begi n VB. Menu mmuEdi t Li sts
Caption = "&Edit Command Lists"
End
Begi n VB. Menu mmuBl ank2
Caption = e
End
Begi n VB. Menu mmuNewConnect i on
Caption = "&New Sequencer Connection"
End
End
Begi n VB. Menu muHel p
Caption = " &Hel p"
Begi n VB. Menu mmuCont ent s
Caption = "Contents..."
End
Begi n VB. Menu mmul ndex
Caption = "l ndex. .."
End
Begi n VB. Menu mmuSear ch
Caption = "Search..."
End
End

End

Attribute VB_Nanme = "frmmin"
Attribute VB _d obal NanmeSpace = Fal se
Attribute VB Creatable = Fal se
Attribute VB Predeclaredld = True
Attribute VB _Exposed = Fal se

Option Conpare Text

Di m VMenu As | VMenuAut o 'voi ce recognition comrand nenu
Di m acti vated As Bool ean "hold if formhas been activated
Const wake_up =1 ' command nunbers

Const go_sleep = 2
Const run_com= 3

"Function: Activate
' Pur pose: Sets up formand all variables
Public Sub Activate()

Di m f num As | nt eger

Dimtxt As String

Dim Host As String

Me. Enabl ed = True

List1l. d ear "clear the list

49

On Error GoTo ErrorHandl er
fnum = FreeFile
Open App.Path & "\Listl.dat" For |nput As fnum
‘open a file for reading

Do Wil e Not EOF(fnum 'go through the entire file
Li ne I nput #fnum txt ‘read a line of the file
txt = TrinB(txt) ‘set txt equal to the line
If Len(txt) > 0 Then Listl. Addltemtxt

Loop "if txt exists then add it

"to the list

Cl ose fnum
List2.d ear "clear the list
fnum = FreeFile

Open App.Path & "\List2.dat" For |Input As fnum
‘open a file for reading

Do Wil e Not EOF(fnum 'go through the entire file
Li ne I nput #fnum txt ‘read a line of the file
txt = TrinB(txt) ‘set txt equal to the line
If Len(txt) > O Then List2. Addltemtxt

Loop "if txt exists then add it

‘"to the list

Cl ose fnum
Li st3.d ear ‘clear the list
fnum = FreeFile

Open App.Path & "\List3.dat" For |nput As fnum
‘open a file for reading

Do Wil e Not EOF(fnum 'go through the entire file
Li ne I nput #fnum txt ‘read a line of the file
txt = TrinB(txt) ‘set txt equal to the line
If Len(txt) > O Then List3.Addltemtxt

Loop "if txt exists then add it

‘"to the list

Cl ose fnum
List4.d ear ‘clear the list
fnum = FreeFile

Open App.Path & "\List4.dat" For |nput As fnum
‘open a file for reading

Do Wil e Not EOF(fnum 'go through the entire file
Li ne I nput #fnum txt ‘read a line of the file
txt = TrinB(txt) ‘set txt equal to the line
If Len(txt) > O Then List4. Addltemtxt

Loop "if txt exists then add it

‘"to the list

Cl ose fnum

frmMit. Caption = "Creating Fornt "display wait dial og
frmMit.lblWait.Caption = "Creating Form Pl ease Wait."
Me. Show

Me. Enabl ed = Fal se

fr MM t. Show

50

activated = True

DgnEngi neControl 1. Regi ster

DgnM cBt nl. Regi st er

DgnVoi ceCndl. Regi ster ""

DgnDi ct Edi t 1. Regi ster txtVREntry. hWd

Set VMenu = DgnVoi ceCndl. MenuCr eat e(" app",
VMenu. Add wake_up, WakeUp, "", ""
VMenu. Add go_sl eep, GoToSl eep, "", ""

VMenu. Add run_com "run conmmand", "",

VMenu. hwadMenu = hwad
VMenu. Active = True

Unl oad frmAait

Me. Enabl ed
Me. Set Focus

= True
DgnM cBt nl. Enabl ed = True
DgnM cBtnl. M cState = dgnm cOf f
txt VREnt ry. Set Focus
GoTo Quit
Error Handl er:

If Err.Nunber =
dictation

E_NOTI MPL Then

MsgBox

capabilites.", vbOKOnly,
Unl oad frmAait
Unl oad Me

"Error"

El se

MsgBox Str(Err) + " - "
Unl oad frmAit
Unl oad Me

+ Error$,

End | f

Socket 1. AddressFam |y = AF_I NET
Socket 1. Bi nary = Fal se
Socket 1. Bl ocki ng = Fal se

Socket 1. BufferSi ze = 1024

Socket 1. Prot ocol = | PPROTO_| P
Socket 1. Socket Type = SOCK_STREAM
Socket 1. Renot eServi ce = "echo"
Socket 1. HostFile = ""

Socket 1. Host Name = "l ocal host "
Socket 1. Renot ePort = 5862

Socket 1. Local Port = | PPORT_ANY

"Your speach engi ne does not support dictation.

'register voice recognition objects

'create and setup voice recognition comrand nenu
"menu", dgnl angUSEnglish, "", vcrdnt_CREATE_TEMP)

"initialize mcrophone

'checks to see if error was caused by non-support of

Pl ease install one with these

' di spl ays general
vbOKOnly, "Error" '

error nmessage and exits
show nessage

'sets up socket

'sets up defaul connection

=a

9L

I f Socket 1. Connect <> 0 Then Exit Sub 'checks if connected

"Function: cmdRun_Cick
Pur pose: Manual |y runs a conmand

Private Sub cnmdRun_d i ck()
Di m AndSt uff As ParseType

AndStuff. Current = "" "initialize the andstuff var
AndSt uff. Left Over = txtVREntry
Cal | ParseControl (AndSt uff) ‘call the parser with andstuff

txt VREnt ry. Set Focus
txtVREntry. Text = ""

End Sub
Function: DgnEngi necontrol 1_Di al ogC osed
Pur pose: I's call ed when a DgnEngi neControl function exits.

"Variables: Dialog - specifies which dialog has exited
' Exi t Code - hold exit status of dialog

Private Sub DgnEngi neControl 1_Di al ogd osed(Di al og As DNSTool sCt|. DgnDi al ogConst ant s,
Long)

'check if general training has exited
If Dialog = dgndl gGeneral Trai ni ng Then

"display waiting dial og
frmMit. Caption = "Saving User"
frmMit.lblWait. Caption = "Saving " + frmAit.|blWait. Caption
frmAai t. Show

' save speaker
DgnEngi neControl 1. Speaker Save

Unl oad frmAait
End |f

Me. Enabl ed = True
Me. Set Focus

End Sub

"Function: DgnVoi ceCmdl_CommandRecogni ze

Exi t Code As

=5

fo 74

Pur pose: Executes the command that is recogni zed by the voice recognition

engi ne.
"Vari abl es: Command - nane of command recogni zed
' ID - integer id of recognized comrmand
' Acti on - contains string of action to be perfornmed

' ListResults - results of voice recognition

Private Sub DgnVoi ceCnmdl_ComandRecogni ze(Command As String, |D As Long, Action As String,

Li st Results As DNSTool sCt|.DgnStrings)
Di m AndSt uff As ParseType

If I D= wake_up Then "check if command is mcrophone wake up comrand

DgnM cBtnl. M cState = dgnmi cOn

El se
If 1D = go_sleep Then 'check if command is mcrophone sl eep command
DgnM cBtnl. M cState = dgnmi cSl eepi ng
El se
If ID = run_com Then 'check if command is run command command
AndStuff. Current = "" "initialize the andstuff var
AndSt uff. Left Over = txtVREntry
Cal | ParseControl (AndStuff) "Call the parser with andstuff
txt VREnt ry. Set Focus
txtVREntry. Text = ""
End If
End | f
End I f
End Sub

Function: Form Load

Pur pose: Initializes variables and calls sel ect speaker form
Private Sub Form Load()

Di m spkrs As DgnStrings ' contai ns speaker names
Dimi As Integer

Me. Enabl ed = Fal se

'check to see if any speech engines are installed

| f DgnEngi neControl 1. SpeechEngi nes. Count = 0 Then

MsgBox "A speach engine is not currently installed on this machine. Please install

try again.", vbOKOnly, "Error"

one and

PN

fo o)

End I f
Set yBI(PQd:NEJgnEngi neControl 1. Speakers

"enters names of speakers into speaker |ist box
For i = 1 To spkrs. Count

frnSpeaker . | st Speaker. Addl t em spkrs(i)
Next
f r nBpeaker . Show
Me. Hi de
f r nSpeaker . Set Focus

"select first speaker
I f frmSpeaker.| st Speaker. Li st Count > 0 Then

frnSpeaker . | st Speaker . Sel ect ed(0) = True
End I f
frnBpeaker . | st Speaker . Set Focus
End Sub

"Function: cmdRun_Cick

Pur pose: Manual |y runs a conmand
Private Sub Form Unl oad(Cancel As I|nteger)
I f Socket 1. Connected Then ' di sconnect socket
Socket 1. Di sconnect
End I f
I f activated Then ‘check if formwas activated

‘check if mcrophone was on
If DgnM cBtnl. M cState = dgnmi cOn Then

DgnM cBtnl. M cState = dgnm cOf f

End | f

‘check if speaker files have been nodified

I f DgnEngi neControl 1. Speaker Modi fi ed Then

If MsgBox("Do you want to save your speech files?", vbYesNo, "Save Speach Files") =
vbYes Then

DgnEngi neCont rol 1. Speaker Save
End If

End | f

q

End | f

End Sub

Function: muAudi o_Cick
' Pur pose: Runs audi o setup w zard.
Private Sub mmuAudi o_C i ck()

Me. Enabl ed = Fal se
DgnEngi neCont rol 1. Audi oSet upW zard "" 'run audi o setup w zard

End Sub

Function: muCreate_dick

Pur pose: Calls formto create a new user.

Private Sub muCreate_d i ck()
Me. Enabl ed = Fal se
frmCr eat e. Show ‘call fromto create new user
frnCreate. SetReturn (1)

End Sub

"Function: rmuEditLists_dick

' Pur pose: Calls formto edit data lists

Private Sub mmuEditLists_dick()

Dimi As Integer

For i = 0 To Listl.ListCount - 1 "enter data into list on form

frnEdit.| stBox1. Addltem (Listl.List(i))

Next

For i = 0 To List2.ListCount - 1 "enter data into list on form
frnEdit.| st Box2. Addltem (List2.List(i))

Next

For i = 0 To List3.ListCount - 1 "enter data into lists on form

frnEdit.| st Box3. Addltem (List3.List(i))

—

I

For i = 0 To List4.ListCount - 1 "enter data into lists on form
NemfrnEdit.IstBox4.AddItem(List4.List(i))
Next

Me. Enabl ed = Fal se
frnEdi t . Show

End Sub

Function: muGenTrain_Cick

Pur pose: Runs general training.

Private Sub mmuGenTrai n_C i ck()

Me. Enabl ed = Fal se
DgnEngi neCont rol 1. Gener al Tr ai ni ng

'run general training

End Sub

"Function: muNewConnection_Cick()

Pur pose: Connects to a new sequencer

Private Sub mmuNewConnecti on_d i ck()
f rnConnect . Show
End Sub

Function: muSave_dick

Pur pose: Manual |y runs a conmand

Private Sub mmuSave_d i ck()
Me. Enabl ed = Fal se

"display wait dialog
frmMit. Caption = "Saving Speaker"
frmMit.IblWait.Caption = "Saving " + frnmMit.|blWit. Caption
frmAai t. Show

DgnEngi neCont rol 1. Speaker Save ' save speaker
Me. Enabl ed = True

Me. Set Focus
Unl oad frmAait

End Sub

Function: muSel ect _dick

Pur pose: Sel ects a speaker file to use.
Private Sub mmuSel ect _d i ck()

Di m spkrs As DgnStrings
Dimi As Integer

Set spkrs = DgnEngi neControl 1. Speakers
For i = 1 To spkrs. Count

frntel ect. | st Speaker. Addl t em spkrs(i)
Next

Me. Enabl ed = Fal se
frmBel ect . Show

End Sub

Private Sub smuExit_Cick()
Unl oad Me
End Sub

Function: ChecklLi st

' contai ns names of speaker

Pur pose: Checks the word recieved for a match in one of the lists

if one is found, then the word is placed in the appropriate

text box

Public Sub CheckLi st(OneWrd As String)
Dimi As Integer

For i =0 To Listl.ListCount - 1 '
If Listl.List(i) = OneWrd Then '
txtLoc = OneWord '
Exit Sub !
End | f
Next i

For i = 0 To List2.ListCount - 1 '
If List2.List(i) = OneWrd Then '
txt Par = OneWord '

Vari abl es: OneWord - Holds a word to be conpared against the lists

Go through each itemin the |ist
If the word in the list matches
the word sent to the procedure

add it to the text box and exit

Go through each itemin the |ist
If the word in the list matches
the word sent to the procedure

=)

Il

End | f

Next i
For i = 6%rb BMBt3. Listcount - 1 * 889t hE olignt BEchext eRPKn2PHe®K] bt
If List3.List(i) = OneWrd Then "If the word in the list matches
txtAtt = OneWord '"the word sent to the procedure
Exit Sub ‘add it to the text box and exit
End | f
Next i
For i = 0 To List4.ListCount - 1 'CGo through each itemin the |ist
If Listd4.List(i) = OneWrd Then "If the word in the list matches
txt Act = OneWord 'the word sent to the procedure
Exit Sub ‘add it to the text box and exit
End | f
Next i
End Sub

Figure 8 - Wait Form Sour ce Code

VERSI ON 5. 00

Begi n VB. Form frmi t

Cl i ent Hei ght = 1770
ClientlLeft = 60
Client Top = 345
CientWdth = 5400
Li nkTopi c = " For nmL"
MaxBut t on = 0 ' Fal se
M nBut t on = 0 ' Fal se
Scal eHei ght = 1770
Scal eW dt h = 5400
Start UpPosition = 1 ' CenterOaner
Begi n VB. Label |bl Wit
Caption = " Speaker Pl ease Wait..."
Begi nProperty Font
Nane = "Ti mes New Roman"
Si ze = 18
Char set = 0
\\éi ght = 400
Underl i ne = 0 ' Fal se
Italic = 0 ' Fal se
Stri ket hrough = 0 ' Fal se
EndProperty
Hei ght = 975
Left = 1440
Tabl ndex = 0
Top = 360
W dt h = 2775
End

End

Attribute VB _Name = "frmMit"
Attribute VB _d obal NanmeSpace = Fal se
Attribute VB Creatable = Fal se
Attribute VB Predeclaredld = True
Attribute VB _Exposed = Fal se

58

Figure9 - Speaker Form Sour ce Code

VERSI ON 5. 00

Begi n VB. For m f r mBpeaker

Caption = "Speaker Sel ection "
Cl i ent Hei ght = 2625

ClientlLeft = 60

Client Top = 345

CientWdth = 4875

Li nkTopi c = " For nmL"

MaxBut t on = 0 ' Fal se

Scal eHei ght = 2625

Scal eW dt h = 4875

Start UpPosi tion 2 'CenterScreen
Begi n VB. CommandButt on cndSel ect

Caption = "Sel ect Speaker"
Def aul t = -1 "True
Hei ght = 375
Left = 3360
Tabl ndex = 4
Top = 480
W dt h = 1335
End
Begi n VB. CommandBut t on cndDel et e
Caption = "Del ete Speaker"
Hei ght = 375
Left = 3360
Tabl ndex = 3
Top = 1440
W dt h = 1335
End

Begi n VB. CommandButt on cndCr eat e

Caption = "Create Speaker"
Hei ght = 375
Left = 3360
Tabl ndex = 2
Top = 960
W dt h = 1335

End

Begi n VB. CommandBut t on cndCancel
Caption = "Cancel "
Hei ght = 375
Left = 3360
Tabl ndex = 1
Top = 1920
W dt h = 1335

End

Begi n VB. Li st Box | st Speaker
Hei ght = 1815
Left = 240
Tabl ndex = 0
Top = 480
W dt h = 2775

End

Caption = " Speaker: "
Hei ght = 255
Beg;ll'-gm/ﬁdb?bel | bl User 540
Top = 120
W dt h = 735
End

End

Attribute VB Name = "frnSpeaker"

Attribute VB _d obal NanmeSpace = Fal se

Attribute VB Creatable = Fal se

Attribute VB Predeclaredld = True

Attribute VB _Exposed = Fal se

Di m conpl ete As Bool ean "is true if can be exited without exiting full

"Function: cnmdCancel _dick

Pur pose: Exi ts speaker sel ect
Private Sub cmdCancel _Qick()
Unl oad Me

End Sub

Function: cndCreate_dick

Pur pose: Calls formto create a new user
Private Sub cmdCreate_dQ i ck()

Me. Enabl ed = Fal se ‘call create new user form

frnCreate. SetReturn (0)

fr mCr eat e. Show
End Sub

"Function: cndDelete_dick

Pur pose: Del etes the sel ected speaker

Private Sub cnmdDel ete_C i ck()

On Error GoTo ErrorHandl er

Dimi As Integer

I f | stSpeaker. Sel Count = 0 Then 'check to see if selected speaker

MsgBox "A speaker was not selected!", vbOKOnly, "Error"

program

i =0
| 'get i-value of selected speaker
El'Seynile Not (i = IstSpeaker. ListCount) And Not (IstSpeaker.Sel ected(i))

=i +1
Wend
"verify that user wants to del ete speaker
I f MsgBox("Are you sure you want to del ete speaker: " + |stSpeaker.List(i),
User") = vbYes Then
' del et e speaker

f rmmai n. DgnEngi neCont r ol 1. Speaker Del et e | st Speaker. Li st (i)
| st Speaker. Removel tem (i)

End | f
End | f
GoTo OnuExit

Er r or Handl er :

"di splay error nessage
MsgBox Str(Err) + " - " + Error$, vbOKOnly, "Error" ' show nessage

CmdExi t :
End Sub
"Function: activated

Pur pose: Sets conplete variable to true

Public Sub activated()

conmplete = True
End Sub

"Function: cmdSelect_dick

Pur pose: Opens the selected user and runs the main form

Private Sub cmdSel ect _COick()

Dimi As Integer

I f | stSpeaker. Sel Count = 0 Then 'check if sel ected speaker
MsgBox "A speaker was not selected!", vbOKOnly, "Error"

El se

vbYesNo, "Delete

'get i-value of selected user
While Not (i = |stSpeaker.ListCount) And Not (I stSpeaker. Selected(i))

Wend

"display wait dialog
frmMit. Caption = "Loadi ng Speaker: " + |stSpeaker.List(i)
frmMit.lblWait. Caption = "Loading " + frmAait.|blWit. Caption
frmAai t. Show

'l oad speaker
f rmmai n. DgnEngi neCont r ol 1. Speaker = | st Speaker. Li st (i)
'check if speaker has conpl eted an audi o setup

' If Not frmmain. DgnEngi neControl 1. Audi oSet upConpl ete Then

' MsgBox "You have not conpleted the audio setup. You will be given a chance to do so
now. ", vbOKOnly, "lnconplete Audio Setup"”

' frnSpeaker . Enabl ed = Fal se

' frnCr eat e. Show "run create user to finish audio setup
' frnCreate. Set Name (| st Speaker.List(i))
' frnCreate.txtSpeaker. Text = | st Speaker. List(i)

' frnCreate. Set Return (2)
' frnCreate. O0ff Statel

' frnCreate. State3

' frnCreate. SetState (3)
' Exit Sub

' End | f

'check if speaker has been calibrated
If Not frrmmain. DgnEngi neControl 1. Speaker Cal i brated Then

Unl oad frmMit

MsgBox "You have not gone through general training yet. You nust do this to calibrate
your speach files. You will be given the chance to do so now ", vbOKOnly, "Speaker Uncali brated"

frnSpeaker . Enabl ed = Fal se
frnCr eat e. Show 'run create user to finish calibration
frnCreate. SetReturn (2)
frnCreate. OFf Statel
frnCreate. State4
frnCreate. SetState (4)
frnCreate. Set Name (| st Speaker.List(i))
frnCreate.txtSpeaker. Text = | st Speaker.List(i)
Exit Sub

End | f

Unl oad frmAait

frmmai n. Enabl ed = True

frmmai n. Acti vate
conplete = True
Unl oad Me
End |f
End Sub

"Function: Form Unl oad

Pur pose: Unl oads the form
Private Sub Form Unl oad(Cancel As I|nteger)
If Not conplete Then 'check if conpl eted speaker selection
Unl oad frmmain
End I f
End Sub
Function: | stSpeaker_Dbl dick

Pur pose: Sel ects the user by double clicking on |ist

Private Sub | st Speaker_Dbl dick()
cmdSel ect _Cdick

End Sub

Figure 10 - Select Form Sour ce Code

VERSI ON 5. 00

Begi n VB. Form frnBel ect

Caption = "Sel ect Speaker"
Cl i ent Hei ght = 2925

Clientleft = 60

Client Top = 345

63

Li nkTopi c = " For mL"
xBut = ' Fal se

GiFsfge = dasg

Scal eWdth = 4110

Showl nTaskbar = 0 ' Fal se

St art UpPosi tion 2 'CenterScreen
Begi n VB. CommandBut t on cndCancel

Caption = " &Cancel "
Hei ght = 375
Left = 2520
Tabl ndex = 2
Top = 2280
W dt h = 1215
End
Begi n VB. CommandButt on cndSel ect
Caption = "&Sel ect"
Def aul t = -1 "True
Hei ght = 375
Left = 2520
Tabl ndex = 1
Top = 1800
W dt h = 1215
End
Begi n VB. Li st Box | st Speaker
Hei ght = 2010
Left = 360
Tabl ndex = 0
Top = 600
W dt h = 1815
End
Begi n VB. Label | bl Speaker
Caption = " Speaker: "
Hei ght = 255
Left = 360
Tabl ndex = 3
Top = 240
W dt h = 855
End

End

Attribute VB _Nanme = "frnSel ect"”
Attribute VB _d obal NanmeSpace = Fal se
Attribute VB Creatable = Fal se
Attribute VB Predeclaredld = True
Attribute VB _Exposed = Fal se

"Function: cnmdCancel _dick

Pur pose: Cancel s form

Private Sub cmdCancel _Qick()

frmmai n. Enabl ed = True "set focus back to the main formand exit
f r mmai n. Set Focus

Unl oad Me

End Sub

"Function: cmdSelect_dick
' Pur pose: Sel ects a speaker and | oad that speakers speech files
Private Sub cmdSel ect _Cick()
Dimi As Integer
I f |stSpeaker. Sel Count = 0 Then 'check to see if a speaker was sel ected
MsgBox "A speaker was not selected!", vbOKOnly, "Error"
El se

"check to see if user wants to save the current speaker

I f MsgBox("Do you want to save your current speaker?", vbYesNo, "Save Speaker") = vbYes Then

Me. Enabl ed = Fal se "display wait dialog

frmMit. Caption = "Saving Speaker"

frmMit.lblWait. Caption = "Saving " + frmAit.|blWait. Caption
f rmmai n. DgnEngi neCont r ol 1. Speaker Save

Unl oad frmait

Me. Enabl ed = True

Me. Set Focus
End | f
i =0
'get i-value of selected speaker
While Not (i = |stSpeaker.ListCount) And Not (I stSpeaker. Selected(i))
i =i +1
Wend

'l oad speaker
frmMit. Caption = "Loadi ng Speaker: " + |stSpeaker.List(i)
frmMit.lblWait. Caption = "Loading " + frmAait.|blWit. Caption
frmAai t. Show

frmmai n. DgnEngi neCont r ol 1. Speaker = | st Speaker. Li st (i)
Unl oad frnait

'check if audio setup has been conpl et ed
If Not frrmmain. DgnEngi neControl 1. Audi oSet upConpl ete Then

MsgBox "You have not conpleted the audio setup. You will be given a chance to do so
now. ", vbOKOnly, "lnconplete Audio Setup"”

frnBel ect. Enabl ed = Fal se

frnCr eat e. Show "call up create speaker form
frnCreate. Set Status (True)

frnCreate. Set Name (| st Speaker.List(i))
frnCreate.txtSpeaker. Text = | st Speaker.List(i)
frnCreate. Set Return (3)

frmCreate. O f Statel

frnCreate. SetState (3)
Ff(h%rggtbe. St at e3
End | f

'check if speaker has been cali brated
If Not frrmmain. DgnEngi neControl 1. Speaker Cal i brated Then

MsgBox "You have not gone through general training yet. You nust do this to calibrate

your speach files. You will be given the chance to do so now. ", vbOKOnly,
frmBel ect. Enabl ed = Fal se
frnCr eat e. Show "call up create speaker form
frnCreate. Set Status (True)
frnCreate. Set Return (3)
frmCreate. O f Statel
frmCreate. State4
frnCreate. SetState (4)
frnCreate. Set Name (| st Speaker.List(i))
frnCreate. txtSpeaker. Text = | st Speaker.List(i)
Exit Sub
End | f

frmmai n. Enabl ed = True
f r mmai n. Set Focus

Unl oad Me

End |f

End Sub
"Function: |stSpeaker_Dbl dick

' Pur pose: Sel ect speaker when list is double clicked

Private Sub | st Speaker_Dbl dick()
cmdSel ect _Cdick

End Sub

" Speaker Uncali brat ed"

Figure 11 - Connect Form Sour ce Code

VERSI ON 5. 00

66

Caption =
Bea; ¥Rt FRI ghf r mCoanec

Clientleft
Client Top
CientWdth
Li nkTopi c
Scal eHei ght
Scal eW dt h
Start UpPosi tion
Begi n VB. Text Box txt
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. Text Box txt
Hei ght =
Left
Tabl ndex
Top
W dt h
End
Begi n VB. Text Box txt
Hei ght
Left

Tabl ndex =

Top
W dt h
End
Begi n VB. CommandBut t
Caption =
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. CommandBut t
Caption
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. Li ne Line3
X1
X2
Y1
Y2
End
Begi n VB. Li ne Line2
X1
X2
Y1
Y2
End
Begi n VB. Li ne Linel
X1 =

"Connect to Sequencer"
5610

60

345

3885

" For mL"

2610

3885

3 'Wndows Default

Por t
375
2040
4
1320
1215

Nane
375
2040
3
360
1215

375
2040

840
1215

on cndCance
"Cancel "
495
2040
1
1920
1215

on cndConnect
"Connect "
495
720
0
1920
1215

3360
3360
480

1080

3240
3360
1080
1080

3240

Y1 = 480
Y2 = 480
End
BeglA VB. Label Labef3 3360
Caption = "Port:"
Hei ght = 255
Left = 720
Tabl ndex = 7
Top = 1320
W dt h = 1215
End
Begi n VB. Label Label 2
Caption = "I P Address:"
Hei ght = 255
Left = 720
Tabl ndex = 6
Top = 840
W dt h = 1215
End
Begi n VB. Label Label 1
Caption = "Host Name:"
Hei ght = 255
Left = 720
Tabl ndex = 5
Top = 360
W dt h = 1215
End

End

Attribute VB _Name = "frnConnect"
Attribute VB _d obal NanmeSpace = Fal se
Attribute VB Creatable = Fal se
Attribute VB Predeclaredld = True
Attribute VB _Exposed = Fal se

Function: cndCancel _dick

Pur pose: Exits form

Private Sub cmdCancel _Qick()

f r mmai n. Set Focus
Unl oad Me

End Sub

"Function: cmdConnect_dick

Pur pose: Connects to a new sequencer

Private Sub cndConnect_C i ck()

t xt Name. Text = Tri nmB(txt Name. Text)
txtl D Text = Trin®(txtlD. Text)
t xt Port. Tabl ndex = Trin®(txtPort. Text)

"fix variables

‘check if have id and port
If (txtNane.Text = "") And (Not (txtID. Text = "")) And (Not (txtPort. Text

I f frmmain. Socket 1. Connect ed Then ‘check if already have connection
frmmai n. Socket 1. Di sconnect
End | f
'set up socket
frmmai n. Socket 1. Host Address = Trin$(txt|D. Text)
frmmai n. Socket 1. Renot ePort = Val (Tri nf(txtPort. Text))

'check if connection
I f frmmain. Socket 1. Connect <> 0 Then

MsgBox "Error", "Could not connect to sequencer!"
Exit Sub
End | f
El se
If Not (txtPort.Text = "") Then ‘check if have port and host nanme
‘check if already connected
I'f frmmain. Socket 1. Connect ed Then
frmmai n. Socket 1. Di sconnect
End If
'set up socket
frmmai n. Socket 1. Host name = Tri nB(t xt Name. Text)
frmmai n. Socket 1. Renot ePort = Val (Tri n$(txtPort. Text))
‘check if connected
I'f frmmain. Socket 1. Connect <> 0 Then
MsgBox "Error", "Could not connect to sequencer!"”
Exit Sub
End I f
El se
Exit Sub
End | f
End I f
Unl oad Me
End Sub

"Function: Form Load
' Pur pose: Initializes screen

Private Sub Form Load()

="")) Then

69

txt1D. Text = frmmai n. Socket 1. Host Addr ess
txtPort. Text = TrinB(Str$(frnmmain. Socket 1. Renot ePort))

End Sub

Function: txtld_Change

Pur pose: Renmpbves host name
Private Sub txtl|D_Change()
t xt Nanme. Text = ""

End Sub

Function: txtName_Change

Pur pose: Renmoves id

Private Sub txtNanme_Change()
txtID Text = ""

End Sub

Figure 12 - Edit Form Sour ce Code

VERSI ON 5. 00

Begi n VB. Form frnEdi t

Caption = "Edit Command Lists"
Cl i ent Hei ght = 5655

Clientleft = 60

Client Top = 345

CientWdth = 9045

Li nkTopi c = " For nL"

MaxBut t on = 0 ' Fal se

Scal eHei ght = 5655

Scal eW dt h = 9045

St art UpPosi tion

2 'CenterScreen

Begi n VB. Text Box txt4

Hei ght
Left

= 375
= 6600

70

Top
W dt h

End
Begil APVBI®Ext Box t xT'3
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. Text Box txt2
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. Text Box txtl
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. ConnandButton
Caption =
Hei ght =

Left =

Tabl ndex
Top
W dt h
End
Begi n VB. ConnandButton
Caption
Def aul t
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. CommandBut t on
Caption
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. ConnandButton
Caption
Hei ght
Left
Tabl ndex
Top
W dt h
End
Begi n VB. ConnandButton
Caption
Hei ght
Left
Tabl ndex
Top

3120
1815

22

375
4560
21
3120
1695

375
2520
20
3120
1815

375
480
19
3120
1815

cndCance
"Cancel "
495

5880

14
4800
1215

cndDone

" Done"

-1 "True
495

7200

13

4800

1215

cndSave
" Save"
495
4560

12

4800
1215

cnmdAdd4
"Add Word"
375

6600

11

3600

1815

cndRenove4d
"Renmove Word"
375

6600

10

4080

End

Begi n VB. CommandButt on cndRenpve3

tjion = " ve Word"
&Bb t E égggo
Left = 4560
Tabl ndex = 9
Top = 4080
W dt h = 1695
End
Begi n VB. CommandBut t on cndAdd3
Caption = "Add Word"
Hei ght = 375
Left = 4560
Tabl ndex = 8
Top = 3600
W dt h = 1695
End
Begi n VB. CommandBut t on cndAdd2
Caption = "Add Word"
Hei ght = 375
Left = 2520
Tabl ndex = 7
Top = 3600
W dt h = 1815
End
Begi n VB. CommandBut t on cndRenpve?2
Caption = "Renmove Word"
Hei ght = 375
Left = 2520
Tabl ndex = 6
Top = 4080
W dt h = 1815
End
Begi n VB. CommandBut t on cndAddl
Caption = "Add Word"
Hei ght = 375
Left = 480
Tabl ndex = 5
Top = 3600
W dt h = 1815
End
Begi n VB. CommandButt on cndRenpvel
Caption = "Renmove Word"
Hei ght = 375
Left = 480
Tabl ndex = 4
Top = 4080
W dt h = 1815
End
Begi n VB. Li st Box | st Box4
Hei ght = 2205
Left = 6600
Tabl ndex = 3
Top = 720
W dt h = 1815
End
Begi n VB. Li st Box | st Box3
Hei ght = 2205
Left = 4560
Tabl ndex = 2
Top = 720
W dth = 1815

End

Hei ght = 2205
Left = 2520

Begggg{/BFjﬁlxst Box | sEBox#ZO
W dt h = 1815

End

Begi n VB. Li st Box | st Box1
Hei ght = 2205
Left = 480
Tabl ndex = 0
Top = 720
W dt h = 1815

End

Begi n VB. Label Label 4
Caption = "Action"
Hei ght = 255
Left = 6600
Tabl ndex = 18
Top = 360
W dth = 1215

End

Begi n VB. Label Label 3
Caption = "Attribute"
Hei ght = 255
Left = 4560
Tabl ndex = 17
Top = 360
W dt h = 1215

End

Begi n VB. Label Label 2
Caption = "Part"
Hei ght = 255
Left = 2520
Tabl ndex = 16
Top = 360
W dt h = 1215

End

Begi n VB. Label Label 1
Caption = "Location"
Hei ght = 255
Left = 480
Tabl ndex = 15
Top = 360
W dt h = 1215

End

End

Attribute VB _Name = "frnEdit"
Attribute VB _d obal NanmeSpace = Fal se
Attribute VB Creatable =
Attribute VB Predeclaredld = True
Attribute VB _Exposed = Fal se

Di m edi ted As Bool ean

Fal se

"hold if data has been edited

"Function: cndAddl_dick

' Pur pose: Adds data to the first list box

Private Sub cmdAddl_d i ck()

| st Box1. Addl t em (txt 1. Text) "add data to list box

txt1. T ="
| f No%(txt ??(I]'ext = "" Then 'check to see if data was entered

edited = True
End |f

End Sub

Function: cndAdd2_dick

Pur pose: Adds data to the second |ist box

Private Sub cmdAdd2_d i ck()

If Not txt2.Text = "" Then 'check to see if data was entered
| st Box2. Addl t em (t xt 2. Text) 'add data to list box
txt2. Text = ""

edited = True
End | f

End Sub

Function: cndAdd3_dick

' Pur pose: Adds data to the third list box

Private Sub cmdAdd3_d i ck()

If Not txt3.Text = "" Then 'check to see if data was entered
| st Box3. Addl t em (t xt 3. Text) "add data to list box
txt3. Text = ""

edited = True
End | f
End Sub

"Function: cndAdd4_dick

Pur pose: Adds data to the forth Iist box

Private Sub cmdAdd4_d i ck()

If Not txt4.Text = "" Then 'check to see if data was entered

I

i N

| st Box4. Addl t em (t xt 4. Text) 'add data to list box
txt4. Text = ""

edited = True
End |f

End Sub

Function: cndCancel _dick

Pur pose: Cancels fromthe editing form
Private Sub cmdCancel _Qick()
frmmai n. Enabl ed = True "enable main form and unl oad

f r mmai n. Set Focus
edited = Fal se

Unl oad Me

"Function: cnmdDone_Cick
Pur pose: Adds data to the first list box

Private Sub cmdDone_d i ck()
Dimi As Integer

If edited Then 'check to see if data was edited

'check to see if user wants to save edits
I f MsgBox("Do you want to save the word lists?", vbYesNo, "Save Word Lists") = vbYes Then

frmmai n. Enabl ed = True

frmmain. List1l. Cear ‘clear main formlists
frmmain. Li st2. d ear
frmmain. Li st3. d ear
frmmain. Li st4. d ear

'save contents of listl to main form
For i = 0 To IstBoxl.ListCount - 1

frmmain. Li st 1. Addltem (I st Box1.List(i))

Next

'save contents of list2 to main form
For i = 0 To I|stBox2.ListCount - 1

frmmai n. Li st 2. Addl tem (I st Box2. List(i))

Next

'save contents of list3 to main form
For i = 0 To IstBox3.ListCount - 1

frmmai n. Li st 3. Addl tem (I stBox3. List(i))
Next

'save contents of list4 to main form
For i = 0 To |stBox4.ListCount - 1

frnmain. Li st4. Addl tem (1 stBox4. List(i))
Next

frmmai n. Enabl ed = Fal se

edited = Fal se

SAVE TO FI LE STUFF GOES HERE

Call Save_Files ' Saves the contents of the lists
End | f
End | f
frmmai n. Enabl ed = True 'set focus back to main formand unl oad
f r mrai n. Set Focus
Unl oad Me
End Sub

Function: RenoveAll

Pur pose: Renpves all data fromlist boxes

Private Sub RenmpveAll ()

| st Box1. O ear "renove all data
| st Box2. O ear
| st Box3. d ear
| st Box4. C ear

End Sub

Function: cmRenmovel _Click

Pur pose: Renmoves selelcted itemfromlist box

Private Sub cndRenovel_C i ck()

Dimi As Integer

i =0

I f IstBox1.Sel Count > 0 Then . ag{egki to.pee bf selecied item
While Not (i = IstBoxl.ListCount) And Not (IstBoxl.Selected(i))
=i +1
Wend
| st Box1. Renovel tem (i) 'renmove selected item

edited = True
End |f

End Sub

Function: cmRenmove2_Click

Pur pose: Renmpves selelcted itemfromlist box
Private Sub cndRenove2_C i ck()

Dimi As Integer

"check if selected item
If | stBox2.Sel Count > 0 Then

i =0
'gets i-value of selected item
While Not (i = IstBox2.ListCount) And Not (I stBox2.Selected(i))
=i +1
Wend
| st Box2. Renovel tem (i) 'renmove selected item

edited = True
End | f

End Sub

Function: cmRenmove3_Click

' Pur pose: Renmoves selelcted itemfromlist box

Private Sub cndRenove3_C i ck()

Dimi As Integer

I f IstBox3.Sel Count > 0 Then ‘check if selected item

i =0

'gets i-value of selected item

While Not (i = IstBox3.ListCount) And Not (I stBox3.Selected(i))
i =i +1

Wend

| st Box3. Renovel tem (i) 'renmove selected item

edited = True
End |f

End Sub

Function: cmRenove4_Click

' Pur pose: Renmoves selelcted itemfromlist box

Private Sub cndRenove4_C i ck()

Dimi As Integer

I f | stBox4. Sel Count > 0 Then ‘checks if selected item
i =0
'gets i-value of selected item
While Not (i = I|stBox4.ListCount) And Not (I stBox4. Selected(i))
i =i +1
Wend
| st Box4. Renovel tem (i) 'renmove selected item

edited = True
End I f
End Sub
"Function: cnmdSave_Cick
' Pur pose: Saves data.
Private Sub cmdSave_d i ck()
Dimi As Integer

frmmai n. Enabl ed = True

frmmain. Listl. dear "clears all data in main form
frmmain. Li st2. d ear
frmmain. Li st 3. d ear
frmmain. Li st4. d ear

For i = 0 To IstBox1.ListCount - 1 'save data to main form

frmmain. List1. Addltem (I stBox1.List(i))

Next

For i = 0 To IstBox2.ListCount - 1 'save data to main form
frmmain. Li st 2. Addl tem (I stBox2.List(i))

Next

For i = 0 To IstBox3.ListCount - 1 'save data to main form
frnmain. Li st 3. Addl tem (I stBox3. List(i))

Next

For i = 0 To |IstBox4.ListCount - 1 'save data to main form

frmmain. Li st4. Addl tem (I stBox4.List(i))
Next
frmmai n. Enabl ed = Fal se

edited = Fal se
' SAVE TO FI LE STUFF GCOES HERE

Call Save_Files 'Saves the contents of the lists
End Sub

"Function: Form Load
' Pur pose: Initialize all variables
Private Sub Form Load()

edited = Fal se

End Sub

Function: Form Unl oad

Pur pose: Renmoves all data fromlist boxes
Private Sub Form Unl oad(Cancel As I|nteger)
RenoveAl |

End Sub

Pur pose: Wites each list to a file so that it is saved for

. later _access
i Function: Save_ Files

Private Sub Save_Files()
Di m f num As | nt eger
Dimi As Integer

fnum= FreeFile

Open App.Path & "\Listl.dat" For Qutput As fnum

"sets the variable for output to a file

For i = 0 To frmmain.Listl. ListCount - 1
Print #fnum frmmain. Listl.List(i)
Next i 'goes through the list, putting each item

"inthe file
Cl ose fnum "close the file after output
fnum = FreeFile

Open App.Path & "\List2.dat" For Qutput As fnum
"sets the variable for output to a file

For i = 0 To frmmain.List2. ListCount - 1
Print #fnum frmmain. List2.List(i)
Next i 'goes through the list, putting each item

"inthe file
Cl ose fnum "close the file after output
fnum = FreeFile

Open App.Path & "\List3.dat" For Qutput As fnum
"sets the variable for output to a file

For i = 0 To frmmain. List3.ListCount - 1
Print #fnum frmmain.List3.List(i)
Next i 'goes through the list, putting each item

"inthe file
Cl ose fnum "close the file after output
fnum = FreeFile

Open App.Path & "\List4.dat" For Qutput As fnum
"sets the variable for output to a file

For i = 0 To frmmain. List4.ListCount - 1
Print #fnum frmmain. List4.List(i)
Next i 'goes through the list, putting each item

"inthe file
Cl ose fnum "close the file after output

End Sub

Figure 13 - Create Form Sour ce Code

VERSI ON 5. 00

80

Begin VB. Form frnCreate
Border Styl e

ooj 6ff et T4BGAES340

1 'Fixed Single

2F92 1 SBh C Al 7 D80 RB8 A3 A6 78) #1. 0#0"; " DNSTK10. DLL"
37%
45

CientlLeft =

Cient Top = 330
CientWdth = 7230

KeyPr evi ew = -1 'True
Li nkTopi c = " For mL"
MaxBut t on = 0 ' Fal se
Scal eHei ght = 3750

Scal eWdth = 7230

Showl nTaskbar = 0 ' Fal se

St art UpPosi tion 2 'CenterScreen
Begi n DNSTool sCt | . DgnEngi neCont r ol DgnEngi neControl 1

Left = 6000
A eoj ect Bl ob = "create.frx": 0000
Top = 2880
End
Begi n VB. CommandBut t on crndFi ni sh
Caption = "Fi ni sh Set up"
Enabl ed = 0 ' Fal se
Hei ght = 375
Left = 2880
Tabl ndex = 13
Top = 1680
Visible = 0 ' Fal se
W dt h = 2775
End
Begi n VB. CommandButt on cnmdGenTrai n
Caption = "Run General Training"
Hei ght = 375
Left = 2880
Tabl ndex = 11
Top = 1080
Visible = 0 ' Fal se
W dt h = 2775
End
Begi n VB. CommandBut t on cndAudi o
Caption = "Run Audi o Setup"
Hei ght = 375
Left = 2880
Tabl ndex = 10
Top = 1320
Visible = 0 ' Fal se
W dt h = 2775
End
Begi n VB. Text Box t xt Speaker
Hei ght = 375
Left = 3240
Tabl ndex = 8
Top = 1320
Visible = 0 ' Fal se
W dt h = 3255
End
Begi n VB. Franme frmvenu
Hei ght = 2775
Left = 120
Tabl ndex = 3
Top = 0
W dt h = 1575
Begi n VB. Label | bl Menu4
Caption = "Train Voi ce Recognition Engine"

o

[eE N

Left = 120
Tabl ndex = 7
To = 0
thone = 1
End
Begi n VB. Label | bl Menu3
Caption = "Run Audi o Setup W zard"
Hei ght = 495
Left = 120
Tabl ndex = 6
Top = 1320
W dt h = 1215
End
Begi n VB. Label | bl Menu2
Caption = "Create User Speech File"
Hei ght = 495
Left = 120
Tabl ndex = 5
Top = 720
W dt h = 1215
End
Begi n VB. Label |bl Menul
Caption = "W\l cone"
Begi nProperty Font
Nane = "M5 Sans Serif"
Si ze = 8.25
Char set = 0
Wi ght = 700
Underl i ne = 0 ' Fal se
Italic = 0 ' Fal se
Stri ket hr ough = 0 ' Fal se
EndPr operty
Hei ght = 255
Left = 120
Tabl ndex = 4
Top = 360
W dt h = 1215
End
End
Begi n VB. CommandBut t on cndCancel
Caption = "Cancel "
Hei ght = 375
Left = 4680
Tabl ndex = 2
Top = 3240
W dt h = 1215
End
Begi n VB. CommandButt on cndNext
Caption = " Next &"
Hei ght = 375
Left = 2400
Tabl ndex = 1
Top = 3240
W dt h = 1215
End
Begi n VB. CommandBut t on cndBack
Caption = " &<Back"
Enabl ed = 0 ' Fal se
Hei ght = 375
Left = 1200
Tabl ndex = 0
Top = 3240
W dth = 1215

Qo

[e74

Begi n VB. Label

| bl W&l cone

Capt i on = $"create.frx":0024
Hei ght = 2175
End) o ¢ = 2160
Tabl ndex = 12
Top = 480
W dt h = 4575
End

Begi n VB. Label | bl Speaker

Caption = "User Name:"
Hei ght = 255
Left = 2040
Tabl ndex = 9
Top = 1440
Vi si bl e = 0 ' Fal se
W dt h = 975
End

End

Attribute VB _Nanme = "frnCreate"
Attribute VB _d obal NaneSpace = Fal se
Attribute VB Creatable = Fal se
Attribute VB Predeclaredld = True
Attribute VB _Exposed = Fal se
Dimstate As |nteger

Di m speaker _nanme As String
Dimreturn_form As |nteger

Di m opened As Bool ean

Dimvalid As Bool ean

Di m created As Bool ean

‘current create screen

created speaker nane

name of formto return to when finished
if the main formis already opened

true if audio setup has been conpl et ed
a user has been created

Const ret Speaker = 0 "return form constants
Const retMain =
Const ret Speaker
Const retCreate

N

"Function: cndAudio_Cick
' Pur pose: runs audi o setup wi zard when audio button is clicked
Private Sub cndAudi o_Cick()
DgnEngi neCont rol 1. Audi oSet upW zard ""
End Sub
"Function: SetReturn
' Pur pose: Sets the return formvariable
"Variables: return_to - nunber to set return formvariable to
Public Sub SetReturn(return_to As |nteger)

return_form=return_to

Qo

[e2e)

EpAnStPon: cnuBack_ai ck

' Pur pose: Changes the screen state to the previous screen when the
' back button is pressed.

Private Sub cmiBack_d i ck()
If state = 2 Then 'set second screen up

O fState2
Statel

El se
If state = 3 Then "set thirds screen up

OfState3
St at e2

El se
If state = 4 Then "set fourth screen up

O f Stated
St at e3

End If
End | f
End I f
state = state - 1

End Sub

Function: SetState
' Pur pose: Sets the nunber of the current screen state.
"Variables: s - the nunber to set the current state to
Public Sub SetState(s As I|nteger)

state = s
End Sub
"Function: cmdCancel _dick

Pur pose: Cancel s the create speaker process.

¢

Private Sub cmdCancel _Qick()

'check to see if a speaker has been created or is being nodified
If created = True Or return_form = ret Speaker2 O return_form= retCreate Then

‘check to see if user wants to cancel
I f MsgBox("If you cancel now your speaker settings will not be saved. Do you still want to
cancel ?", vbYesNo, "Cancel Operation") = vbYes Then

"check if called fromselect speaker function fromthe nain form
If return_form= retCreate Then

frnBel ect. Enabl ed = True

Cl oseForm
End If
frnSpeaker . Enabl ed = True
Cl oseForm "exit create speaker form
End | f

El se

f r nSpeaker . Enabl ed = True

Cl oseForm "exit create speaker form
End I f
End Sub

Function: d oseForm

Pur pose: Sets focus back to called formand exits
Private Sub C oseForm()

'checks to see if return for is speaker select form
If return_form = ret Speaker O return_form = ret Speaker2 Then

f r nSpeaker . Set Focus 'set focus to speaker select formand exit
f rnSpeaker . Enabl ed = True
Unl oad Me
El se
If return_form= retCreate Then
frnBel ect. Set Focus 'set focus to select formand exit
frnBel ect. Enabl ed = True
Unl oad Me
El se
frmmai n. Enabl ed = True "set focus to main formand exit

frmmai n. Set Focus
Unl oad Me

o

[e2e)

End | f

End |f

End Sub

Function: cndFinish_dick

Pur pose: Fi ni shes creating a speaker, saves the speaker and activates
the main form

Private Sub cmdFi ni sh_dick()

"displays waiting form
frmMit. Caption = "Saving Speaker"
frmMit.IblWait.Caption = "Saving " + frnmMit.|blWit. Caption
Me. Enabl ed = Fal se
frmAai t. Show

'checks to see if just nodifying a speaker
If return_form= retSpeaker2 O return_from= retCreate Then

f rmmai n. DgnEngi neCont r ol 1. Speaker Save
El se

DgnEngi neControl 1. Speaker Save

End I f
Unl oad frmAait 'close waiting form
| f opened Then "check to see if main form al ready opened

frmmai n. Enabl ed = True sets focus back to main form

f r mmai n. Set Focus

El se

frnSpeaker. acti vat ed activates main formand set the focus to it
Unl oad frnSpeaker

frmmai n. Acti vate

End | f

If return_form= retCreate Then 'check to see if called fromsel ect speaker frommin form

Unl oad frntel ect

End | f
Unl oad Me "close the form
End Sub

Function: cnmdGenTrain_Click

Pur pose: Runs general training

Private Sub cmdGenTrain_Cick()

DgnEngi neCont rol 1. Gener al Tr ai ni ng

End Sub

Function: Statel

Pur pose: Sets the screen as the wel cone screen
Private Sub Statel()
cnmdBack. Enabl ed = Fal se
| bl Menul. FontBol d = True
| bl V&l cone. Visible = True

End Sub

Function: OfStatel

' Pur pose: Renmobves all elenments of the first state

Public Sub OFf Statel()

cnmdBack. Enabl ed = True
| bl Menul. Font Bol d = Fal se
| bl V&l cone. Vi si bl e = Fal se
cmdNext . Default = True
End Sub
"Function: State2
' Pur pose: Sets up the screen as the enter speaker name screen.
Private Sub State2()
| bl Speaker. Visible = True "di splays el ements of set name screen
t xt Speaker. Vi si ble = True

| bl Menu2. Font Bol d = True
I f txtSpeaker.Text = "" Then ‘check to see if a name has been entered
cmdNext . Enabl ed = Fal se

End | f

Q=2

Oof

t xt Speaker . Set Focus

Function: O fState2

Pur pose: Renmpbves all elements of the second state

Private Sub Of State2()

| bl Speaker. Visible = Fal se 'renmoves all elenents fromdisplay
t xt Speaker. Vi si bl e = Fal se
| bl Menu2. Font Bol d Fal se

cndNext . Enabl ed = True

End Sub

Function: State3

Pur pose: Sets up the screen to display the audio setup screen

Public Sub State3()

| bl Menu3. FontBol d = True " di splay audi o screen el enents
cndAudi 0. Visible = True

cndAudi 0. Set Focus

cndAudi 0. Default = True

'check to see if audio setup has already been run
I f Not DgnEngi neControl 1. Audi oSet upConpl ete And Not valid Then

cndNext . Enabl ed = Fal se

End | f

End Sub

Function: O fState3

Pur pose: Renmove all el enments of state 3 from being displayed

Private Sub O f State3()

| bl Menu3. Font Bol d = Fal se 'renove el el ments
cndAudi o. Vi si bl e = Fal se
cndAudi o. Default = Fal se

cndNext . Enabl ed = True

88

"Function: State4d

Pur pose: Setup general training and final display state
Public Sub State4()
crmdNext . Enabl ed = Fal se "add elenments to display
| bl Menu4. FontBol d = True
cmdGenTrain. Visible = True
cndFi ni sh. Visible = True
cmdGenTrain. Default = True

'check to see if speaker has been calibrated
| f DgnEngi neControl 1. Speaker Cal i brated Then

cmdFi ni sh. Enabl ed = True
El se
cmdFi ni sh. Enabl ed = Fal se
End I f
End Sub

"Function: OfState4

Pur pose: Renmove all el enments of state 4

Private Sub Of State4()

cndNext . Enabl ed = True 'renove el enents
| bl Menu4. Font Bol d = Fal se
cndGenTrain. Visible = Fal se
cndFi ni sh. Visible = Fal se
cndFi ni sh. Enabl ed = Fal se
End Sub
"Function: cmdNext_Cick
' Pur pose: Increments to the next display state when the next button

is clicked.

Private Sub cmdNext _dick()

89

On Error GoTo ErrorHandl er

If state = 1 Then "check if current state is state 1
OfStatel 'setup state 2
St ate2

El se
If state = 2 Then "check if current state is state 2

'check is speaker has already been created
If Not txtSpeaker.Text = speaker_name Then

Me. Enabl ed = Fal se
created = True

"display waiting dial og
frmMit. Caption = "Creating User: " + txtSpeaker. Text
frmMit.lblWait.Caption = "Creating " + frmAit.|blWait.Caption
frmAai t. Show
'create speaker
DgnEngi neCont rol 1. Speaker Cr eat e t xt Speaker. Text
speaker _name = txt Speaker. Text
DgnEngi neCont rol 1. Speaker = txt Speaker . Text
Unl oad frmhait

Me. Enabl ed = True
Me. Set Focus

"check to see if called fromsel ect speaker form
If return_form = ret Speaker Then

frnSpeaker . | st Speaker. Addl t em (t xt Speaker . Text)
End I f
End If

Of State2 'setup state 3
St at e3

El se
If state = 3 Then "check for current state as state 3

O f State3 'setup state 4
St at e4

End If
End | f
End I f
state = state + 1
GoTo ExitSub

Er r or Handl er: "handl es any error that may happen during run tine

90

"check to see error is "user already exists"
If Err.Nunmber = -2147220444 Then

Unl oad frmAait "display error dialog
MsgBox "User already exists.", vbOKOnly, "Error"
Me. Enabl ed = True

Me. Set Focus
Exit Sub
El se
"di splay general error nmessage and exit
MsgBox Str(Err) + " - " + Error$, vbOKOnly, "Error" ' show nmessage
Unl oad Me
End I f
Exi t Sub:
End Sub

"Function: DgnEngi necontrol 1_Di al ogd osed

Pur pose: I's call ed when a DgnEngi neControl function exits.

"Variables: Dialog - specifies which dialog has exited
' Exi t Code - hold exit status of dialog

Private Sub DgnEngi neControl 1_Di al ogC osed(Di al og As DNSTool sCt|. DgnDi al ogConst ants, Exit Code As
Long)

'check if audio wizard has cl osed
If Dialog = dgndl gAudi oSet upW zard Then

‘check if audio setup has been conpl et ed
| f DgnEngi neControl 1. Audi oSet upConpl ete Then

cnmdNext . Enabl ed
cndNext . Def aul t

= True ' enabl e next button
= True

El se

'check if setup has been conpleted but has not yet been set
If ExitCode = 0 Then

valid = True ' enabl e next button
cndNext . Enabl ed = True
cndNext . Default = True
End |f
End | f

El se

'check if general training has cl osed
I f Dial og = dgndl gGener al Trai ni ng Then

91

'check if speaker has been calibrated
I f DgnEngi neControl 1. Speaker Cal i brated Then

cndFi ni sh. Enabl ed = True 'enable finish button
End If
End | f

End I f
End Sub
"Function: SetName
Pur pose: Saves the name of the user being created
"Variabl es: name - contains the name to save
Public Sub Set Name(name As String)

speaker _nane = nane
End Sub
"Function: Save
' Pur pose: Saves the current speaker's speach files
Private Sub Save()

DgnEngi neCont r ol 1. Speaker Save
End Sub

"Function: Form Load

Pur pose: Initailizes all setting for creating a speaker

Private Sub Form Load()

state = 1 "initialize variables
speaker _name = ""

opened = Fal se

valid = Fal se

created = Fal se

End Sub

92

"Function: SetStatus
' Pur pose: Sets the current status of the form
Public Sub Set Status(status As Bool ean)
opened = status
End Sub
"Function: txtSpeaker_Change

' Pur pose: Checks to see if the a speaker nane has been entered into the
' speaker name field

Private Sub txtSpeaker_Change()

"check if text box is enpty

If Not txtSpeaker.Text = "" Then
cmdNext . Enabl ed = True "enabl e next button
cmdNext . Default = True
El se
cmdNext . Enabl ed = Fal se ' di sabl e next button
End I f
End Sub

Figure 14 - Parser and TCP Module Code

Attribute VB _Nanme = "ndl Parser"

' Catal yst Socket Wench 2. 15

' Copyright 1995-1998, Catalyst Devel opment Corp. Al rights reserved.
' This file contains the constants and function declarations used
" with the Socket Wench control for Visual Basic 5.0

93

' General constants used with nost of the controls
Public Const | NVALID HANDLE = -1

Publi c Const CONTROL_ERRI GNORE = 0

Publi c Const CONTROL_ERRDI SPLAY = 1

' Socket Wench Control Actions

Publi c Const SOCKET_OPEN = 1

Publ i c Const SOCKET_CONNECT = 2

Publi c Const SOCKET_LISTEN = 3

Publi c Const SOCKET_ACCEPT = 4

Publi c Const SOCKET_CANCEL = 5

Publi c Const SOCKET_FLUSH = 6

Publi c Const SOCKET_CLOSE = 7

Publ i c Const SOCKET_DI SCONNECT = 7
¢ Const SOCKET_ABORT = 8

Publ i

' Socket Wench Control States

Publi c Const SOCKET_NONE = 0
Public Const SOCKET_IDLE = 1
Publi c Const SOCKET_LI STENI NG = 2
Publ i c Const SOCKET_CONNECTI NG = 3
Publ i c Const SOCKET_ACCEPTI NG = 4
Publ i c Const SOCKET_RECEI VING = 5
Publ i c Const SOCKET_SENDI NG = 6

¢ Const SOCKET_CLOSING = 7

Publ i

Socket Address Fanilies
Public Const AF_UNSPEC = 0
Public Const AF_ UNIX =1
Public Const AF_INET = 2

' Socket Types

Publi c Const SOCK_STREAM = 1
Publi c Const SOCK_DGRAM = 2
Public Const SOCK RAW= 3
Public Const SOCK _RDM = 4

Publi c Const SOCK_SEQPACKET = 5

Prot ocol Types

Public Const | PPROTO IP = 0
Public Const | PPROTO |ICWP = 1
Public Const | PPROTO GGP = 2
Publi c Const | PPROTO TCP = 6
Public Const | PPROTO PUP = 12
Public Const | PPROTO UDP = 17
Public Const | PPROTO | DP = 22
Public Const | PPROTO ND = 77
Publi c Const | PPROTO _RAW = 255
¢ Const | PPROTO MAX = 256

Publ i

" Wl | -Known Port Numbers

Public Const | PPORT_ANY = 0

94

Publi c Const | PPORT_ECHO = 7

Publ i
Publ i

Const | PPORT_RESERVED = 1024
Const | PPORT_USERRESERVED = 5000

Cc
Publi c Const | PPORT_DI SCARD = 9
Publi c Const | PPORT_SYSTAT = 11
Publi c Const | PPORT_DAYTI ME = 13
Publ i c Const | PPORT_NETSTAT = 15
Public Const | PPORT_FTP = 21
Public Const | PPORT_TELNET = 23
Public Const | PPORT_SMIP = 25
Publi c Const | PPORT_TI MESERVER = 37
Publi c Const | PPORT_NAMESERVER = 42
Public Const | PPORT_WHO S = 43
Public Const | PPORT_MIP = 57
Publi c Const | PPORT_FI NGER = 79
Public Const | PPORT_HTTP = 80
Public Const | PPORT_TFTP = 69

Cc

Cc

" Networ k Addresses

Public Const | NADDR ANY = "0.0.0.0"

Publi c Const | NADDR LOOPBACK = "127.0.0. 1"
Publi c Const | NADDR_NONE = "255. 255. 255. 255"

Shut down Val ues

Publi c Const SOCKET_READ = 0
Public Const SOCKET WRITE = 1
Publi c Const SOCKET_READWRI TE = 2

' Socket Wench Error Response
Public Const SOCKET_ERRI GNORE = 0
Public Const SOCKET_ERRDI SPLAY = 1

' Socket Wench Error Codes

Publ i
Publ i
Publ i

Const WSAENETRESET = 24052
Const WSAECONNABORTED = 24053
Const WSAECONNRESET = 24054

Publ i c Const WSABASEERR = 24000
Publ i c Const WSAEI NTR = 24004
Publ i c Const WSAEBADF = 24009
Publ i c Const WSAEACCES = 24013
Publi c Const WSAEFAULT = 24014
Publi c Const WSAEI NVAL = 24022
Publi c Const WSAEMFI LE = 24024
Publi c Const WSAEWOULDBLOCK = 24035
Publ i c Const WSAEI NPROGRESS = 24036
Publ i c Const WSAEALREADY = 24037
Publ i c Const WSAENOTSOCK = 24038
Publ i ¢ Const WSAEDESTADDRREQ = 24039
Publ i c Const WSAEMSGSI ZE = 24040
Publi c Const WSAEPROTOTYPE = 24041
Publ i c Const WSAENOPROTOOPT = 24042
Publ i c Const WSAEPROTONOSUPPORT = 24043
Publ i c Const WSAESOCKTNOSUPPORT = 24044
Publ i c Const WSAEOPNOTSUPP = 24045
Publ i c Const WSAEPFNOSUPPORT = 24046
Publ i c Const WSAEAFNOSUPPORT = 24047
Publ i c Const WSAEADDRI NUSE = 24048
Publi c Const WSAEADDRNOTAVAI L = 24049
Publ i c Const WSAENETDOMN = 24050
Publi c Const WSAENETUNREACH = 24051

Cc

Cc

Cc

95

Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
' RAS Contro
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
' RAS Contro
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
Publ i ¢ Const
' RAS Contro

Publ i ¢ Const
Publ i ¢ Const

WSAENOBUFS = 24055
WBAEI SCONN = 24056
WSAENOTCONN = 24057
WSAESHUTDOMWN = 24058
WSAETOOVANYREFS = 24059
WSAETI MEDOUT = 24060
WSAECONNREFUSED = 24061
WBAELOOP = 24062
WSAENAVETOOLONG = 24063
WSAEHOSTDOMWN = 24064
WSAEHOSTUNREACH = 24065
WSAENCTEMPTY = 24066
WSAEPRCCLI M = 24067

WBAEUSERS = 24068
WSAEDQUOT = 24069
WBAESTALE = 24070

WSAEREMOTE = 24071
WBASYSNOTREADY = 24091
WSAVERNOTSUPPORTED = 24092
WSANOTI NI TI ALI SED = 24093
WSAHOST_NOT_FOUND = 25001
WBATRY_AGAI N = 25002
WSANO_RECOVERY = 25003
WSANO _DATA = 25004
WSANO_ADDRESS = 25004

Acti ons

RAS_ACTI ON_CONNECT = 1
RAS_ACTI ON_DI SCONNECT = 2
RAS_ACTI ON_RESET = 3

St at es

RAS_UNUSED = -1
RAS_OPENPCRT = 0
RAS_PORTCPENED = 1
RAS_CONNECTDEV = 2
RAS_DEVCONNECTED = 3
RAS_ALLDEVCONNECTED = 4
RAS_AUTHENTI CATE = 5
RAS_AUTHENTI CATED = 14
RAS_PREPCALLBACK = 15
RAS_MODEMRESET = 16
RAS_WAI TFORCALL = 17
RAS_PRQJECTED = 18
RAS_PAUSED = 4096
RAS_RETRYAUTH = 4097
RAS_CALLBACK = 4098
RAS_PASSEXPI RED = 4099
RAS_CONNECTED = 8192
RAS_DI SCONNECTED = 8193

Error Codes

These error codes are returned by the LastError property and
passed as an argunent to the LastError event. These are the
same codes returned by the RAS library, with 25000 added to the
base val ue

ERROR_| NVALI D_PORT_HANDLE = 25601
ERROR_PORT_ALREADY_OPEN = 25602

96

Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i

Publ i

Publ i
Publ i

c

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

Const

Const
Const

ERROR BUFFER TOO SMALL = 25603
ERROR_WRONG [NFO_SPECI FI ED = 25604
ERROR_CANNOT_SET_PORT_| NFO = 25605
ERROR_PORT_NOT_CONNECTED = 25606
ERROR_EVENT | NVALI D = 25607

ERROR_DEVI CE_DOES_NOT_EXI ST = 25608
ERROR_DEVI CETYPE_DOES_NOT_EXI ST = 25609
ERROR | NVALI D_BUFFER = 25610
ERROR_ROUTE_NOT_AVAI LABLE = 25611
ERROR_ROUTE_NOT_ALLOCATED = 25612
ERROR_| NVALI D_COMPRESS| ON_SPECI FI ED = 25613
ERROR_OUT_OF BUFFERS = 25614
ERROR_PORT_NOT_FOUND = 25615
ERROR_ASYNC REQUEST PENDI NG = 25616
ERROR_ALREADY_DI SCONNECTI NG = 25617
ERROR_PORT_NOT_OPEN = 25618
ERROR_PORT_DI SCONNECTED = 25619
ERROR_NO_ENDPOI NTS = 25620
ERROR_CANNOT_OPEN_PHONEBOOK = 25621
ERROR_CANNOT_LOAD_PHONEBOOK = 25622
ERROR_CANNOT_FI ND_PHONEBOOK_ENTRY = 25623
ERROR_CANNOT_MRI TE_PHONEBOOK = 25624
ERROR_CORRUPT_PHONEBOCK = 25625
ERROR_CANNOT_LOAD STRI NG = 25626
ERROR_KEY_NOT_FOUND = 25627

ERROR_DI SCONNECTI ON = 25628
ERROR_REMOTE_DI SCONNECTI ON = 25629
ERROR_HARDWARE_FAI LURE = 25630
ERROR_USER_DI SCONNECTI ON = 25631
ERROR | NVALI D_SI ZE = 25632
ERROR_PORT_NOT_AVAI LABLE = 25633
ERROR_CANNOT_PRQJECT CLI ENT = 25634
ERROR_UNKNOWN = 25635

ERROR_WRONG DEVI CE_ATTACHED = 25636
ERROR_BAD_STRI NG = 25637

ERROR_REQUEST TI MEQUT = 25638
ERROR_CANNOT_GET_LANA = 25639
ERROR_NETBI OS_ERROR = 25640
ERROR_SERVER OUT_OF RESOURCES = 25641
ERROR_NAME_EXI STS_ON_NET = 25642
ERROR_SERVER GENERAL_NET_FAI LURE = 25643
ERROR_AUTH_| NTERNAL = 25645
ERROR_RESTRI CTED_LOGON HOURS = 25646
ERROR_ACCT DI SABLED = 25647
ERROR_PASSWD_EXP| RED = 25648
ERROR_NO DI ALI N_PERM SSI ON = 25649
ERROR_SERVER NOT_RESPONDI NG = 25650
ERROR_FROM DEVI CE = 25651
ERROR_UNRECOGNI ZED_RESPONSE = 25652
ERROR_MACRO_NOT_FOUND = 25653
ERROR_MACRO_NOT_DEFI NED = 25654
ERROR_MESSAGE_MACRO NOT_FOUND = 25655
ERROR_DEFAULTOFF_MACRO NOT_FOUND = 25656
ERROR_FI LE_COULD_NOT_BE_OPENED = 25657
ERROR_DEVI CENAME_TCO LONG = 25658
ERROR_DEVI CENAME_NOT_FOUND = 25659
ERROR_NO_RESPONSES = 25660

ERROR_NO_COVVAND_FOUND = 25661

ERROR WRONG KEY_SPECI FI ED
ERROR_UNKNOAN _DEVI CE_TYPE

25662
25663

97

Publi ¢ Const ERROR_PORT_NOT_CONFI GURED = 25665
Publi ¢ Const ERROR DEVI CE_NOT_READY = 25666

BUBI 1 Ganel EERERAEBNGEAM ek ERCo2ge8d.

Publi ¢ Const ERROR BAD USAGE IN INl_FILE = 25669
Publi ¢ Const ERROR READI NG SECTI ONNAME = 25670
Publi ¢ Const ERROR READI NG DEVI CETYPE = 25671
Publ i c Const ERROR READI NG DEVI CENAME = 25672
Publ i c Const ERROR READI NG USAGE = 25673

Publi ¢ Const ERROR READI NG MAXCONNECTBPS = 25674
Publ i ¢ Const ERROR READI NG MAXCARRI ERBPS = 25675
Publi ¢ Const ERROR LI NE_BUSY = 25676

Publi ¢ Const ERROR VO CE_ANSWER = 25677

Publi ¢ Const ERROR NO ANSWER = 25678

Publi ¢ Const ERROR _NO CARRI ER = 25679

Public Const ERROR _NO DI ALTONE = 25680

Publ i c Const ERROR | N_COMMAND = 25681

Public Const ERROR VR TI NG SECTI ONNAME = 25682
Publ i c Const ERROR WRI TI NG DEVI CETYPE = 25683
Public Const ERROR WRI TI NG DEVI CENAME = 25684
Publi ¢ Const ERROR VR TI NG_MAXCONNECTBPS = 25685
Publi ¢ Const ERROR VR TI NG_MAXCARRI ERBPS = 25686
Public Const ERROR VRl TI NG USAGE = 25687

Public Const ERROR WRI TI NG DEFAULTOFF = 25688
Publ i c Const ERROR READI NG DEFAULTOFF = 25689
Publ i c Const ERROR EMPTY_INI _FILE = 25690

Publi ¢ Const ERROR AUTHENTI CATI ON_FAI LURE = 25691
Publ i ¢ Const ERROR PORT_OR DEVI CE = 25692

Publ i c Const ERROR_NOT_BI NARY MACRO = 25693

Publ i ¢ Const ERROR DCB_NOT_FOUND = 25694

Publi ¢ Const ERROR STATE MACHI NES_NOT_STARTED = 25695
Publ i c Const ERROR STATE_MACH NES_ALREADY STARTED = 25696
Publ i c Const ERROR PARTI AL_RESPONSE_LOOPI NG = 25697
Publ i ¢ Const ERROR_UNKNOWN_RESPONSE_KEY = 25698
Publi ¢ Const ERROR RECV BUF _FULL = 25699

Publ i c Const ERROR CMD_TOO LONG = 25700

Publ i ¢ Const ERROR_UNSUPPORTED BPS = 25701

Publi ¢ Const ERROR UNEXPECTED RESPONSE = 25702
Public Const ERROR | NTERACTI VE_MODE = 25703
Publi ¢ Const ERROR BAD_CALLBACK NUMBER = 25704
Public Const ERROR | NVALI D_AUTH_STATE = 25705
Publ i c Const ERROR WRI TI NG | NI TBPS = 25706
Public Const ERROR | NVALI D W N_HANDLE = 25707
Publ i c Const ERROR_NO PASSWORD = 25708

Public Const ERROR_NO USERNAME = 25709

Publ i c Const ERROR CANNOT START STATE_MACHI NE = 25710
Publ i c Const ERROR GETTI NG COMVBTATE = 25711
Publ i c Const ERROR SETTI NG COMVBTATE = 25712
Publi ¢ Const ERROR COWMM FUNCTI ON = 25713

Publ i ¢ Const ERROR_CONFI GURATI ON_PROBLEM = 25714
Publ i ¢ Const ERROR X25_DI AGNOSTI C = 25715

Publi ¢ Const ERROR TOO MANY_ LI NE_ERRCRS = 25716
Publ i ¢ Const ERROR OVERRUN = 25717

Publ i c Const ERROR ACCT EXPI RED = 25718

Publ i c Const ERROR CHANG NG _PASSWORD = 25719
Publ i ¢ Const ERROR_NO ACTIVE_| SDN_LI NES = 25720

Publi c Const ERROR _NO_| SDN_CHANNELS AVAI LABLE = 25721

Decl arations for functions to encode and decode files, typically
used as with attachnents to nail nmessages or news articles

98

DecI are Function EncodeFile Lib "UUCODE32. DLL" Alias "EncodeFileA" (ByVal InputFile As String, ByVal

ut Fi As. Str) .
E AL E%Q%ﬁ%egtﬁ s UPBDERRCBES bl 25 APPGQdeBLLBAL sbBYYAK: | BRU! Pl GafS) ShUL BBI cBRYE!
PPHb fha N8t ri ng) As Long

Decl are Function EncodeBase64F| le Lib "UUCODE32. DLL" Alias "EncodeBase64Fil eA" (ByVal InputFile As
String, ByVal QutputFile As String) As Long

Type ParseType "user defined type used to hold
Current As String 'the commmands storing the current piece
LeftOver As String 'as well as what is left over

End Type

"Function: Fi ndAnd

' Pur pose: Breaks up each comand around the ands, and calls the
' word parser for each one

"Variabl es: AndStuff - User defined variable holding the information
' whi ch needs to be parsed

Sub Fi ndAnd(AndSt uff As ParseType)

Di m Pos, Leng As Long
Dim Until Spc As ParseType
Di m sBuffer As String

frmmain. txtCom="" "initialize the text boxes
frmmai n. t xt Loc

frmmai n. t xt Par
frommain. txtAtt
frmmai n. t xt Act
Pos = InStr(1, AndStuff.LeftOver, "and", 1) 'check for an "and"
Leng = Len(AndStuff. LeftOver) "store the length

If Pos <> 0 Then "if and and was found then

'reset the andstuff var

AndStuff. Current = Md(AndStuff.LeftOver, 1, Pos - 2)

AndSt uff. Left Over = M d(AndStuff.LeftOver, Pos + 4, Leng - Pos + 1)
"itialize untilspc

Until Spc. Current = ""

Until Spc. Left Over = AndStuff. Current

Cal | ParseME(Until Spc)
"build the text box that
"will be used to send the
'command to the sequencer

frmmai n. t xt Com = frmmain. txtCom+ frnmain. txtLoc + ":"
frmmai n. t xt Com = frmmain. txt Com+ frnmain. txtPar + ":"
frommai n. t xtCom = frmmain. txtCom+ frnmain. txtAtt + ":"
frmmai n. t xt Com = frmmain. txt Com + frnmain. txtAct

sBuf fer = frmmain.txt Com Text + Chr(13) + Chr(10)

frmmain. Socket 1. Wite sBuffer, Len(sBuffer)

"make a recursive call
Cal | Fi ndAnd(AndSt uf f)
El se

PN

JI

Until Spc. Left Over = AndStuff. LeftQver
Cal | ParseNE(Until Spc)

in. txtCom = frppain. txtCom + frmmain, txt :
meﬁﬂct fPL Fr mmai n. t xt Com + frnmai n' Pkt bﬁf ;e..untllspc

frommai n. t xtCom + frmmain. txtAtt +
fromai n. t xt Com + frnmain. txtAct

frn‘rraln.txtOom
frmmai n. t xt Com

sBuf fer = LCase(frnmain.txtCom Text + Chr(13) + Chr(10))

frmmain. Socket 1. Wite sBuffer, Len(sBuffer)

"build the text box that
"will be used to send the

'command to the sequencer
Exit Sub

Function: ParseControl

' Pur pose: Calls FindAnd with AndStuff

Sub ParseControl (AndStuff As ParseType)
Cal | Fi ndAnd(AndSt uf f)

End Sub

Function: ParseME

Pur pose: Breaks up each command into individual words
' Then calls checklist to see if the words are in any
of the lists

Variabl es: Until Spc - User defined variable holding the information
whi ch needs to be parsed

Sub ParseME(Until Spc As ParseType)

Di m Pos, Leng As Long
DimstrTenp As String

Pos = InStr(1, Until Spc. LeftOver, " ", 1) 'check for a space
Leng = Len(Until Spc. Left Over) "store the length of the string
strTemp = "" "initialize strTenp
If Pos <> 0 Then "if a space exists

initialize untilspc
Until Spc. Current = Md(Until Spc. LeftOver, 1, Pos - 1)

Until Spc. LeftOver = Md(Until Spc. LeftOver, Pos + 1, Leng - Pos + 1)

If (Until Spc.Current = "neasure") Then 'check for a special case
"if it exists store it
Pos = InStr(1, Until Spc. LeftOver, " ", 1)
If Pos = 0 Then

PW-V-

1UU

End |f

strTenp = Until Spc. Current + " " + Md(Until Spc. LeftOver, 1, Pos - 1)
fr in.txtLoc = rTe
End IfmTBIOS =X}_enfUnt|Sf Spc.n‘EeftQ/er) + 1
If (Until Spc.Current = "track") Then 'check for a special case
"if it exists store it
Pos = InStr(1, Until Spc. LeftOver, " ", 1)

If Pos = 0 Then
Pos = Len(Until Spc. LeftOver) + 1

End If
strTenp = Until Spc. Current + " " + Md(Until Spc. LeftOver, 1, Pos - 1)
frnmain. txt Par = strTenp

End | f

If (strTemp = "") Then "if no special case was found

"call checkli st
Cal | frmmain. CheckLi st (Until Spc. Current)
End | f
Cal | ParseME(Until Spc) 'recurse ParseME

El se
"call checkli st

Cal | frmmain. CheckLi st (Until Spc. LeftOver)
Exit Sub
End I f

End Sub

101

