
Project Number: CS-MLC-SL99

A Symbol Spectrum24 Wireless LAN Device Driver for Linux

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Lee J. Keyser-Allen

May 7, 2000

Approved:

__

Mark L. Claypool, Major Advisor

ii

Abstract

With Linux becoming a viable alternative to commercial operating systems and the recent

explosion of wireless technologies, Symbol Technologies is seeking a driver that will

allow them to tap into the Linux market. This project created a Linux device driver for

the PCMCIA version of Symbol’s Spectrum24 series wireless network card. This driver

was implemented and tested with Linux kernel 2.2.x and released under GPL. Its

performance is comparable to the Windows version of the driver for the same card.

iii

Acknowledgments

I wish to thank my sponsor, Symbol technologies, for their generous donation of

hardware and documents that made this project possible. I’d also like to thank my

liaisons at Symbol, Brad Lefore and Bob Neilsen, for their hard work and assistance in

setting up the sponsorship and answering many questions.

Finally, I wish to thank my advisor, Dr. Claypool, for his support and assistance from

across the country throughout the creation of the driver, as well as his invaluable

assistance in the writing of this document.

iv

Table of Contents

Abstract ..ii

Acknowledgments...iii

Table of Contents..iv

1. Introduction... 1

2. The Linux Kernel.. 4

3. The PCMCIA package .. 5

4. A Wireless Overview.. 6

4.1 Spread Spectrum.. 7

4.2 Wireless Networks .. 8

5. Implementation.. 8

5.1 Code Overview.. 11

5.1.1 Global variables.. 12

5.1.1.1 PCMCIA Globals .. 12

5.1.1.2 Configuration globals.. 12

5.1.2 Functions .. 14

5.1.2.1 The basics.. 14

5.1.2.2 PCMCIA ... 14

5.1.2.3 Wireless Extensions .. 15

5.1.2.4 Ethernet Functions... 16

5.1.2.5 The Hardware.. 17

5.2 Code Details .. 18

5.2.1 The basic functions in depth... 18

v

5.2.1.1 init_module.. 18

5.2.1.2 cleanup_module .. 18

5.2.2 The PCMCIA functions in depth... 18

5.2.2.1 s24_attach.. 18

5.2.2.2 s24_detach... 19

5.2.2.3 s24_config ... 20

5.2.2.4 s24_release .. 20

5.2.2.5 s24_event... 20

5.2.3 Wireless Extensions ... 21

5.2.3.1 iw_statistics ... 21

5.2.3.2 s24_ioctl.. 21

5.2.4 Ethernet Specific Functions ... 21

5.2.4.1 s24_init.. 22

5.2.4.2 s24_eth_config .. 22

5.2.4.3 s24_tx.. 22

5.2.4.4 s24_open.. 22

5.2.4.5 s24_stop... 23

5.2.4.6 s24_interrupt.. 23

5.2.4.7 s24_multicast... 23

5.2.4.8 s24_stats.. 23

5.2.5 Card Specific Functions ... 24

5.2.5.1 cold_reset .. 24

5.2.5.2 s24_reset.. 24

vi

5.3 Runtime Overview .. 25

5.3.1 Loading... 25

5.3.2 Packet Handling.. 26

5.3.2.1 Receiving Packets ... 26

5.3.2.2 Sending Packets... 26

5.3.3 Unloading... 27

6. Performance Analysis ... 27

6.1 Ping Test Results... 28

6.2 File Transfer Results ... 29

7. Conclusion... 31

8. Future Work .. 32

References ... 34

Appendix... 34

spectrum24.h... 35

spectrum24_cs.h.. 39

spectrum24_cs.c .. 48

1

1. Introduction

Linux and the open source movement have recently gained popularity as people are

looking for a low priced high performance solution for many computing applications.

Linux is a low cost alternative to Microsoft Windows or a commercial *NIX1. Linux is an

operating system (OS) that was developed by Linus Torvalds while he was a graduate

student. It was subsequently released to the public under a form of the GNU Public

License (GPL). In keeping with the ideals behind the open source movement and the

GPL, people who saw its value voluntarily worked with Linus to remove its bugs and

turn it into a viable OS. It has since benefited greatly from the open source movement

and has become the free operating system of choice for millions.

One of the major advantages of Linux is the rapid development of new drivers. Since the

source code is available to anyone who wants it, it is relatively easy to extend it to

perform some new task. As all these changes get incorporated into the kernel, it becomes

incredibly diverse.

As the demand for Linux has grown, so has the demand for applications and drivers to

take advantage of the latest and greatest technology. One such budding technology,

wireless networking, is just beginning to catch on in the Linux community. This is

evidenced by the wireless extensions added to the 2.2.x series of Linux kernels. The

1 *NIX refers to UNIX and its many clones of which Linux is one.

2

growing number of requests for Linux drivers from their clientele prompted Symbol to

sponsor this project.

Wireless networking is the future. As far as speed is concerned, there are many better

alternatives to wireless links, but for general usage, wireless is more than fast enough.

Low-end wireless cards fall in the 1-2 Mbps range and the faster cards range from 11-45

Mbps, faster than most wired networks2.

With the recent explosion of wireless technology, coupled with the popularity of the

Internet, the next logical step is a more comprehensive wireless digital network, which

would allow mobile Internet access. In the next few years, there will be networks in place

similar to cell phone networks that will allow widespread wireless connectivity.

The current market for wireless networking is large companies with many laptop users

(enough that it becomes feasible to install a wireless network.) One of the advantages of

wireless is that after initial setup, it is trivial to add another MU (Mobile Unit.) The

ability of one MU to operate at many different sites without a change in software or

configuration is another boon for employees who frequently travel between offices.

Employees can walk out of their home offices, where their laptops are configured, travel

2 The standard for wired networks at the time of writing is 10 Mbps. Newer wired networks are rapidly

embracing a 100 Mbps standard and some are even running gigabit Ethernet, although the latter is usually

run over fiber-optic cable as opposed to standard copper.

3

to remote partner offices with similar networks, walk in, and instantly have network

access3.

Symbol Technologies started out marketing barcode scanners that were interconnected

using a wireless network. They then branched out to incorporate the wireless networking

market, and have just recently added wireless voice to their product lines. The wireless

phones that they market attach to an existing local wireless data network and use voice

over IP technology to connect to the PBX. Their line of solutions now ranges from

mobile computing devices to barcode readers to network cards, all of which can be

connected using wireless networking technology.

Symbol sponsored this project after pressure from their clients to come out with Linux

drivers. This is their first driver for Linux (although not the first Unix driver, as there is

an SCO Unix driver out for the same card.)

Thus, the main goal of this project was to create a functional driver for Symbol’s

Spectrum24 wireless LAN card. The first portion of the project took a week and was

oriented towards research of the tools that were going to be utilized. It also included some

background research of wireless networking under Linux and the PCMCIA package. The

second portion was the implementation part. It involved writing, testing, and debugging

the driver over the following six weeks. Once the driver was functional and stable, there

3 There are, of course, security issues with this model, but with relatively simple pre-configuration, and

knowledge of the RSA keys for each office, 40-bit encryption could be added with no perceived overhead.

4

was complete rewrite to clean up the code and insert useful debugging statements incase

of future need. Symbol is contracting to add the rest of the functionality mentioned in the

Future Work section.

The rest of this report is laid out as follows: Section 2 contains an overview of the

structure and ideology of the Linux kernel. Section 3 describes the PCMCIA package and

the functionality that it offers. Section 4 covers the wireless standard and gives an

overview of wireless networking. Section 5 contains the implementation specifics, and

describes the code organization. Section 6 gives some performance data and compares

the final driver to the Windows version written by Symbol. Section 7 contains the

conclusion, and Section 8 describes the future work. The source code is attached as an

appendix. It is also included on the CD that accompanies this report along with much of

the support it needs for compilation.

2. The Linux Kernel

The Linux kernel started as a monolithic kernel. A monolithic kernel has all of the

functionality from memory management to floppy controllers compiled into a single

executable. The kernel is loaded into memory at boot-up and stays there until the

machine is powered down. Through its evolution, Linux has progressed so that it has

become a combination of kernel designs. The other kernel structure that Linux has begun

to incorporate is the micro-kernel design. In a micro-kernel, much of the non-core

functionality is pushed out of the main kernel and into separate fragments. These

5

fragments traditionally run in user space as daemons, however Linux implements this by

creating kernel modules.

Linux kernel modules run in kernel space once they are loaded and have access to all of

the kernel internals and kernel functionality. In essence, they become part of the kernel

for as long as they are loaded. This tight coupling allows very fine-grained control over

timing, which is important in many hardware applications, and guarantees that routines

do not get pre-empted when they have time sensitive tasks. There is a tradeoff, however.

The sharing of kernel space eliminates fault isolation, one of the fundamental aspects of a

true micro-kernel design. This puts more responsibility on the module author, because

mistakes can cripple or hang a system.

Modules can be loaded at any time after boot and can be unloaded at anytime, as long as

they are not in use. By convention, modules are loaded upon demand and unloaded after

they have been idle for a set amount of time. Modules are loaded either by the kernel

itself, when it needs the functionality they offer, or by a privileged user or daemon

process. Modules are loaded by a form of the insmod command and parameters may be

passed to them at load time. They are unloaded by the rmmod command.

3. The PCMCIA package

One of the other tools used in this project is the Linux PCMCIA package. This package

has drivers for many different PCMCIA controllers as well as card resource management

services. The package is divided into two main parts. The kernel modules are the drivers

6

for the PCMCIA controllers and a special card services module that handles resource

allocation. The user level daemon is in charge of loading modules and providing a user

level interface to the controller cards. The package also includes some utilities to send the

cards PCMCIA events to change the cards’ state.

As mentioned previously, kernel modules can be loaded by a number of methods. The

PCMCIA package has provisions to load the appropriate module depending on the card

that is inserted. Since each PCMCIA card has an identification string (called a ‘

maintains a lookup table of identification tuples matched to modules. It is the job of its

user level daemon to search the table and load the appropriate module.

The PCMCIA package also handles the allocation of I/O ports, interrupts, and memory

windows for the client modules through the card services module.

4. A Wireless Overview

The current wireless standard is IEEE 802.11. This standard is very broad in that it

encompasses not only different frequencies and bit rates, but also different signal coding

techniques.

Section 4.1 focuses on signal coding techniques, while section 4.2 covers wireless

networks.

7

4.1 Spread Spectrum

All wireless devices covered under the IEEE standard use unlicensed bands. While there

are no licenses, the FCC has strict requirements on how much power a device can radiate,

and how the band is to be shared. One of these requirements is that a device on these

bands must use a spread spectrum technique to minimize its impact on the band. What

this means is that the devices must not hog the band or overpower other devices sharing

the band. These techniques are also beneficial to the devices using them, because they are

designed to allow communication of noisy bands. The two main ways that this is

accomplished are direct sequencing and frequency hopping.

Direct sequencing involves blasting the information out over a very wide section of the

band, but at a relatively low power. This minimizes localized disturbances, but with a

receiver tuned to listen to the proper coding, the signal can be understood at the other

end.

The second technique is frequency hopping. Frequency hopping eliminates local

disturbances by hopping around the band. It sends out a higher powered signal over a

very narrow section of the band and then hops to another frequency to send out its next

packet. A system joins this network by listening to a set frequency for the transmitter to

hop by, and when it does, it synchronizes itself to the master and hops with it. This

technique is the one that the Symbol card uses.

8

4.2 Wireless Networks

A wireless network, also known as wireless LAN, or WLAN, is a collection of wireless

units which all share the same bandwidth. Every wireless network requires some sort of

identifier. This allows more than one wireless network to share the same airspace. The

802.11 standard calls that identifier the ESSID. The ESSID is a thirty-two character

alphanumeric string that uniquely identifies a network.

The standard wireless network is set up with some number of access points (APs) and

many slave mobile units that associate with whichever AP they are closest to at any point

(determined by a voting system based on signal strength.) Usually the APs serve as

bridges to connect the wireless network to a standard wired network.

The 802.11 standard also describes something that they call ad-hoc networking, where

multiple equal units create their own wireless network. In Symbol’s scheme, however,

there is always a master unit. Any of their cards can perform as the AP, but one has to be

explicitly put into Micro AP(MAP) mode. The rest of the units are left in MU mode and

perform as though the MAP was a standard (non-bridging) access point. As such, it

doesn’t strictly conform to the standard.

5. Implementation

It was decided that the driver should be created as a kernel module for simplicity and so

that it could take advantage of the PCMCIA card services offered by the PCMCIA

9

package. The PCMCIA package was chosen to avoid having to re-invent the PCMCIA

controller interface and to abstract some of the resource management.

Much of the initial research for this project involved searching through the PCMCIA

programmers manual as well as sample code that was available from the Linux PCMCIA

package’s Web site.

Fig. 5.1 An overview of driver/kernel communication

Figure 5.1 shows a simplified view of the communication channels between the driver,

the kernel, the PCMCIA package, and the hardware. The driver registers callbacks (1)

with the kernel so that the kernel can tell it to bring the interface up or down, and so that

the kernel can inform it when it has a packet to send. The driver registers callbacks (1)

with the PCMCIA package so that the package can inform the driver when a card is

inserted, or removed, and can keep it informed of different PCMCIA events. The driver

sends messages to the kernel and PCMCIA package via system calls (2). These system

Kernel

Driver

Hardware

1) Driver registered callbacks

2) System calls

3) Programmed IO

4) Memory mapped IO

5) Interrupt line

1 2

3
4 5

PCMCIA Package

1

2

10

calls are functions that have been exported so that any code in kernel space has access to

them. The driver talks to the hardware through either a combination of memory mapped

I/O (4) and programmed I/O (3), or strictly programmed I/O. The hardware talks to the

driver via an interrupt line (5) and the chosen I/O mode(s).

One of the first programming challenges presented was how to best access the card, since

the card has two access modes (memory mapped I/O or programmed I/O.) Initially

memory mapped mode was chosen for its slightly better performance characteristics, but

it soon became clear that some older (ISA based) PCMCIA controllers had problems with

creating a large contiguous memory area. The final solution was to add in a programmed

I/O mode, and then use this mode as a fallback if we are unable to create the memory

window required.

An advantage of working with a card that is as advanced as the Spectrum24, is that much

of the underlying network complexity is already handled on the card itself. The driver

doesn’t have to worry about the MAC layer at all, since the firmware already handles

MAC level retransmission. There are even hooks for higher level IP constructs, such as

multicast.

The majority of the programming work entailed getting the interface to the card, via the

PCMCIA controller, up and running, and registering with the appropriate kernel

subsystems. Once that was done, the actual communication from the driver to the card

was comparatively easy.

11

One of the main goals of this driver was to make it as modular as possible, while still

maintaining functionality and conforming to the current PCMCIA programming

paradigm. One of the ways this is done is by minimizing global variables and putting all

the card specific data into data structures that are linked to the PCMCIA slot itself, and

passed around by the callback functions. These data types, such as the dev structure and

local_info_t, maintain all of the data that needs to be accessible to the functions that talk

directly to the card (namely the I/O ports and the memory locations if it’s memory

mapped.)

The reason for modularity and data hiding is that this driver can be used for more than

one card. As such, it needs to be reentrant. This was accomplished through semaphores,

disabling interrupts, and spin-locks, as well as data hiding.

Section 5.1 gives a basic overview of the code organization, while section 5.2 covers the

same material in greater depth. Section 5.3 shows how the driver interacts with the kernel

and the PCMCIA structure on load, unload, and packet transmission.

5.1 Code Overview

This section contains a brief functional overview of each of the procedures in the driver

module. It is broken up into data types and functions, and then further divided based upon

their functional sub-group.

12

5.1.1 Global variables

Here is an overview of the global variables and each of their purposes.

5.1.1.1 PCMCIA Globals

The first few global variables are PCMCIA specific. They are defined inside the driver,

and are global within the driver, regardless of the number of cards it happens to be

supporting:

dev_info is just a static string that is used to identify the driver to the PCMCIA package.

dev_list is a linked list of the device instances that are currently being supported by this

driver.

5.1.1.2 Configuration Globals

These are the configuration parameter globals. The purpose of these is to allow some of

the parameters to be entered as command line parameters.

13

ESSID∗∗ is used to store the initial ESSID. The ESSID can be later changed using the

wireless extensions ioctl call.

def_ESSID is used so that a default ESSID can be statically set at compile time. This is

used in the case that one is not provided, or the one provided is invalid for some reason.

map_mode ∗∗ is used to determine if the card is in Micro AP mode.

psp_mode ∗∗ is to set the power saving modes for the card. It is currently not implemented.

map_dtim∗∗ , map_hop_set∗∗ , and map_hop_pattern∗∗ are for setting the Micro AP

parameters. Dtim determines how often the AP sends out its beacon packet. A beacon

packet has all the information that a new MU needs to join the network and start hopping

with the AP. Hop set is the set of frequencies that the AP hops through, and hop pattern

determines the order in which it hops.

∗ These parameters are settable on the insmod command line.

∗ These parameters are settable on the insmod command line.

14

5.1.2 Functions

Here is an overview of what each function does, divided into functional subgroups.

5.1.2.1 The basics

init_module and cleanup_module are standard module functions. They are called when

the module is loaded or unloaded, and contain module initialization. The initialization

consists of some basic configuration as well as registering and unregistering the PCMCIA

callbacks.

5.1.2.2 PCMCIA

Here are the functions that are more or less for PCMCIA specific initialization. Some of

these functions incidentally set up the Ethernet structures, but their primary purpose is

resource management using the PCMCIA package.

s24_attach initializes a lot of the data structures necessary for the PCMCIA package. It

also sets up the Ethernet callback structure to tell the kernel that it just gained a network

card. It doesn't actually register itself with the kernel, but it puts all of the addresses of its

callbacks into the proper data structure.

s24_detach undoes everything that s24_attach does. That is, it frees memory associated

with those structures, and removes the device from the linked list of active devices.

15

s24_config sets up the card resources using the PCMCIA package. This is where it

creates the memory windows it uses, and determines if it will use I/O mode or memory

mapped mode. It is here that it registers the Ethernet callbacks that we set up earlier in

s24_attach.

s24_release undoes everything that s24_config does (this includes unregistering it from

the kernel's list of network cards and freeing memory windows and I/O ports and

interrupts.)

s24_event handles PCMCIA events such as insertion, removal, and power management.

5.1.2.3 Wireless Extensions

These are the functions that are for the wireless extensions, or heavily based on them.

The wireless extensions kernel option creates a set of ioctl calls and a proc file system

entry to monitor and configure running wireless cards.

iw_statistics is used to fill in the proc file system entry that wireless extensions creates.

s24_ioctl is the ioctl handler. It currently supports many of the wireless extensions.

16

5.1.2.4 Ethernet Functions

These functions are, for the most part, the Ethernet callbacks that get registered with the

kernel.

s24_eth_config is called by the kernel to change I/O ports or interrupts. It is currently

unimplemented.

s24_init is for the Ethernet initialization. It isn't used because all of the initialization is

done earlier (in the PCMCIA section.)

s24_tx is a callback in charge of the actual packet transmission. It is registered in

s24_attach, and gets called by the kernel when there is a packet to deliver. It unwraps the

packet and writes it to the card and then tells the card to send it.

s24_open is used to bring the card up and start radio activity (it actually calls s24_reset

to do the hardware part) but it sets the flags so that the kernel knows that it's up and

going.

s24_interrupt is the interrupt service routine. It is called when the card throws an

interrupt. It handles newly received packets, packets that have been successfully sent, and

status change events. It also has a provision to deal with the (now obsolete) RX_ERROR

condition.

17

s24_multicast is still not implemented, but will deal with the multicast aspects of the

card.

s24_stats is in charge of the statistics reporting. (errors, bytes sent, etc.)

s24_stop is the counterpart to s24_open. It sets the flags that say the card is not running

anymore, and it calls the cold_reset routine to turn the card off.

5.1.2.5 The Hardware

These functions are the ones responsible for actually talking to the card and getting it

ready to talk. Note: s24_tx and s24_interrupt also do a lot of communicating with the

card, but they are more Ethernet based, and, as such, are covered in the previous section.

cold_reset is used to get the card up and going, or issue a full reset. This will take the

card from any state and set it back to a known state. That known state is: alive and in the

right mode (MU or MAP,) but not talking.

s24_reset sets the receiver characteristics (including multicast, etc.) and the transmitter

characteristics, the MAP parameters (if necessary), PSP, and the ESSID (which starts

radio operation.)

18

5.2 Code Details

This section gives a far more detailed rendition of the information above.

5.2.1 The basic functions in depth

These are the functions that are associated with any loadable module.

5.2.1.1 init_module

init_module is the first function called when the module is loaded. It checks that the

ESSID is valid, and it registers the driver, along with the s24_attach and s24_detach

functions, with the PCMCIA package.

5.2.1.2 cleanup_module

cleanup_module is the last function called when the module is unloaded. It unregisters

the driver with the PCMCIA package, and then traverses the linked list to make sure that

all of the cards have been removed, and all of their resources are released before it exits.

5.2.2 The PCMCIA functions in depth

5.2.2.1 s24_attach

s24_attach is the main PCMCIA function. It sets up the link structure, which will be

used by the card for as long as it's in the computer. The link structure stores all the

19

PCMCIA specific information about the card, and what resources it needs before they are

allocated. The link structure also contains an auxiliary field, which points to the dev

structure that houses the Ethernet specific data.

s24_attach starts by allocating the memory for the structure, and then populating it with

information as to how the driver wants to handle the card (whether it want to assign an

interrupt, how many I/O ports it needs, and whether it wants to try to use memory and I/O

mode, or if it's just a memory card.)

Once it has populated that structure, it goes on to allocate and populate the dev structure,

as well as the structure called local_info_t which is used to store private card specific

configuration data (such as its ESSID.)

It then registers the driver with PCMCIA card services.

5.2.2.2 s24_detach

s24_detach is used to free all of the resources allocated above in s24_attach. It finds the

link structure, determines what has been freed, and what still needs to be freed, and it

uses the link->state flag to indicate what state it's in. It then makes sure that s24_release

has been called before freeing all the other data structures and unregistering from card

services.

20

5.2.2.3 s24_config

s24_config is there to do most of the actual interfacing with card services. It deals with

the tuple data, sets up the link->state flag, and creates the memory window request. It

then tries to allocate the address space for the window. If it fails, it falls back to I/O

mode. Next, it requests I/O ports, and an interrupt.

Finally, it sets the flags for the dev structure, sends the card a cold_reset, registers the

Ethernet callbacks, and tells the kernel the card’s Ethernet address.

5.2.2.4 s24_release

This undoes everything that s24_config does. It verifies that the card is ready to be

released, and that the link has been closed. It then releases the I/O ports and the IRQ and

the Memory window.

It also unregisters the network device and sets the link->state flag according to its

current state.

5.2.2.5 s24_event

This is the PCMCIA event handler. The PCMCIA events include the insert, eject, reset,

power down, and power up events. It uses the event to trigger the other functions to carry

out the request and then returns the exit status (successful or unsuccessful) of the

functions it invoked to the PCMCIA package.

21

5.2.3 Wireless Extensions

These are the wireless extension based functions.

5.2.3.1 iw_statistics

This gets called when there is a request to view the wireless statistics in the proc file

system. It fills in the iw_statistics structure to report things like the current frequency, the

signal strength, etc. It is currently unimplemented

5.2.3.2 s24_ioctl

This is the ioctl handler, it gets called when a program runs that has an ioctl call to this

device in it. The purpose of ioctl is to manage various parts of the driver on the fly. Using

this, settings such as the ESSID can be modified, and, in the future, MAP mode,

map_hop_set, and map_hop_pattern will be able to be dynamically modified as well.

5.2.4 Ethernet Specific Functions

These functions are callbacks that get registered with the Linux kernel networking layer.

22

5.2.4.1 s24_init

s24_init is placed there for Ethernet drivers in case there is initialization that needs to be

done. This is probably the place to do a lot of ISA configuration, but it isn't needed in the

PCMCIA version.

5.2.4.2 s24_eth_config

s24_eth_config could be used to modify the I/O ports the card is using, or change the

interrupt. It is currently unused.

5.2.4.3 s24_tx

This is, as the name suggests, the function actually in charge of the packet transmission.

The kernel calls it when there is a packet to be sent out. The driver has to copy the packet

from kernel space to the card, and then notify the card that there is a packet to be sent.

5.2.4.4 s24_open

s24_open is registered with the kernel, and the kernel calls it to bring the interface up. It

marks the link as open in the link structure, and increments the module use counter (the

module use counter is used by the kernel to tell if it is safe to remove a module, or if it is

in-use.) It sets up the dev structure to indicate to the kernel that it is up and running, and

it calls s24_reset to bring up the hardware.

23

5.2.4.5 s24_stop

s24_stop is the counterpart to s24_open. It modifies both the link structure and the dev

structure flags to say the card is no longer up, and it calls the cold_reset routine to turn

the card off. It also decrements the module use counter.

5.2.4.6 s24_interrupt

This is the interrupt service routine. It handles the various interrupts that the card can

generate. The card signals when it’s done sending a packet, when it has a packet to

deliver, and when it moves to a different wireless network. Currently, the only conditions

that are handled in a useful way are the TX_DONE and RX_DONE conditions.

TX_DONE allows the driver to reset the transmit locks and notify the kernel that the last

packet was successfully sent. RX_DONE tells the driver that it needs to go and get the

new packet from the card and hand it off to the kernel for processing.

5.2.4.7 s24_multicast

s24_multicast will move the card in and out of multicast mode and maintain the

multicast lists.

5.2.4.8 s24_stats

This is the statistics reporting function. It keeps track of how many packets were sent,

and received, and how many errors there were. These statistics get displayed by utilities

such as ifconfig.

24

5.2.5 Card Specific Functions

These are most of the low-level card interface functions. Some of the ones that are

notably absent are s24_tx and s24_interrupt which are documented above.

5.2.5.1 cold_reset

cold_reset is, as the name implies, a way to give the card the hardest reset you can, short

of power cycling. It takes advantage of the host command interface to set the

cold_restart flag, and then it holds down the reset line for a couple milliseconds before

letting the card come back up. It is responsible for setting the adapter mode (MAP or

MU) since that needs to happen early, and can only be done after a cold restart. It then

issues the power-up command and waits for it to wake up. If it doesn't hear from the card

in 600ms (about twice as long as the card should take to come up) it returns failure.

5.2.5.2 s24_reset

This sends the card a reset command which does a soft reset (this is different from using

its reset line as is done in cold_reset.) It configures the receiver and the transmitter and

sets up the MAP characteristics if it is going to be run in MAP mode (these include hop

set, hop pattern and dtim.) Next it configures PSP (the power saving features), and then

it sets the ESSID which tells the card to start talking.

25

5.3 Runtime Overview

This is a description of the steps involved in loading, unloading, and running the driver.

5.3.1 Loading

i) The PCMCIA card services detect the card that is inserted, and compare its

identification tuple with its database to find the correct driver.

ii) The PCMCIA package then loads the driver, at which point the driver

registers itself with PCMCIA card services.

iii) The PCMCIA package calls the s24_attach function for the card it's dealing

with, and the s24_attach function sets up the data structures and then registers

itself (again) with the card services module.

iv) The card services module determines that this is the correct module for the

job, and uses the information that was given to call the s24_config function to

set up the card and get it on its feet.

v) s24_config gets all the necessary resources and tells the kernel that it just

gained a network card (in the process, it registers all the necessary callback

functions.)

vi) Everything just sits there and waits for the kernel to decide that it wants to use

the network card. It is waiting to be assigned an IP address and to be brought

up by the kernel. In the case of PCMCIA cards, this is automated by an

external script that PCMCIA services runs.

26

vii) Once the card is brought up, the kernel calls s24_open which in turn calls

s24_reset to get the card talking.

5.3.2 Packet Handling

This is how the driver handles incoming and outgoing Ethernet packets.

5.3.2.1 Receiving Packets

i) The card receives the packet and triggers an interrupt to alert the driver.

ii) The driver’s interrupt service routine (ISR) reads the packet off the card, and

allocates memory for the packet structure that the kernel requires.

iii) The ISR puts the packet in the packet structure and notifies the kernel of the

packet’s arrival.

iv) The ISR tells the cards that it received the packet, and checks for any more.

v) If there are more packets, it goes back to ii and starts again, if not, then it

exits.

5.3.2.2 Sending Packets

i) The kernel passes the packet to the driver through the s24_tx callback.

ii) The driver waits until the card is clear to send.

iii) The driver extracts the packet from the packet structure and writes it to the

card.

iv) The driver signals to the card that it has a packet to send.

27

v) The card sends an interrupt to acknowledge that it either sent the packet or

timed out trying.

vi) The ISR passes that information back up to the kernel, and clears its transmit

lock.

5.3.3 Unloading

i) When the card is ejected, it is brought down by a PCMCIA script (which calls

s24_stop.)

ii) Card services unloads the driver, at which point, the driver calls s24_release

and s24_detach to free the resources.

6. Performance Analysis

The driver was tested against the Windows driver to give a picture of its relative

performance. Both transfer modes of the Linux driver were tested (I/O mode and memory

mapped mode) to get an idea of how the perceived performance advantage of memory

mapped access held up under testing. It was tested on a network with a single AP and a

single MU (the one on the machine being tested) to minimize interference. The tests

involved communication with a computer directly connected to the same network

segment as the AP. At the time of the tests the network traffic on this segment was very

low to non-existent. The card was set into continuous access mode (the power saving

mode that has the best performance) on both machines.

28

The windows system was a PII 266MHz laptop running windows 98. It had 64 MB of

memory, a 3 GB hard drive, and it was running the Spectrum24 2Mb/s network adapter.

The Linux system was a Pentium 200MHz laptop running the SuSE distribution of Linux

with Linux kernel 2.2.10. It had 32 MB of memory, a 2 GB hard drive, and it was using

the Spectrum24 2Mb/s network adapter.

6.1 Ping Test Results

The first test performed was a simple ping test. 15 ping packets of 64 bytes each were

sent from the test machine to the host. The statistics were gathered from the local ping

program. The test was run multiple times, to insure the consistency of the results,

however only one set of data is included here.

0

2

4

6

8

10

12

ms

Min Avg Max

Windows

Linux (IO)

Linux (MM)

Fig. 6.1 Ping Test Comparison Graph

29

The ping results were relatively consistent. The most important statistic in this case is the

average time. Most of the discrepancy lies in the ping program itself. The Linux program

had a much more precise time counter and gave all its statistics in tenths of milliseconds

as opposed to the whole millisecond granularity of the windows ping client. The

outstanding maximum ping time happened once in each incarnation of the Linux tests,

however this is probably related more computer location and spurious RF interference

than to the driver efficiency.

The conclusion that can be gathered from this data is that the Linux driver is very close, if

not equal to the Windows version for response time. There is an insignificant amount of

variance in response times between the two Linux I/O implementations.

6.2 File Transfer Results

The second test was a file transfer test. The local ftp program was used, and again, its

output was used when recording statistics. The file transfer test involved a file of 100

kilobytes (102400 bytes) in length. The file was entirely filled with 0s. The statistics are

based on ten transfers, five uploads from the test machine to the host, and five downloads

from the host to the test machine.

30

0

20

40

60

80

100

120

140

160

180

kB/s

Min Avg Max

Windows

Linux (IO)

Linux (MM)

Fig. 6.2 File Transfer Comparison Graph

In this test the Linux driver outperforms the Windows driver in the average case. This

difference is small enough that it could be attributed to differences in the TCP/IP stack or

the FTP program used. The interesting difference here is the slight improvement that

memory mapped mode has over programmed I/O. Since these statistics were gathered

using exactly the same TCP stack and the same FTP program, the only difference would

be the quality of the wireless link at the time and the difference due to the access method.

Due to the size of the file being transmitted and the fact that the two tests were run under

nearly identical conditions, wireless interference can be ruled out almost entirely. The

difference is large enough and consistent enough to be statistically significant without

being overwhelming. It was postulated that access mode would make a larger difference,

and it appears that the performance hit that is taken by relying strictly on programmed

I/O, although not trivial, is not substantial.

31

7. Conclusion

An atmosphere of experimentation surrounds the Linux project, and has since its

inception. This is due in part to the fact that many of the early Linux users were

programmers looking for something to play around with. This is one of the reasons that

its hardware support has moved forward so rapidly. This project was the perfect

opportunity to contribute to the advancement of a quality open source product.

This project contributed a wireless driver for Symbol’s Spectrum24 card to Linux.

The wireless aspects of the project provided a unique challenge. The versatility that

wireless affords and the lack of hard connections make it that much harder to trace and

debug. Ultimately the most effective debugging system involved a separate computer

whose sole purpose was to sniff wireless packets. This computer would hop with

whichever access point ESSID was provided and would log the entire contents of the

packets that it saw. Searching through those logs was a good way to become very familiar

with the structure of wireless packets, not to mention ARP packets, and a number of other

Ethernet constructs.

This project developed into a functional driver throughout the seven-week term. Much of

the first weeks were spent researching and developing a plan of attack. Then a complete

PCMCIA interface shell had to be created so that resources could be allocated to

communicate with the card in the first place. Next, the card interface had to be organized

and the card finally got a chance to show off its blinking lights. By then the code had

32

become a major disaster from an organizational standpoint, so it warranted a complete

rewrite to clean it up. I took this opportunity to add modularity as well as a programmed

I/O interface.

The resulting code was released to the general public under GPL and is included on the

CD accompanying this report, along with the PCMCIA package it was developed with.

One of the great elements of working with an open source product is the amount of

constructive feedback that users are able to give. In the short time that this driver has

been available there have already been a number of e-mails of appreciation and

suggestions (most of the suggestions are outlined in Future Work.)

So, in conclusion, Symbol was pleased with the final result, given the timeframe, and has

since contracted with me to complete the remainder of the driver as outlined in Future

Work. My advisor was pleasantly surprised to see the amount of progress and

functionality that the project had attained by the conclusion of the term. Lastly, I am

excited to have created an open source driver that is being used successfully in the world,

and I’m pleased that it performs as well as it does.

8. Future Work

The current driver is written for the 2.2.x kernel. It would be good to port it back to the

2.0.x kernels as well. This would involve some manipulation of the way that memory is

allocated as well as a few changes to the format of some system calls.

33

Much of the configuration data that is currently set as load-time parameters should be

moved to dynamically modifiable parameters. This requires more ioctl handling and a

user mode utility to send the appropriate ioctl call.

PSP support needs to be implemented. This entails changing s24_reset to incorporate the

load-time parameter. It could also be set up as a dynamically modifiable parameter.

Statistics reporting needs to be incorporated as well. This would involve investigating the

card structures to find the memory where the card stores these statistics and reading them

out and resetting them each time there is a request made.

Multicast needs to be implemented. It involves the addition of a number of data

structures, and a complex interface to the cards own multicast features to make the most

efficient implementation.

The final item that should be added is an interface to the card’s security features. This is

another complicated process, as it involves more card communication and configuration.

It would most likely be placed in s24_reset and should be dynamically modifiable as

well.

34

References

D. Hinds. “Linux PCMCIA Programmer’s Guide.”

http://pcmcia.sourceforge.org/ftp/doc/PCMCIA-PROG.html

A. Rubini. Linux Device Drivers. O’Reilly and Associates: Sebastopol, CA, Feb. 1998.

J. Tourrilhes. “The Linux Wireless LAN

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux

A. Werback. “Spectrum 24 802.11 Host Adapter Interface Specification.” Specification

Version E, Symbol Technologies Inc.: San Jose, CA, Feb 1999.

35

Appendix

spectrum24.h

/* (c) 1999 Symbol Technologies, all rights reserved. */
/* May be distributed under the terms of GNU's General Public License,
the
 text of which can be found online at
http://www.gnu.org/copyleft/gpl.html */

#ifndef __SPECTRUM24_H__
#define __SPECTRUM24_H__

/* The values to set the COR to in order to toggle IO mode. */
#define ENABLE_IO_MODE 0x41
#define DISABLE_IO_MODE 0x00

/* make bitmapped bytes a little easier to read (although I think if
you've
 got far enough to read this you know which bits are on where) */

#define BIT_0 0x01
#define BIT_1 0x02
#define BIT_2 0x04
#define BIT_3 0x08
#define BIT_4 0x10
#define BIT_5 0x20
#define BIT_6 0x40
#define BIT_7 0x80

/* io port layout */
#define HSR 0x0
#define CMD 0x1
#define BSSR 0x2
#define HREG 0x3
#define PREG 0x3
#define LMA0 0x4
#define LMA1 0x5
#define MEM0 0x6
#define MEM1 0x7

/* HSR bits */
#define HSR_P188_ACTIVE BIT_5
#define HSR_HREG BIT_2
#define HSR_P188_INT BIT_0

/* Host command register commands */
#define HCR_RESET BIT_7
#define HCR_PWRUP BIT_5
#define GEN_P188_INT BIT_4
#define ENABLE_P188_INT BIT_0

36

/* HREG commands */
#define HREG_INIT_MU 1
#define HREG_PSP_WAKEUP 3
#define HREG_RESUME 4
#define HREG_SLEEP 5
#define HREG_INIT_MAP 6

/* Common memory layout */

/* the host interface command buffer */
#define HCB 0x100

/* the adapter status registers */
#define ASR 0x110
#define RSR 0x120
#define TSR 0x130

/* the Write Operation Complete byte */
#define WOC 0x112

/* the transmit data registers */
#define TX_NEXT_BUFFER 0x140
#define TX_BUFF_SIZE 0x142
#define TX_BUFF_OFF 0x144
#define TX_BUFF_TOT 0x146

/* the receive data registers */
#define RX_PKT_LEN 0x150
#define RX_PKT_START 0x152

/* the location of the MAC address */
#define ETH_ADDR_LOC 0x160

/* the ordinal pointers */
#define ORD_TBL_1 0x170
#define ORD_TBL_2 0x172

/* the ap table pointers */
#define AP_TBL_LEN 0x174
#define AP_TBL_PTR 0x176
#define ROM_LOG_PTR 0x178

/* association table pointers (for MAP only) */
#define ASS_TBL_PTR 0x17A
#define ACL_PTR 0x17C

/* statistics buffer register */
#define STAT_TBL_LEN 0x180
#define STAT_TBL_PTR 0x182

/* 4 byte adapter time and 1 byte time valid flag */
#define ADAPTER_TIME 0x184
#define TIME_VALID 0x188

/* restart flag */
#define RESTART_FLAG 0x189

37

/* transmit disable flag */
#define TX_DISABLE 0x18B

/* flash memory info */
#define FLSH_CFG_PTR 0x18C
#define FLSH_STAT 0x18E

/* MKK stuff ... for japanese firmware only */
#define MKK_ENABLED 0x190
#define MKK_CALLSIGN 0x191

/* country info */
#define COUNTRY_ID 0x1A0
#define COUNTRY_NAME 0x1A2

/* restart control stuff */
#define WARM_START_REG 0x380
#define RESTART_COUNT 0x384
#define OP_MODE 0x386 /* one byte */
#define SELF_TEST_CURR 0x388
#define SELF_TEST_CUM 0x38C

/* the association status register */
#define ASSC_SR 0x50C

/* HCB commands */
#define CMD_RESET 0x00
#define CMD_SRC 0x01
#define CMD_STC 0x02
#define CMD_AMA 0x03
#define CMD_DMA 0x04
#define CMD_SAM 0x05
#define CMD_TXL 0x08
#define CMD_SKR 0x09
#define CMD_ASR_CLR 0x0C
#define CMD_RSR_CLR 0x0D
#define CMD_TSR_CLR 0x0E
#define CMD_SCN_CLR 0x0F
#define CMD_IMR_SET 0x10
#define CMD_TXI 0x11
#define CMD_TIM 0x12
#define CMD_IDL 0x13
#define CMD_STST 0x14
#define CMD_CLS 0x15
#define CMD_RTC 0x16
#define CMD_RTS_THRES 0x17
#define CMD_PMG 0x18
#define CMD_FLAGS 0x1A
#define CMD_ASR_SET 0x1B
#define CMD_FLASH 0x1C
#define CMD_ACL_ADD 0x1D
#define CMD_ACL_DEL 0x1E
#define CMD_ACL_CLR 0x1F
#define CMD_MAP_CONFIG 0x21
#define CMD_ESSID 0x27
#define CMD_PREFER 0x28

38

#define CMD_MANDAT 0x29
#define CMD_TX_RATE 0x2A
#define CMD_MAC_ADRS 0x2B
#define CMD_SET_AUTH_TYPE 0x2C
#define CMD_ENCRYPT_KEY 0x2D
#define CMD_ENCRYPT_KEY_ID 0x2E
#define CMD_INTERNATIONAL 0x2F

/* the asr bits */
#define RX_COMPLETE BIT_7
#define RX_ERROR BIT_6
#define TX_COMPLETE BIT_5
#define STATUS_CHANGE BIT_4
#define TX_BUSY BIT_1
#define TX_FREE BIT_0

/* the interrupt bits in the ASR */
#define ASR_INT_MASK 0xF0

/* the tx/rx buffer layout */
/* these are all words except */

#define LINK_PTR 0x00
#define BUFF_LEN 0x02
#define DATA_OFF 0x04
#define TIMESTMP_MSW 0x08
#define DEST_ADDR 0x0A /* 6 bytes (duh) */
#define SRC_ADDR 0x10 /* " " " */
#define TIMESTMP_LSW 0x16
#define RSSI 0x1C /* 1 byte */
#define FREQ 0x1D /* " " */

/* Ordinal table statistics pointer */
#define RX_PACKETS 33
#define TX_PACKETS 2
#define RX_BYTES 43
#define TX_BYTES 12
#define RX_ERRORS --
#define TX_ERRORS 16
//#define MULTICAST
#define COLLISIONS

/* extended recieve errors */
#define RX_LENGTH_ERRORS
#define RX_OVER_ERRORS
#define RX_CRC_ERRORS
#define RX_FRAME_ERRORS
#define RX_FIFO_ERRORS
#define RX_MISSED_ERRORS

#define TX_ABORTED_ERRORS
#define TX_CARRIER_ERRORS
#define TX_FIFO_ERRORS
#define TX_HEARTBEAT_ERRORS
#define TX_WINDOW_ERRORS

#endif

39

spectrum24_cs.h

/* (c) 1999 Symbol Technologies, all rights reserved. */
/* May be distributed under the terms of GNU's General Public License,
the
 text of which can be found online at
http://www.gun.org/copyleft/gpl.html */
#ifndef __SPECTRUM24_CS_H__
#define __SPECTRUM24_CS_H__

/* these includes give us a clue as to our build environment */
#include <pcmcia/config.h>
#include <pcmcia/k_compat.h>

#define DEBUG

#if defined(PCMCIA_DEBUG) && !defined(DEBUG)
#define DEBUG
#endif

/* I'm not sure whether or not the make call from the pcmcia package
will take
 care of this, so better safe than sorry */

#ifdef CONFIG_SMP
#ifndef __SMP__
#define __SMP__
#endif
#include <linux/smp.h>
#endif

#ifdef CONFIG_MODVERSIONS
#ifndef MODVERSIONS
#define MODVERSIONS
#endif
#include <linux/modversions.h>
#endif

#ifndef MODULE
#error "This code is intended to be used as a module."
#endif

/* Linux Headers that are useful */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>

40

#include <asm/bitops.h>

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>

#include <linux/wireless.h>

/* pcmcia headers */
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ds.h>
#include <pcmcia/version.h>

/* spectrum24 interface stuff */
#include "spectrum24.h"

/* Set up all the normal useful macros */

#define MIN(x,y) (x) > (y) ? y : x

#ifdef DEBUG
#define debug(str,args...) printk(KERN_DEBUG str,## args) ;
printk("\n")
#else
#define debug(str,args...)
#endif

#ifndef FALSE
define FALSE 0
#endif

#ifndef TRUE
define TRUE !FALSE
#endif

#define MAC_ADDR_LEN ETH_ALEN

#ifndef IW_ESSID_MAX_SIZE
#define IW_ESSID_MAX_SIZE 32
#endif

/* local structures */

typedef struct local_info
{
 dev_node_t node;
 struct net_device_stats stats;
#ifdef WIRELESS_EXT
 struct iw_statistics iw_stats;
#endif
 volatile u_char *mem_area;

41

 char essid[IW_ESSID_MAX_SIZE];
 int essid_len;
 int adapter_mode;
 int psp;
 int io_mode;
 struct map_info
 {
 u_char hop_set,hop_pattern,dtim;
 }map;

} local_info_t;

/* defines for adapter_mode */
#define MU 0
#define MAP 1

/* declaring an empty string here should cause it to broadcast
for an essid and then set its essid to the first one it finds */
#define DEFAULT_ESSID ""

/* this is used by wireless extensions to determine the name of the
card. */
#define IF_NAME "Spectrum24"

#define MAX_ARGS 15
#define MEM_WIN_SIZE (32 * 1024)

typedef struct eth_header
{
 u_char dest_addr[MAC_ADDR_LEN],src_addr[MAC_ADDR_LEN];
} eth_hdr_t;

typedef struct rt_buff
{
 u_short rt_next; // 0x00
 u_short rt_len; // 0x02
 u_short rt_data_off; // 0x04
 u_char unused1[2]; // 0x06
 u_short rt_timestamp_MSW; // 0x08
 u_char rt_dest_addr[6]; // 0x0A
 u_char rt_src_addr[6]; // 0x10
 u_short rt_timestamp_LSW; // 0x16
 u_char unused2[4]; // 0x18
 u_char rt_RSSI; // 0x1C
 u_char rt_freq; // 0x1D
 u_char unused3[2]; // 0x1E
} rt_buff_t;

/* function prototypes */

static dev_link_t *s24_attach(void);
static void s24_detach(dev_link_t *);
static int s24_eth_config (struct device *, struct ifmap *);
static void s24_config(dev_link_t *);
static void s24_release(u_long);
static int s24_tx(struct sk_buff *, struct device *);
static int s24_open(struct device *dev);

42

static void s24_interrupt IRQ(int , void *, struct pt_regs *);
static int s24_event(event_t event, int priority, event_callback_args_t
*args);
static int s24_stop(struct device *dev);
static struct net_device_stats *s24_stats(struct device *dev);

static void s24_reset(struct device *dev);
static void s24_multicast(struct device *);
static int s24_init(struct device *dev);
static int s24_ioctl(struct device *dev, struct ifreq *ifr, int cmd);

static void fill_stats(struct device *dev);

#ifdef HAS_WIRELESS_EXTENSIONS
static struct iw_statistics * s24_wireless_stats(struct device *dev);
#endif

/**
**
* cs_error *
* *
* displays CardServices errors *

*/

static inline void cs_error(client_handle_t handle, int func, int ret)
{
 error_info_t err = { func, ret };
 CardServices(ReportError, handle, &err);
}

/**
**
* save_LMA, restore_LMA *
* *
* saves the state of the LMA buffers so interrupts don’t destroy other
*
* card functions *

*/
static inline u_short save_LMA(struct device *dev)
{
 local_info_t *info = dev->priv;

 if (info->io_mode)
 {
 unsigned ioaddr = dev->base_addr;
 u_char save[2];

 save[0] = inb(ioaddr + LMA0);
 save[1] = inb(ioaddr + LMA1);

 return *(u_short *)save;
 }

 return 0;

43

}

static inline void restore_LMA(struct device *dev, u_short val)
{
 local_info_t *info = dev->priv;

 if (info->io_mode)
 {
 unsigned ioaddr = dev->base_addr;
 u_char *save = (u_char *)&val;

 outb(save[0], ioaddr + LMA0);
 outb(save[1], ioaddr + LMA1);
 }
}

/**
**
* get_bytes *
* *
* grabs n bytes from the card and puts them in the buffer pointed to by

*
* buffer. *

*/

static inline void get_bytes(struct device *dev, u_char *buffer,
u_short start, size_t count)
{
 local_info_t *info = dev->priv;
 debug("get_bytes");

 if (info->io_mode)
 {
 int i;
 unsigned ioaddr = dev->base_addr;
 debug("io mode");

 outb(start & 0xFF, ioaddr + LMA0);
 outb((start & 0xFF00) >> 8, ioaddr + LMA1);

 for (i = 0 ; i < count ; i++)
 {
 /* since the address autoincrements, we can just read and be
happy */
 buffer[i] = inb(ioaddr + MEM0);
 }
 }
 else
 {
 memcpy(buffer,(void *)(info->mem_area + start),count);
 }
}

/**
**

44

* put_bytes *
* *
* grabs count bytes from buffer and writes them to the card.

*

*/

static inline void put_bytes(struct device *dev, const u_char *buffer,
u_short start, size_t count)
{
 local_info_t *info = dev->priv;
 debug("put_bytes");

 if (info->io_mode)
 {
 int i;
 unsigned ioaddr = dev->base_addr;

 debug("io mode");

 outb(start & 0xFF, ioaddr + LMA0);
 outb((start & 0xFF00) >> 8, ioaddr + LMA1);

 for (i = 0 ; i < count ; i++)
 {
 /* since the address autoincrements, we can just write and be
happy */
 outb(buffer[i], ioaddr + MEM0);
 }
 }
 else
 {
#if defined(DEBUG) && 1
 if (count == 2)
 {
 debug("Short value is %d.",le16_to_cpu(*(u_short *)buffer));
 }
#endif
 debug("About to do memcpy to location %x for %x
bytes",start,count);
 memcpy((void *)(info->mem_area + start),buffer,count);
 }
}

/**
**
* get_byte *
* *
* returns one byte from the card at location loc *

*/

static inline u_char get_byte(struct device *dev, u_short loc)
{
 local_info_t *info = dev->priv;

 if (info->io_mode)

45

 {
 unsigned ioaddr = dev->base_addr;

 outb(loc & 0xFF, ioaddr + LMA0);
 outb((loc & 0xFF00) >> 8, ioaddr + LMA1);

 return inb(ioaddr + MEM0);
 }

 return info->mem_area[loc];
}

/**
**
* put_byte *
* *
* writes byte to the card at location loc *

*/

static inline void put_byte(struct device *dev, u_char byte, u_short
loc)
{
 local_info_t *info = dev->priv;

 if (info->io_mode)
 {
 unsigned ioaddr = dev->base_addr;

 outb(loc & 0xFF, ioaddr + LMA0);
 outb((loc & 0xFF00) >> 8, ioaddr + LMA1);

 outb(byte, ioaddr + MEM0);
 }
 else
 {
 info->mem_area[loc] = byte;
 }
}

/* the last of these functions (maybe) */

static inline u_short get_word(struct device *dev, u_short loc)
{
 u_short word;
 get_bytes(dev,(u_char *)&word,loc,2);
 return le16_to_cpu(word);
}

static inline void put_word(struct device *dev, u_short word, u_short
loc)
{
 word = le16_to_cpu(word);
 put_bytes(dev,(u_char *)&word,loc,2);
}

46

/**
**
* wait_on_woc *
* *
* waits for the woc bit to go true. due to the conditions under which

*
* it's called, it shouldn't have to be reentrant. *

*/

static inline int wait_on_woc(struct device *dev, u_long timeout)
{
 int i;
 int ret_val = 0;

 debug("Waiting on WOC for %lu milliseconds", timeout);

 for (i = jiffies + (((HZ * timeout)/1000) ? ((HZ * timeout)/1000) :
1); i >= jiffies ;)
 {
 if (get_byte(dev,WOC))
 {
 ret_val = 1;
 break;
 }
 }

 return ret_val;
}

/**
**
* moon_cmd *
* *
* send a command to the card *
* this assumes that you have already made sure that you have the woc

*
* bit. *

*/

static inline void moon_cmd(struct device *dev, u_char cmd, const
u_char * args, int no_args)
{
 unsigned ioaddr = dev->base_addr;
 put_byte(dev,0,WOC);
 put_byte(dev,cmd,HCB);

 debug("Got command %.2x, with %d args",cmd,no_args);

 if (no_args > 0)
 put_bytes(dev,args,HCB+1,no_args);

 outb(GEN_P188_INT | inb(ioaddr+CMD),ioaddr+CMD);
}

47

/**
**
* moon_cmd_byte *
* *
* send a command to the card with a one byte argument *
* this assumes that you have already made sure that you have the woc

*
* bit. *

*/

static inline void moon_cmd_byte(struct device *dev, u_char cmd, const
u_char arg)
{
 unsigned ioaddr = dev->base_addr;
 put_byte(dev,0,WOC);
 put_byte(dev,cmd,HCB);
 put_byte(dev,arg,HCB+1);

 outb(GEN_P188_INT | inb(ioaddr+CMD),ioaddr+CMD);
}

#ifdef DEBUG
/**
**
* print_buffer *
* *
* a quick and dirty function to dump the contents of a memory location

*
* used only for debugging. I could optimize it for io mode, but it's

*
* for debugging, what do I care how efficient it is :p

*

*/

static inline void print_buffer(u_long start, u_long end, struct device
*dev)
{
 int q;
 for (; start <= end ; start += 0x10)
 {
 printk(KERN_DEBUG);
 for (q = 0 ; q < 0x10 ; q++)
 printk("%.2x ", get_byte(dev,start + q));
 printk("\n");
 }
}
#else
define print_buffer(X, Y, Z)
#endif /* DEBUG */

#endif /* __SPECTRUM24_CS_H__ */

48

spectrum24_cs.c

/* (c) 1999 Symbol Technologies, all rights reserved. */
/* May be distributed under the terms of GNU's General Public License,
the
 text of which can be found online at
http://www.gnu.org/copyleft/gpl.html */
#include "spectrum24_cs.h"

/* globals */

static dev_info_t dev_info = "spectrum24_cs";
static dev_link_t *dev_list = NULL; /* a linked list of devices
associated with this driver */

static char *essid = NULL;
static char *def_essid = DEFAULT_ESSID;
static int map_mode = FALSE;
static int psp_mode = 0;
static u_char map_dtim = 10;
static u_char map_hop_set = 0x01;
static u_char map_hop_pattern = 0xFF;
static int force_io_mode = FALSE;

MODULE_PARM(essid,"s");
MODULE_PARM(psp_mode,"i");
MODULE_PARM(map_mode,"i");
MODULE_PARM(map_dtim,"b");
MODULE_PARM(map_hop_set, "b");
MODULE_PARM(map_hop_pattern, "b");
MODULE_PARM(force_io_mode,"i");

static u_int irq_mask = 0xdeb8; /* standard irq mask */

int init_module(void)
{
 debug("init_module");

 EXPORT_NO_SYMBOLS;

 if (essid == NULL)
 essid = def_essid;
 else if (strlen(essid) > 32)
 {
 printk(KERN_NOTICE "%s: ESSID too long, using default.", dev_info);
 essid = def_essid;
 }
 register_pccard_driver(&dev_info,&s24_attach,&s24_detach);
 return 0;
}

void cleanup_module(void)
{
 debug("cleanup_module");
 unregister_pccard_driver(&dev_info);

49

 while (dev_list)
 {
 s24_detach(dev_list);
 }
}

static int s24_init(struct device *dev)
{
 return 0;
}

static int s24_ioctl(struct device *dev, struct ifreq *ifr, int cmd)
{
 u_long flags;
 local_info_t *info = dev->priv;
 struct iwreq *iwr = (struct iwreq *) ifr;
 int ret_val = 0;

 /* I'm not sure if this is necessary, but the sample code I looked at
did it so ... */
 save_flags(flags);
 cli();

 switch(cmd)
 {
 case SIOCGIWNAME:
 strcpy(iwr->u.name,IF_NAME);
 break;
 case SIOCGIWESSID:
 if (copy_to_user(iwr->u.data.pointer,info->essid,info->essid_len))
 {
 ret_val = -EFAULT;
 break;
 }
 iwr->u.data.length = info->essid_len;
 iwr->u.data.flags = TRUE;
 break;
 case SIOCSIWESSID:
 if (copy_from_user(info->essid,iwr->u.data.pointer,iwr-
>u.data.length))
 {
 ret_val = -EFAULT;
 break;
 }
 /* for some reason, it insists on including the nul character I'm
not sure if this breaks down around IW_ESSID_MAX_SIZE */
 info->essid_len = iwr->u.data.length - 1;
 if (dev->start)
 {
 s24_reset(dev);
 }
 break;
 default:
 ret_val = -EOPNOTSUPP;
 }
 restore_flags(flags);

50

 return ret_val;
}

static void fill_stats(struct device *dev)
{

}

#ifdef HAS_WIRELESS_EXTENSIONS
static struct iw_statistics * s24_wireless_stats(struct device *dev)
{
 debug("s24_wireless_stats");
 fill_stats(dev);
 return &((local_info_t *)dev->priv)->iw_stats;
}
#endif

/**
**
* s24_attach *
* *
* sets up all the data types when a card is inserted *

*/

static dev_link_t *s24_attach(void)
{
 client_reg_t client_reg;
 dev_link_t *link;
 struct device *dev;
 local_info_t *info;
 int ret;

 debug("s24_attach");

 /* set up our link structure */
 link = kmalloc(sizeof(struct dev_link_t), GFP_KERNEL);

 if (link == NULL)
 {
 printk(KERN_NOTICE "%s: Unable to get free memory for link
struct.\n", dev_info);
 return NULL;
 }

 /* initialize it to zero. */
 memset(link,0,sizeof(struct dev_link_t));

 /* populate it */
 link->release.function = &s24_release;
 link->release.data = (u_long) link;
 link->io.NumPorts1 = 16;
 link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
 link->io.IOAddrLines = 4; /* I don't really know, and this isn't
curently used, should be modified to be correct at some later date. */
 link->irq.Attributes = IRQ_HANDLE_PRESENT;
 link->irq.IRQInfo1 = IRQ_INFO2_VALID;

51

 link->irq.IRQInfo2 = irq_mask;
 link->irq.Handler = &s24_interrupt;
 link->conf.Attributes = CONF_ENABLE_IRQ;
 link->conf.Vcc = 50; /* specified in tenths of a volt */
 link->conf.IntType = INT_MEMORY_AND_IO;
 link->conf.ConfigIndex = ENABLE_IO_MODE;
 link->conf.Present = PRESENT_OPTION;

 dev = kmalloc(sizeof(struct device),GFP_KERNEL);

 if (dev == NULL)
 {
 s24_detach(link);
 printk(KERN_NOTICE "%s: Unable to get free memory for dev
struct.\n", dev_info);
 return NULL;
 }
 memset(dev,0,sizeof(struct device));
 dev->priv = kmalloc(sizeof(local_info_t),GFP_KERNEL);
 if (dev->priv == NULL)
 {
 s24_detach(link);
 printk(KERN_NOTICE "%s: Unable to get free memory for private
struct.\n", dev_info);
 return NULL;
 }
 memset(dev->priv,0,sizeof(local_info_t));

 info = dev->priv;

 info->essid_len = strlen(essid);
 memcpy(info->essid,essid,info->essid_len);

 if (map_mode)
 info->adapter_mode = MAP;
 else
 info->adapter_mode = MU;

 info->map.hop_set = map_hop_set;
 info->map.hop_pattern = map_hop_pattern;
 info->map.dtim = map_dtim;

 info->psp = psp_mode;

 if (force_io_mode)
 {
 info->io_mode = TRUE;
 }
 ether_setup(dev);

 dev->hard_start_xmit = &s24_tx;
 dev->set_config = &s24_eth_config;
 dev->get_stats = &s24_stats;
 dev->set_multicast_list = &s24_multicast;
 dev->init = &s24_init;
 dev->open = &s24_open;
 dev->stop = &s24_stop;

52

 dev->do_ioctl = &s24_ioctl;

#ifdef HAS_WIRELESS_EXTENSIONS
 dev->get_wireless_stats = &s24_wireless_stats;
#endif

 dev->name = info->node.dev_name;
 dev->tbusy = 1;
 link->priv = link->irq.Instance = dev;

 link->next = dev_list;

 dev_list = link;

 client_reg.dev_info = &dev_info;
 client_reg.Attributes = INFO_IO_CLIENT;
 client_reg.EventMask =
 CS_EVENT_CARD_INSERTION | CS_EVENT_CARD_REMOVAL |
 CS_EVENT_RESET_PHYSICAL | CS_EVENT_CARD_RESET |
 CS_EVENT_PM_SUSPEND | CS_EVENT_PM_RESUME;
 client_reg.event_handler = &s24_event;
 client_reg.Version = 0x0309; /* the version of card services?
currently ignored, see comment about address lines */
 client_reg.event_callback_args.client_data = link;

 ret = CardServices(RegisterClient,&(link->handle), &client_reg);
 if (ret != CS_SUCCESS)
 {
 cs_error(link->handle,RegisterClient,ret);
 s24_detach(link);
 return NULL;
 }

 debug("Successfully attached");
 return link;
}

/**
**
* s24_detach *
* *
* releases all the data structures allocated with s24_attach()

*

*/
static void s24_detach(dev_link_t *link)
{
 dev_link_t **linkp;
 long flags;

 debug("s24_detach");

 /* look through the linked list until either we find our link, or we
reach the end */
 for (linkp = &dev_list; *linkp != NULL && *linkp != link; linkp =
&(*linkp)->next)

;

53

 /* if we reached the end, return and don't do anything */
 if (*linkp == NULL)
 {
 debug("couldn't find in linked list.");
 return;
 }

 save_flags(flags);
 cli();

 if (link->state & DEV_RELEASE_PENDING)
 {
 del_timer(&link->release);
 link->state &= ~DEV_RELEASE_PENDING;
 }

 restore_flags(flags);

 /* if the device is currently active, mark it as stale and clean it
up when we get the release call */
 if (link->state & DEV_CONFIG)
 {
 s24_release((u_long)link);
 if (link->state & DEV_STALE_CONFIG)
 {
 debug("Got detach, but still busy.");
 link->state |= DEV_STALE_LINK;
 return;
 }
 }

 /* if the link was registered, deregister it */
 if (link->handle)
 CardServices(DeregisterClient, link->handle);

 /* Remove this from the linked list */
 *linkp = link->next;

 /* Free memory */
 if (link->priv != NULL)
 {
 struct device *dev = link->priv;
 if (dev->priv != NULL)
 kfree(dev->priv);
 kfree(link->priv);
 }

 kfree(link);
} /* s24_detach */

/**
**
* s24_eth_config *
* *
* is called by ifconfig to change things like irq and ioport currently

*

54

* won't change any thing, in the future could be modifed to be more
*

* flexible. *

*/

static int s24_eth_config (struct device *dev, struct ifmap *map)
{
 debug("s24_eth_config");
 return 0;
}

/**
**
* cold_reset *
* *
* will completely reset the adapter, and then bring it up in MU or MAP

*
* mode depending on the adapter_mode flag *

*/

static int cold_reset(struct device *dev)
{
 u_long i;
 local_info_t *info = dev->priv;
 unsigned ioaddr = dev->base_addr;

 put_byte(dev,0,WARM_START_REG);

 debug("register looks like %.2x", (u_char)inb(ioaddr + HSR));

 /* set the reset bit */
 outb(BIT_7,ioaddr + CMD);

 mdelay(2);

 /* clear the reset bit */
 outb(0,ioaddr + CMD);

 mdelay(1);

 debug("register looks like %.2x", (u_char)inb(ioaddr + HSR));

 switch(info->adapter_mode)
 {
 case MAP:
 outb(HREG_INIT_MAP, ioaddr + HREG);
 break;
 case MU:
 outb(HREG_INIT_MU, ioaddr + HREG);
 break;
 default:
 return 1;
 }

 outb(HCR_PWRUP,ioaddr + CMD);

55

 /* this should allow it to cycle through waiting for the adapter to
wakeup,
 unfortunately it's a busy wait, but I don't know of a better
solution since
 this can be called at interrupt time */
 for (i = jiffies + HZ*3/5 ; jiffies < i && !(inb(ioaddr) & 0x20) ;)
 {
 mdelay(1);
 }

 debug("register looks like %.2x", (u_char)inb(ioaddr + HSR));

 if (inb(ioaddr + HSR) & HSR_P188_ACTIVE)
 return 0;

 /* if it gets here, it didn't wake up. */
 return 1;
}

#define CS_CHECK(fn,args...)\
if ((last_ret = CardServices(fn,args)) != CS_SUCCESS) \
{ cs_error(handle,fn,last_ret); s24_release((u_long)link); return; }

/**
**
* s24_config *
* *
* sets up all the card resources (memory windows, ioports and irqs)

*

*/

static void s24_config(dev_link_t *link)
{
 client_handle_t handle;
 tuple_t tuple;
 cisparse_t parse;
 struct device *dev;
 local_info_t *info;
 int last_ret;
 u_char buf[64];
 win_req_t winrq;

 debug("s24_config");

 handle = link->handle;
 dev = link->priv;
 info = dev->priv;

 tuple.DesiredTuple = CISTPL_CONFIG;
 tuple.Attributes = 0;
 tuple.TupleData = buf;
 tuple.TupleDataMax = sizeof(buf);
 tuple.TupleOffset = 0;

 CS_CHECK(GetFirstTuple, handle, &tuple);

56

 CS_CHECK(GetTupleData, handle, &tuple);
 CS_CHECK(ParseTuple, handle, &tuple, &parse);
 link->conf.ConfigBase = parse.config.base;
 link->conf.Present = parse.config.rmask[0];

 link->state |= DEV_CONFIG;

 winrq.Attributes = WIN_MEMORY_TYPE_CM | WIN_DATA_WIDTH_8 |
WIN_ENABLE;
 winrq.Base = 0;
 winrq.Size = MEM_WIN_SIZE;
 winrq.AccessSpeed = 100;

 link->win = (window_handle_t)handle;

 if (!info->io_mode && CardServices(RequestWindow,&link->win, &winrq)
!= CS_SUCCESS)
 {
 printk(KERN_NOTICE "%s: Unable to get a memory window, falling back
to IO mode\n", dev_info);
 info->io_mode = TRUE;
 }

 if (!info->io_mode)
 {
 debug("Remapping memory from %lx", winrq.Base);

 info->mem_area = ioremap(winrq.Base,MEM_WIN_SIZE);

 debug("Remapped to %p", info->mem_area);

 if (info->mem_area == NULL)
 {
 printk(KERN_NOTICE "%s: ioremap() failed, falling back to IO
mode\n", dev_info);
 info->io_mode = TRUE;
 }
 }

 debug("info->io_mode = %d",info->io_mode);

 CS_CHECK(RequestIRQ,handle,&(link->irq));
 debug("Got IRQ %d",link->irq.AssignedIRQ);

 CS_CHECK(RequestIO,handle,&(link->io));
 debug("Got IOPort %x",link->io.BasePort1);

 CS_CHECK(RequestConfiguration,handle,&(link->conf));

 dev->irq = link->irq.AssignedIRQ;
 dev->base_addr = link->io.BasePort1;
 dev->tbusy = 0;

 if (cold_reset(dev))
 {
 printk(KERN_NOTICE "%s: cold_reset() failed!\n", dev_info);
 s24_release((u_long)link);

57

 return;
 }

 if (register_netdev(dev))
 {
 printk(KERN_NOTICE "%s: register_netdev() failed!\n", dev_info);
 s24_release((u_long)link);
 return;
 }

 get_bytes(dev, dev->dev_addr, ETH_ADDR_LOC, MAC_ADDR_LEN);

#if 0
 debug("memory dump:");
 print_buffer(0x100,0x160,dev);
#endif

 link->dev = &((local_info_t *)dev->priv)->node;
 link->state &= ~DEV_CONFIG_PENDING;
}

/**
**
* s24_release *
* *
* Releases everything created with s24_config *

*/

static void s24_release(u_long arg)
{
 dev_link_t *link = (dev_link_t *)arg;
 local_info_t *info = ((struct device *)link->priv)->priv;

 debug("s24_release");

 if (link->open)
 {
 debug("release postponed, link still open.");
 link->state |= DEV_STALE_CONFIG;
 return;
 }

 CardServices(ReleaseConfiguration,link->handle);
 CardServices(ReleaseIO,link->handle, &link->io);
 CardServices(ReleaseIRQ,link->handle, &link->irq);

 CardServices(ReleaseWindow,link->win);

 if (link->dev != NULL)
 {
 unregister_netdev(link->priv);
 link->dev = NULL;
 }

 if (info->mem_area != NULL)
 {

58

 debug("iounmap %p",info->mem_area);
 iounmap((void *)info->mem_area);
 info->mem_area = NULL;
 }

 link->state &= ~(DEV_CONFIG | DEV_STALE_CONFIG);

 if (link->state & DEV_STALE_LINK)
 s24_detach(link);

}

/**
**
* s24_tx *
* *
* the transmit function *

*/

static int s24_tx(struct sk_buff *skb, struct device *dev)
{
 u_short len, n, save_len;
 u_long flags;
 char *data;
 u_short rt_buff, tx_buffer;

 debug("s24_tx");

 /* I'm not sure which interrupt level this runs at, but in case it
could be
 reentrant ... */
 save_flags(flags);
 cli();
 if (get_byte(dev,ASR) & TX_BUSY || dev->tbusy) /* theoretically
shouldn't happen */
 {
 debug("TX_BUSY or tbusy, %.2x %.2lx", get_byte(dev, ASR) & TX_BUSY,
dev->tbusy);
 if (get_byte(dev, ASR) & TX_BUSY)
 {
 restore_flags(flags);
 return -EBUSY;
 }
 printk(KERN_INFO "%s: failed to release tbusy.\n", dev_info);
 }

 if (!(get_byte(dev, ASR) & TX_FREE))
 {
 restore_flags(flags);
 debug("not enough space for a packet");
 return -EBUSY;
 }

 dev->tbusy = 1;
 restore_flags(flags);

59

 len = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
 data = skb->data;
 dev->trans_start = jiffies;

 /* actually write the data to the card */

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 dev->tbusy = 0;
 return -EBUSY;
 }

 debug("got WOC, setting TX_BUSY");
 moon_cmd_byte(dev,CMD_ASR_SET,TX_BUSY);

 rt_buff = get_word(dev,TX_NEXT_BUFFER);

 put_bytes(dev, data, rt_buff + DEST_ADDR, 2 * MAC_ADDR_LEN);

 data += (2*MAC_ADDR_LEN);
 len -= (2*MAC_ADDR_LEN);

 /* save the length of the data portion of our buffer (minus the MAC
addresses) */
 save_len = le16_to_cpu(len);

#if 0
 /* if the type/length field is a length, it is an 802.3 frame
 in which case, it already has the header information, so we
 need to modify the transmit buffer registers to reflect that */
 if (htons(*(u_short *)data) <= 1500)
 {
 u_short data_size, data_off;

 data_off = get_word(dev,TX_BUFF_OFF);
 data_size = get_word(dev,TX_BUFF_SIZE);

 data_size += 8;
 data_off -= 8;

 put_word(dev,data_off,TX_BUFF_OFF);
 put_word(dev,data_size,TX_BUFF_SIZE);
 }
#endif

#if 0
 /* for some reason, TX_BUFF_OFF != rt_buff + DATA_OFF, and since
using the first values give problems, I'm trying the second */
 tx_buffer = get_word(dev,TX_BUFF_OFF);
 debug("got %x for the buffer offset from tx_buff_off and %x from the
buffer itself",tx_buffer,get_word(dev,rt_buff+DATA_OFF));
 n = MIN(get_word(dev,TX_BUFF_SIZE),len);
#endif

 while (len > 0 && rt_buff != 0)

60

 {
 tx_buffer = get_word(dev,rt_buff+DATA_OFF);
 n = MIN(get_word(dev,rt_buff+BUFF_LEN),len);
 put_bytes(dev,data,tx_buffer + rt_buff,n);
 data += n;
 len -= n;
 rt_buff = get_word(dev,rt_buff+LINK_PTR);
 }

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 dev->tbusy = 0;
 return 1;
 }
 debug("Got WOC, sending tx_list_command.");

 moon_cmd(dev,CMD_TXL,(u_char *)&save_len,2);

 dev_kfree_skb(skb);

 return 0;
}

/**
**
* s24_open *
* *
* The callback that should bring the card up and start radio activity.

*

*/

static int s24_open(struct device *dev)
{
 dev_link_t *link;
 debug("s24_open");

 for(link = dev_list; link != NULL && link->priv != dev; link = link-
>next)
 ;

 if (link == NULL)
 return -ENODEV;

 link->open++;

 MOD_INC_USE_COUNT;

 dev->interrupt = 0;
 dev->tbusy = 0;
 dev->start = 1;

 s24_reset(dev);

 return 0;
}

61

/**
**
* s24_interrupt *
* *
* The ISR. It deals with RX_COMPLETE, TX_COMPLETE, RX_ERROR and

*
* STATUS_CHANGE events *

*/

static void s24_interrupt IRQ(int irq, void *dev_id, struct pt_regs
*regs)
{
 struct device *dev = dev_id;
 local_info_t *info;
 int ioaddr;
 int i;
 u_char status, tstat;
 u_short save;

 debug("int");

 if (dev == NULL || !dev->start)
 return;

 info = dev->priv;
 ioaddr = dev->base_addr;

 save = save_LMA(dev);

 for(i = 0;(status = get_byte(dev,ASR)) & ASR_INT_MASK && i < 100 ;
i++)
 {
 debug("status = 0x%.2x, ASR = 0x%.4x",status, ASR);

 if (status & RX_COMPLETE)
 {
 struct sk_buff *skb;
 u_short pkt_offset, pkt_len, len;
 u_short data;

 pkt_offset = get_word(dev,RX_PKT_START);
 pkt_len = get_word(dev,RX_PKT_LEN);

 debug("Got packet! %x long at %x",pkt_len,pkt_offset);

 skb = dev_alloc_skb(pkt_len + (2 * MAC_ADDR_LEN) + 2);

 if (skb == NULL)
 {
 printk(KERN_NOTICE "Unable to get memory for skb!\n");
 goto end_receive;
 }

 /* aligns the ip header on a 16 byte boundry (2 + the 14 for the
ethernet header) */

62

 skb_reserve(skb,2);

 get_bytes(dev,skb_put(skb,(2 *
MAC_ADDR_LEN)),pkt_offset+DEST_ADDR,(2 * MAC_ADDR_LEN));

 while (pkt_len > 0)
 {
 if ((len = get_word(dev,pkt_offset+BUFF_LEN)) > pkt_len)
 {
 debug("buff size error, pkt_len = %x, buff_len =
%x",pkt_len,len);
 len = pkt_len;
 }

 data = get_word(dev, pkt_offset + DATA_OFF) + pkt_offset;

 if (skb_tailroom(skb) < len)
 {
 printk(KERN_NOTICE "%s: serious error with receive socket
buffer. Please report this to lkeyser@wpi.edu\n", dev_info);
 dev_kfree_skb(skb);
 goto end_receive;
 }

 get_bytes(dev,skb_put(skb,len),data,len);
 pkt_len -= len;
 pkt_offset = get_word(dev,pkt_offset+LINK_PTR);

 if (pkt_len && ! pkt_offset)
 {
 printk(KERN_NOTICE "packet buffer error\n");
 goto end_receive;
 }
 }

 skb->dev = dev;
 skb->protocol = eth_type_trans(skb,dev);

 netif_rx(skb);

 end_receive:

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 break;
 }
 debug("Got WOC, clearing ASR");
 moon_cmd_byte(dev,CMD_ASR_CLR,RX_COMPLETE);

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 break;
 }
 debug("Got WOC, issuing skip recieve");
 moon_cmd(dev,CMD_SKR,NULL,0);

63

 wait_on_woc(dev,12);
 debug("clear to cycle");
 }

 if (status & TX_COMPLETE)
 {
 debug("tx_done");
 if (!((tstat = get_byte(dev,TSR)) & TX_COMPLETE))
 info->stats.tx_errors++;

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 break;
 }
 debug("Got WOC, clearing transmit status");

 moon_cmd_byte(dev,CMD_TSR_CLR,tstat);
 wait_on_woc(dev,12);
 debug("clear to cycle");

 if (!(get_byte(dev,ASR) & TX_BUSY))
 {
 debug("buffer free");
 dev->tbusy = 0;
 mark_bh(NET_BH);
 }
 }

 if (status & STATUS_CHANGE)
 {
 debug("Status change");

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 break;
 }
 debug ("Got WOC, clearing status change bit in ASR");

 moon_cmd_byte(dev,CMD_ASR_CLR,STATUS_CHANGE);

 wait_on_woc(dev,12);
 debug("clear to cycle");
 }

 /* this is obsolete but it is included for completeness */

 if (status & RX_ERROR)
 {
 debug("Got rx error");

 info->stats.rx_errors++;

 if (!wait_on_woc(dev,12))
 {

64

 debug("Timed out waiting for WOC");
 break;
 }

 moon_cmd_byte(dev,CMD_ASR_CLR,RX_ERROR);

 if (!wait_on_woc(dev,12))
 {
 debug("Timed out waiting for WOC");
 break;
 }

 moon_cmd_byte(dev,CMD_ASR_CLR,RX_ERROR);
 wait_on_woc(dev,12);
 debug("clear to cycle");
 }
 }

 /* restore the LMA registers if need be */
 restore_LMA(dev,save);

 /* acknowledge the interrupt */
 outb(HSR_P188_INT,ioaddr + HSR);
}

/**
**
* s24_multicast *
* *
* This deals with the instances in which we are thrown changes to our

*
* interface flags. *

*/

static void s24_multicast(struct device *dev)
{
 debug("set_multicast");
}

/**
**
* s24_stats *
* *
* Does statistics reporting *

*/

static struct net_device_stats *s24_stats(struct device *dev)
{
 debug("s24_stats");
 fill_stats(dev);
 return &((local_info_t *)dev->priv)->stats;
}

/**
**

65

* s24_stop *
* *
* The callback in charge of bringing the card down. *

*/

static int s24_stop(struct device *dev)
{
 dev_link_t *link;

 debug("s24_stop");

 for (link = dev_list; link != NULL && link->priv != dev; link = link-
>next)
 ;

 if (link == NULL)
 return -ENODEV;

 link->open--;

 dev->tbusy = 1;
 dev->start = 0;

 cold_reset(dev);

 MOD_DEC_USE_COUNT;

 return 0;
}

/**
**
* s24_event *
* *
* Handles pcmcia events *

*/

static int s24_event(event_t event, int priority, event_callback_args_t
*args)
{
 dev_link_t *link = args->client_data;
 struct device *dev = link->priv;

 debug("s24_event");

 switch(event)
 {
 case CS_EVENT_CARD_INSERTION:
 debug("Got event card insertion");
 link->state |= DEV_PRESENT | DEV_CONFIG_PENDING;
 s24_config(link);
 break;
 case CS_EVENT_CARD_REMOVAL:
 debug("Got event card removal");
 link->state &= ~DEV_PRESENT;

66

 if (link->state & DEV_CONFIG)
 {
 dev->tbusy = 1;
 dev->start = 0;
 link->release.expires = RUN_AT(HZ/20);
 add_timer(&(link->release));
 }
 break;
 case CS_EVENT_PM_SUSPEND:
 debug("Got event pm suspend");
 link->state |= DEV_SUSPEND;
 debug("falling through to event reset physical...");
 case CS_EVENT_RESET_PHYSICAL:
 debug("Got event reset physical");
 if (link->state & DEV_CONFIG)
 {
 if (link->open)
 {
 dev->tbusy = 1;
 dev->start = 0;
 }
// CardServices(ReleaseConfiguration, link->handle);
 }
 break;
 case CS_EVENT_PM_RESUME:
 debug("Got event pm resume");
 link->state &= ~DEV_SUSPEND;
 debug("falling through to event card reset...");
 case CS_EVENT_CARD_RESET:
 debug("Got event card reset");
 if (link->state & DEV_CONFIG)
 {
// CardServices(RequestConfiguration, link->handle, &(link-
>conf));
 if (link->open)
 {
 cold_reset(dev);
 s24_reset(dev);
 dev->tbusy = 0;
 dev->start = 1;
 }
 }
 break;
 default:
 debug("Got unknown event");
 }

 return 0;
}

/**
**
* s24_reset *
* *
* Resets the on-card configuration parameters *

*/

67

static void s24_reset(struct device *dev)
{
 local_info_t *info = dev->priv;
 int ioaddr = dev->base_addr;

 debug("s24_reset");

 if (!wait_on_woc(dev,12))
 {
 debug("s24_reset couldn't get WOC, bailing out");
 return;
 }
 debug("Got WOC, sending reset");

 moon_cmd(dev,CMD_RESET,NULL,0);

 if (!wait_on_woc(dev,12))
 {
 debug("s24_reset couldn't get WOC, bailing out");
 return;
 }
 debug("got WOC, initializing receive");

 /* turn on the reciever (Bit 7) enable broadcast (bit 2) *
 * disable antenna diversity (bit 0) *
 * the other options are enable multicast (bit 3) *
 * and promiscuous mode (bit 4) */

 moon_cmd_byte(dev, CMD_SRC, BIT_7 | BIT_3 | BIT_2 | BIT_0);

 debug("waiting for WOC");

 if (!wait_on_woc(dev,12))
 {
 debug("s24_reset couldn't get WOC, bailing out");
 return;
 }
 debug("got WOC, initializing transmit");

 /* bit 7 is enable transmit and bit 0 is loop back packets */
 moon_cmd_byte(dev, CMD_STC, BIT_7);

 /* set up the map if that's our goal */
 if (info->adapter_mode == MAP)
 {
 if (!wait_on_woc(dev,12))
 {
 debug("s24_reset couldn't get WOC, bailing out");
 return;
 }
 debug("got WOC, setting MAP mode");

 moon_cmd(dev, CMD_MAP_CONFIG, (u_char *)&info->map, 3);
 }

 /* PSP stuff -- needs to be completed */

68

 if (!wait_on_woc(dev,12))
 {
 debug("s24_reset couldn't get WOC, bailing out");
 return;
 }
 debug("got WOC, setting PSP mode");

 moon_cmd_byte(dev, CMD_PMG, info->psp ? BIT_0 : 0);

 /* make the essid go */
 if (!wait_on_woc(dev,12))
 {
 debug("s24_reset couldn't get WOC, bailing out");
 return;
 }
 debug("got WOC, initializing essID ... essid_len = %d", info-
>essid_len);

 /* put the essid in the extra command args buffer assuming it exists
*/
 if (info->essid_len)
 put_bytes(dev,info->essid, 0xE0, info->essid_len);

 /* length of essid 0 means broadcast */
 put_word(dev, info->essid_len, HCB+1);

 moon_cmd(dev, CMD_ESSID, NULL,0);

 if (!wait_on_woc(dev,12))
 {
 debug("Unable to get WOC, bailing out.");
 return;
 }
 debug("got WOC, clear to set interrupts");

 outb(ENABLE_P188_INT | inb(ioaddr+CMD),CMD +ioaddr);
}

