
Developing IncidentUIdroid

A Ride Comfort and Disengagement
Evaluation Application for

Autonomous Vehicles

Silicon Valley Project Center
Major Qualifying Project, C’20

Manas Mehta, Nugzar Chkhaidze, Yizhen Wang

Worcester Polytechnic Institute Nvidia Corporation

Project Number: ND20

 Developing IncidentUIdroid: A Ride Comfort and Disengagement Evaluation

Application for Autonomous Vehicles

A Major Qualifying Project Report:

Submitted in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by:

Manas Mehta, Nugzar Chkhaidze, Yizhen Wang

Submitted to:

Project Advisor: Mark L. Claypool

Nvidia Sponsor Liaison: Raymond Poudrier

Date: May 18, 2020

Silicon Valley Project Center

Worcester Polytechnic Institute

This report represents the work of one or more WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. The views and opinions expressed herein are those of the authors and do
not necessarily reflect the positions or opinions of WPI.

1

Abstract

This report details the design, development, and implementation of IncidentUIdroid, an Android
tablet application designed to measure user-experienced ride comfort and record disengagement
data for autonomous vehicles (AV) during test drives. The goal of our project was to develop an
Android application to run on a peripheral tablet and communicate with the Drive Pegasus AGX,
the AI Computing Platform for Nvidia’s AV Level 2 Autonomy Solution Architecture [1], to
detect AV disengagements and report ride comfort. We designed and developed an Android
XML-based intuitive user interface for IncidentUI droid. The development of IncidentUIdroid
required a redesign of the system architecture by redeveloping the system communications
protocol in Java and implementing the Protocol Buffers (Protobufs) in Java using the existing
system Protobuf definitions. The final iteration of IncidentUIdroid yielded the desired functionality
while testing on an AV test drive. We also received positive feedback from Nvidia’s AV
Platform Team during our final IncidentUI droid demonstration.

2

Acknowledgments

We would like to thank everyone who assisted in the development of our project. Without their
help, our project would not have been possible.

First, we would like to thank our project sponsor, Mr. Raymond Poudrier from Nvidia, along
with the rest of the Nvidia Drive Team for providing us with the opportunity to work for Nvidia
in developing IncidentUI Android. We greatly appreciate their continuous support and
involvement throughout the span of this project. We would like to specifically thank Mr. David
Milewicz for his constant guidance during the development of IncidentUI Android.

Next, we would like to thank Professor Mark L. Claypool, our on-site advisor, for his continued
guidance and support, throughout the length of this project. We really appreciate his guidance
not only in the technical aspect of the project but also in team-building and in managing the
sponsor-student relationship. Professor Claypool’s advice and support during the preparatory
term was critical to the success of the project in the following term and really enabled us to be
better equipped for this project and Nvidia.

We would also like to thank our project sponsor, Nvidia for providing us with comfortable
housing at Ironworks Apartments in Sunnyvale, California throughout the span of this project.

We would additionally like to mention and thank all the individuals and teams at Nvidia,
particularly Mr. Bhanu Murthy along with the IFORV (End-to-End Product Testing) and the
SQA (Quality Control) teams, who participated in our project demonstrations during multiple
phases of our project and provided us with critical feedback that aided us greatly in the
development of the project.

Finally, we would like to thank Worcester Polytechnic Institute for establishing and maintaining
the Silicon Valley Project Center and providing us with this amazing opportunity to experience
working in a team as part of a technology giant like Nvidia.

3

Table of Contents

Abstract 2

Acknowledgments 3

Table of Contents 4

1. Introduction 7

2. Background Research 9
2.1 Nvidia Drive TM 9
2.2 Nvidia Drive HyperionTM 9
2.3 IncidentUI 10
2.4 Current System Architecture: Test Bench 12

2.4.1 Drive Pegasus AGX 12
2.4.2 Roadrunner 13
2.4.3 Raspberry Pi 14

2.4.3.1 Qt 15
2.4.4 Roadcast 15

2.5 Concepts and Technology 16
2.5.1 Android Development 16
2.5.2 Android Native Development Kit (NDK) 17
2.5.3 Protocol Buffers (Protobufs) 17
2.5.4 Android OS Systems Engineering and Networking 18
2.5.5 Development Platform: Linux 18

2.6 Important Terms and Phrases 19
2.6.1 Autonomous Vehicle (AV) 19
2.6.2 Ego Vehicle 19
2.6.3 Disengagement 19
2.6.4 Event 20

3. Methodology 21
3.1 Phase 1: Requirements and Feature Analysis 22

3.1.1 Current IncidentUI Data Flow and Feature Analysis 22
3.1.2 UI Screen and Flow Mockup Development 23

Initiate Drive 23
Dashboard 24
Session 25

4

3.1.3 Requirements Inference 26
3.2 Phase 2: System Architecture Analysis and Design 27

3.2.1 Current System Architecture Analysis 28
3.2.2 System Architecture Design Plan A 29
3.2.3 System Architecture Design Plan B 30

3.3 Phase 3: IncidentUIdroid Beta 1.0 Development 32
3.3.1 Front End User Interface (UI) Design 32

Initiate Drive Screen 32
Dashboard Screen 33

Drive History Tab 33
Dashboard Tab 34
Power Tab 35

Session Screen 35
Drive History Tab 36
Session Tab 36

Surveys 37
Event Survey 37
Disengagement Survey 38

3.3.2 Android Native Development Kit (NDK) Interface Design 41
3.3.3 Beta 1.0 Demonstration 42

Feedback Analysis 42
3.4 Phase 4: IncidentUIdroid Beta 1.0 System Integration 43

3.4.1 Protobufs Implementation in C++ 43
3.4.2 Roadcast Integration 44
3.4.3 Issues with Beta 1.0 System Integration 45

Issues with Protobufs Integration 45
Issues with Roadcast Integration 45

3.5 Phase 5: IncidentUIdroid Beta 2.0 Development 46
3.5.1 Android Front End and Interface Redesign 46
3.5.2 RoadcastJava 47
3.5.3 Protobufs Implementation in Java 49
3.5.4 Android Tablet Networking 50
3.5.5 Integration and Functional Testing with Roadrunner Emulator 51

3.6 Phase 6: Evaluation and Stable Release Deployment 51
3.6.1 IncidentUI droid Beta 2.0 Application Demonstration 52

Feedback Analysis 53
3.6.2 IncidentUI droid Stable Release Development 53

5

Feature 1: Display Active Session Data on User Login 54
Feature 2: Save and Edit Event Surveys 56
Feature 3: Event Comfort Feedback Console 58
Feature 4: Fill out Pending Event Surveys after End of Session 59

3.6.3 IncidentUI droid Hyperion Kit Autonomous Vehicle Test Drive 60

4. Results 62
4.1 IncidentUI droid Front End User Interface Design 63

4.1.1 Initiate Drive Screen 63
4.1.2 Dashboard Screen 64

Drive History Tab 64
Dashboard Tab 65
Power Tab 66

4.1.3 Session Screen 66
Drive History Tab 67
Session Tab 67

4.1.4 Surveys 70
Event Survey 70
Disengagement Survey 72

4.2 IncidentUI droid Screen Flow Scheme 74
4.3 IncidentUI droid System Architecture Design 76

Disengagement Survey Flow 78
Event Survey Flow 79

5. Conclusion 80

6. Future Work Recommendations 82
Multiple Devices Connection 82
App Store or Cloud Support 83
Dedicated Web Application and Remote Database 83

7. Discussions 84

8. References 85

6

1. Introduction

Inspired by the dramatically expanding applications of artificial intelligence in the transport
industry, the autonomous vehicle industry has transitioned into its apex development period. The
global autonomous vehicle market revenue is expected to grow by 39.47% between 2019 and
2026 [2]. Many transport and technology companies have realized the potential of and invested
heavily in the autonomous vehicle industry, including Nvidia, especially their Nvidia Drive
technology. Nvidia Drive is a developer platform developed by Nvidia which has allowed them
to make significant strides in the autonomous vehicle industry.

Nvidia participates in the autonomous vehicle industry with the Nvidia Hyperion Developer Kit,
which is the autonomy solution for autonomous vehicle developers and the first commercially
available Level 2+ autonomy developer kit. Nvidia Drive Hyperion itself is a reference
architecture for Nvidia’s second level autonomy solution [1]. The kit provides a complete sensor
suite and (Artificial Intelligence) AI computing platform, along with a full software stack for
self-driving development. Among the development kit, on the hardware side, is the core
computing unit, Drive Pegasus AGX, the self-driving platform built on Nvidia Xavier,
dedicatedly designed for autonomous driving; while on the software side, is the Nvidia DriveOS,
the foundational software stack modules essential to for self-driving platform development and
hardware drive including Real-Time OS, Nvidia CUDA libraries and more [3]. Based on all of
those provided autonomous driving developer tools, Roadrunner is the actual Driving
Application developed by Nvidia using the DriveOS SDK [4]. The current Roadrunner provides
functionality to use sample sensor data for simulation driving on real roads for testing purposes.

The Hyperion Kit utilizes IncidentUI, an application developed to record disengagement and ride
comfort data to improve the Drive Software. During the span of our project, we worked on
developing IncidentUIdroid, as represented in Figure 1. IncidentUIdroid is a tablet-based Android
application that enables the co-pilot to evaluate and log ride comfort during a test vehicle run.
The existing IncidentUI application, that runs on a touch screen attached to the Raspberry Pi in
the center console of the Ego Vehicle, communicates with the Roadrunner deployed on the test
vehicle’s Pegasus AGX. Since there are several drawbacks of using Raspberry Pi and a front-end
deployed in Qt for the IncidentUI, we aimed to redevelop the whole IncidentUI in Android,
taking advantage of the intuitive user interface, versatile libraries and the wider accessibility of
the Android platform.

7

Figure 1: Representation of IncidentUIdroid

In our 7-weeks long project with the AV platform team at Nvidia, we redeveloped and
transplanted the IncidentUI onto the Android platform. We developed the new system
architecture and also redesigned the user interface and data flow. The user interface and the app
features have been tailored to suit the needs of the co-pilot, to ensure that they can log ride
comfort accurately and comprehensively, without being bogged down by an unintuitive UI,
impractical features and software bugs. In our project, we worked with various technologies and
tools such as Protocol Buffers, multiple network protocol connections [3], to ensure cohesive and
interoperable sync between the tablet application and the Roadrunner which serves as a gateway
to the test vehicle’s infrastructure. We also tested and evaluated the functionality of
IncidentUI droid to ensure its comprehensive ability to interact with the co-pilot and fulfill the data
collection requirement for each driving session.

Our project successfully improved the performance and the interactivity of the IncidentUI. Not
only did we transplant the application onto a more versatile Android platform with higher
compatibility for future development, but we also reshaped the user experience with a much
more intuitive user interface and working pattern. Additionally, we deployed a more robust
system architecture design that utilizes a Java interface comprising Java implementations of
Roadcast and Protobufs for communicating with Roadrunner. This improvement will help Nvidia
to tweak and improve its self-driving technology using a more comfortable testing interface.

The remaining chapters of our project report are organized as follows: Chapter 2 elucidates the
background research and defines some technical terms; Chapter 3 discusses the technical details
of the methodology developed for the project; Chapter 4 delivers the final implementation of
IncidentUI droid; Chapter 5 summarizes the conclusion for the report; Chapter 6 recommends some
ideas for future development; Chapter 7 discusses our experiences throughout the span of this
project, and Chapter 8 concludes the report with a list of References.

8

2. Background Research

In preparation for this project, we familiarize ourselves with various concepts, tools, and
technologies to better equip ourselves to develop IncidentUIdroid and integrate it with the existing
system architecture. This section elucidates these concepts and technologies in detail.

2.1 Nvidia DriveTM
Nvidia Drive is the scalable AI platform providing hardware and software solutions for
automakers with Nvidia’s decades-long experience in AI. The Nvidia Drive Platform provides
hardware solutions such as Drive AGX for high-performance and energy-efficient computing
power in handling large numbers of applications, and software such as development toolkit,
library, and photo-realistic simulation for testing and validating self-driving platforms. The
Nvidia Drive development platform consists of the following four development platforms [5]:

Drive Pegasus AGX - an in-vehicle AI computing platform that enhances the performance of
localization, mapping, and perception algorithms along with accelerated development of other
AV development tools like Drive AV and Drive IX.

Drive Hyperion - Nvidia Drive Hyperion is a reference architecture for Nvidia’s level 2+
autonomy solution consisting of a complete sensor suite and the AI computing platform Drive
AGX, along with the full software stack under the umbrella of Drive Software [1].

Drive Constellation - Nvidia Drive Constellation, consisting of a Simulation Server and the
Drive AGX AI computing platform, is the simulation platform used to evaluate AV algorithms in
conjunction with the hardware using simulated real-world conditions like sensors, traffic and
more [5]. In its development iteration, the simulation platform in the Nvidia Drive System is
called Roadrunner. Roadrunner could virtually run on a desktop host or on Pegasus AGX with
sampled car driving data to emulate a car driving session for testing purposes in the development
iteration.

Nvidia DGX - DGX is a Deep Neural Net (DNN) training platform that comprises the Drive
AGX AI computing platform and Nvidia’s Deep Learning SDK, and is used to train neural
networks to enhance AV perception.

2.2 Nvidia Drive HyperionTM

Nvidia Drive Hyperion is a reference architecture for Nvidia’s level 2+ autonomy solution. The
Drive Hyperion Developer Kit, as represented in Figure 2, consists of a complete sensor suite, a

9

plethora of peripherals and the main AI computing platform: Drive Pegasus AGX, along with a
full software stack under the umbrella of the Drive Software for autonomous driving, driver
monitoring, and visualization [1].

Figure 2: Drive Hyperion Developer Kit

The Hyperion kit enables developers to use the available hardware and the packaged software to
develop and evaluate AV technology using simulated or on-road testing with test vehicle
integration. The sensor suite, including cameras and radars, enables comprehensive data
acquisition which is recorded and logged in the storage peripherals. The on-board displays
visualize the sensor data and how it is being processed by Drive AV, while the modem allows
the drive Software to be updated using the Drive OTA (over-the-air) update infrastructure.

2.3 IncidentUI

IncidentUI is an application designed to measure user-experienced ride comfort and record
disengagement data for autonomous vehicles (AV) during test drives and is included with the
Hyperion kit. The disengagement data and the user-generated discomfort event data is analyzed
and used to evaluate the ride quality and the performance of the Drive AV Software during a test
drive. This data is used to further enhance the performance of Drive AV’s perception, mapping,
and planning capabilities. Every time there is an AV Disengagement or an unpredictable AV
maneuver resulting in the Co-pilot triggering an Event, IncidentUI displays a survey to allow the
user to mention and describe the reason for the disengagement or event so it can be logged and
analyzed to improve the performance of the autonomous driving platform. The comfort level

10

during a disengagement or event is measured along two axes: Longitudinal (back and forth) and
Lateral (sideways).

The current IncidentUI, as represented in Figure 3, is running on the Raspberry Pi which is a part
of the Hyperion kit. The back end of the application is developed in C++ while the front end is
designed and implemented using Qt and is displayed on a touch screen peripheral display
attached to the Raspberry Pi residing in the front-center console of the Ego vehicle. Users can
use the touch screen and the on-screen keyboard to record event and disengagement survey data.
The display can also be used to fill out the login survey data (Pilot and Co-pilot information) that
is requested in the Driver tab for each Roadrunner session (the duration between Roadrunner
connecting to IncidentUI and recording data, and Roadrunner disconnecting from IncidentUI).

Figure 3: IncidentUI Representation

The current Incident UI running on the Raspberry Pi communicates with Roadrunner running on
the Pegasus AGX through a proprietary communications protocol, Roadcast, which is developed
in C++ and uses Protocol Buffers (protobufs) to serialize data that is transferred amongst the
system architecture components. These protobufs are implemented in C++.

The Raspberry Pi is also connected to the ego vehicle speedometer and the Multiplexed Vehicle
Electrical Center (mVEC), which dictates the flow of power to the system components using a
Controller Area Network (CAN) bus interface. The mVEC can be controlled using the Power tab

11

on IncidentUI. All the connections in the car are established through LAN using an ethernet
connection and are part of a local static network set up in every test AV.

2.4 Current System Architecture: Test Bench

The current system architecture in the development environment includes the main AI
Computing Platform: Pegasus AGX connected to the Raspberry Pi running IncidentUI via
ethernet in a local static network. Roadrunner, the Autonomous Driving Application, runs on the
Pegasus AGX and communicates with IncidentUI using a proprietary communications protocol
developed in C++, Roadcast, which utilizes Protocol Buffers (protobufs) implemented in C++.
The protobufs provide a unified format for serializing data in transmission and storage.

The Bench is an abbreviated term for the autonomous driving testing system used for testing
various AV hardware and software components in the development iteration. The Bench, which
mirrors the latest Hyperion architecture, consists of a Pegasus AGX driving platform as the core
processing component and a Linux desktop as the host to update and flash the RoadRunner
Docker image on the Pegasus AGX. Pegasus AGX is connected via ethernet to the Raspberry Pi
running IncidentUI on it. The touch screen attached to the Raspberry Pi acts as the hardware
interface for developers to interact with IncidentUI and communicate with Roadrunner during
simulations and record sample disengagements and events during test sessions. Additionally,
there is a dedicated set of peripherals like a screen, mouse, and keyboard that is used to interact
with Xavier A, which is the component of Pegasus AGX running Roadrunner.

The Bench also has other architecture components like the mVEC that controls the power to all
the system components and is controlled by the Power Tab on the IncidentUI running on the
Raspberry Pi. In addition to all the sensors and peripherals, the Bench also has an external green
button (a part of the dashboard in a test AV), which is used by the Co-pilot to trigger events and
display the event survey on the IncidentUI touch screen.

The aforementioned architecture was used for the analysis of the Hyperion architecture and the
current IncidentUI sub-architecture, and also for the development and evaluation of
IncidentUI droid. In the following subsections, we will mention in detail some of the major
components of the test bench architecture that were used for the development of IncidentUIdroid.

2.4.1 Drive Pegasus AGX
Nvidia Drive Pegasus AGX (or just Pegasus) is the primary AI computing platform in the
Hyperion Developer Kit. The design of the Pegasus is based on the Nvidia Xavier architecture
and involves two Nvidia Xaviers: Xavier A which runs Roadrunner and deploys Drive AV, and
Xavier B which deploys Drive IX to monitor in-car Pilot activity using an AI assistant. The

12

Pegasus, as shown in Figure 4, is the core processing component in this autonomous driving
infrastructure and also in the IncidentUI sub-architecture.

Figure 4: Nvidia Drive Pegasus AGX

The Pegasus is connected to the entire suite of sensors for comprehensive data acquisition which
is recorded and logged in the storage peripherals and is used to ensure the robust functioning of
each architecture component along with the enhancement of the Drive Software. The Pegasus
also provides the hardware to run the autonomous driving simulation that is for developing and
testing various hardware and software components. In the IncidentUI sub-architecture, the
Pegasus runs Roadrunner and communicates with the IncidentUI using Roadcast. For the
IncidentUI droid development iterations, the Pegasus was used as an emulator for sample driving
session simulation, from which sampled driving data (survey requests and other signals) was
used to test the functionality of IncidentUI droid. The goal of the iterative testing was to establish
and maintain robust two-way communication between Roadrunner on the Pegasus and
IncidentUI droid on the Android tablet using Roadcast that utilized Protobufs for serialization.

2.4.2 Roadrunner
RoadRunner is the autonomous vehicle application that runs on the Drive Pegasus AGX and is
developed using the DriveOS SDK. It is a frame for customized self-driving application
development and testing. The current Roadrunner is able to collect data to guide the self-driving
functionality with a suite of sensors connected to the Pegasus AGX and is also able to use
sample sensor data to run self-driving simulations. Roadrunner itself is the name for the whole

13

aggregated Nvidia autonomous driving application that deploys the self-driving algorithms, data
processing, power manipulation, and performance analysis.

In the current system architecture, IncidentUI utilizes only a portion of the whole Roadrunner
application. IncidentUI is only responsible for sending user-experienced disengagement and
event survey data to Roadrunner for further analysis and Drive Software enhancement. In the
Hyperion Developer Kit, RoadRunner sends a disengagement survey request to the IncidentUI
via Roadcast when it detects a vehicle disengagement (pilot taking control of the AV) in the
driving session. After the survey is filled, survey data is transmitted back to Roadrunner for the
logs. Roadrunner uses a server to serialize and send login and disengagement survey requests to
IncidentUI through Roadcast and runs a client that constantly listens for and processes the
incoming event, login or disengagement survey data through Roadcast. Connections between
Roadrunner and IncidentUI have to be established before each driving session by an exchange of
heartbeats, which are bridged by Roadcast.

2.4.3 Raspberry Pi
A Raspberry Pi is a single-board computer developed by the Raspberry Pi Foundation, to educate
people about computing [6]. Raspberry Pi, as shown in Figure 5, runs Linux and its primary
operating system, Raspbian, is open source. The board itself has GPIO (General Purpose
Input/Output) pins, sd card support, ethernet and USB-A ports, etc.

Figure 5: Raspberry Pi 4 Model B

14

Raspberry Pi is primarily used for the Internet of Things (IoT) and allows developers to control
electronic components via physical computing [6]. The operating system can be installed in the
Pi by writing the compressed file containing all the operating system files into an sd card and
then booting up the Pi with the sd card installed. The Pi can be used in many diverse ways; it can
be used to transmit files to devices connected to wirelessly (WiFi, Bluetooth) and using cables
(USB or ethernet). The Pi can run various scripts and applications, and all it requires is a script
(Python, C, or C++) that runs those applications on boot up, or a User Interface to interact with
the files stored on the Pi.

The Raspberry Pi in the Hyperion architecture is connected to the Pegasus via Ethernet and has
two major functions:

1) The Pi controls the power to the mVEC which manages the power to the architecture
components through the CAN interface. The power relay control can be accessed through
the Power Tab of the IncidentUI running on the Pi and displayed on the attached
touch-screen.

2) IncidentUI, which is developed in C++ on its back end, runs on the Pi. The front-end of
IncidentUI, implemented using Qt, is displayed on the touch-screen attached to the Pi.
The Pi maintains communication between Roadrunner running on Pegasus and
IncidentUI through Roadcast. The Pi packages survey data and heartbeats using the
protobuf implementations, and sends them using roadcast to the Pegasus; similarly, it
processes the survey requests and heartbeats received from Roadrunner via Roadcast and
brings up corresponding surveys and on-screen messages.

2.4.3.1 Qt

Qt is the open-source widget toolkit for creating graphical user interfaces on cross-platform
applications in embedded systems [16]. In the existing IncidentUI, Qt is used to develop the GUI
on the Raspberry Pi to display the user interface for IncidentUI on an attached touch screen. Qt
on this version of IncidentUI is coded in C++ which is natively compatible with C++ code used
for IncidentUI Raspberry Pi development.

2.4.4 Roadcast
Roadcast is the official DriveWorks module that is a communication protocol developed based
on Protobufs for asynchronous data streaming [7]. The abstract data and transport layer of
Roadcast gives users the flexibility to configure the transport layers. The communication
between IncidentUI and RoadRunner is achieved by sending serialized data back and forth
through the Roadcast pipeline that utilizes protobufs for serialization.

15

In the current Roadrunner system, Roadcast is used as the communication bridge amongst most
system components. The survey data from IncidentUI is transmitted to Roadrunner for storage
through Roadcast when surveys are filled out and submitted, and IncidentUI receives survey
requests from Roadrunner through the same Roadcast pipeline. Either end has a server and client
running. The server serializes and sends data to the other end when it is available and the client
loops continuously to listen for and process incoming requests and data. All the survey data and
vehicle information are already formatted in unified data structures.

2.5 Concepts and Technology

This section elucidates the various concepts, tools, and technologies that were used throughout
the span of this project to design and develop IncidentUI droid.

2.5.1 Android Development
Android is an open-source mobile operating system developed by Google and the OHA (Open
Handset Alliance) for smartphones [8]. It makes use of mobile applications (apps) to cater to
various needs like entertainment, music, communication, productivity, etc. Since Android is an
open-source platform, it opens up many avenues for a plethora of software developers to develop
their own apps.

The primary language used for mobile app development is Java, with Kotlin gaining more
traction recently. Android Studio is the official integrated development environment (IDE) for
Android application development and uses a Gradle-based build system, and an emulator [9].
Android Studio allows developers to design their own UI and add their own custom features to
develop their own app which is then packaged into an APK (Android Package Kit) file, which
can then be downloaded into an Android device directly from Android Studio or from the
Google Play Store.

Each screen in an Android app is called an activity that has an XML layout file for designing the
UI and a Java (or Kotlin) class that is used to add functionality to the elements defined in the
corresponding XML layout file. Each activity can be further broken up into fragments with their
corresponding XML layout and Java class to make the app more modular. Developers can make
use of numerous UI elements (widgets, buttons, containers, etc.) and Java classes to develop
features. Each application can be integrated with a wide range of APIs (Application
Programming Interfaces) to make use of various services and features developed by other
developers.

IncidentUI droid is entirely designed, developed and implemented in Android using Java. The
application was deployed and iteratively tested on an Nvidia Shield tablet running Android

16

version 7.0 with full root access. The version of IncidentUI droid was updated and evaluated over
USB and WiFi using the Android Debug Bridge (adb).

2.5.2 Android Native Development Kit (NDK)
Android NDK is the Java Native Interface (JNI) toolset that is bundled with Android and enables
developers to implement native C and C++ code in an Android Java application. NDK provides
great compatibility between C++ and Java code at a native source code level and supports native
libraries when implemented. The development of IncidentUI droid using one of the new proposed
architecture design required Android NDK support to enable a smooth and robust flow of data
between the Java end of the Android application and the C++ end of Roadcast and Protobufs.
This mechanic required implementation of a layer of code translation which could be perfectly
achieved by NDK: it provides a compatible layer for reforming Java code into C++ code and
vice versa. NDK implements interfaces between the Android Java code and the native Android
code, which allows the data that is stored in Java classes and structures to be translated to data
stored in native classes and structures and vice versa. The native end defines callback functions
which can be invoked to obtain data from the Java end and repackage it into native structures
which can then be serialized and transmitted to Roadrunner via Roadcast.

2.5.3 Protocol Buffers (Protobufs)
Protocol Buffers (Protobuf) are a language and platform-neutral method of serializing structured
data. It is a mechanism for storing and interchanging various kinds of organized information.
Defined data structures (called messages) are serialized into a binary wire. By encoding
messages into byte streams, Protobufs boost the efficiency of exchanging data across
applications, based on different languages and platforms [10]. Serialization converts
language-specific data structure into a bytestream, while deserialization executes the inverse
operation. Both of these transformations are CPU-intensive and might become the bottleneck in
data interchange [10]. A protoc executable is used to generate classes and methods from the
protobuf definitions which are .proto files containing specific instructions on how data should be
structured and serialized. These classes and methods can then be used for serialization and
deserialization within the program.

Protobufs are the mechanism that Roadcast is built upon and they ensure a unified data structure
formatting across the system for asynchronous data streaming. IncidentUI uses C++
implementations of protobuf definitions (.proto files) to integrate with the native C++
implementations of IncidentUI and Roadcast. Development of IncidentUIdroid involved reusing
the C++ implementations to integrate with the NDK interface of the Android application and

17

also reimplementation of the same protobuf definitions in Java to develop a Java implementation
of Roadcast.

2.5.4 Android OS Systems Engineering and Networking
IncidentUI droid is developed and deployed using the Android Operating System. The Nvidia
Shield Tablet running Android version 7.0 provides an easy to use and compatible environment
for IncidentUI droid’s intuitive user interface. The Tablet was configured to run IncidentUI droid as
the default application launcher on booting up to turn the Shield into a dedicated IncidentUIdroid
endpoint. Since Roadcast and the Hyperion infrastructure requires communication to be
established between components that are assigned static IP addresses, the network configuration
for the Android tablet deploying IncidentUI droid was revised and the tablet was assigned a static
IP address.

A static IP address associated with the tablet running IncidentUI droid allowed the application to
communicate and exchange data streams with Roadrunner running on the Pegasus. The correct
networking configuration is very crucial in a network infrastructure utilizing static IP addresses
and USB tethering, ethernet or WiFi to communicate amongst components. Comprehensive
Android OS Systems Engineering and Networking is crucial for seamless and robust system
integration.

2.5.5 Development Platform: Linux
All the development process of IncidentUI, operation of virtual vehicle simulation and testing
was implemented on a Linux machine as the host because the Pegasus AGX runs on Linux.
Linux is an operating system that utilizes a Linux kernel and is distributed under an open-source
license [11]. The host machine that is a component of the Bench is a Linux desktop which is
connected to the Pegasus AGX. The Pegasus is also connected to the suite of sensors,
peripherals, and the Raspberry Pi. The host is responsible for deploying the Roadrunner
application code as a docker image flashed onto the Pegasus AGX which implements the Driving
Application. Code updates changing the functionality of Roadrunner are all compiled on the host
and then flashed onto the Pegasus AGX.

For the development of IncidentUI droid, we built a development environment which consists of
the Pegasus AGX and a Linux host machine. The Linux Host machine is responsible for
deploying Android code updates for the IncidentUIdroid to the Nvidia Shield tablet. The code for
IncidentUI droid was also developed on Android Studio that was set up on the Linux host machine
and was evaluated on the emulator and the Nvidia Shield tablet over USB and WiFi using the
Android Debug Bridge (adb).

18

2.6 Important Terms and Phrases

This section mentions and defines some of the important terms and phrases that the reader might
be unfamiliar with that will be used throughout the report. These are mostly terms included in the
AV vernacular and terms used to describe scenarios within Nvidia’s AV division.

2.6.1 Autonomous Vehicle (AV)
Autonomous Vehicles are self-driving vehicles that have some level of autonomy or advanced
driver assistance and perception. The Society of Automotive Engineers (SAE) has defined six
levels of autonomy from Level 0 (No Driving Automation) to Level 5 (Full Driving Automation)
[12]. All the autonomous vehicles mentioned in this report have Level 2 autonomy (Partial
Driving Automation) or above, i.e. the vehicle can control both the steering wheel and the
acceleration. Level 2 autonomy is not fully autonomous as it requires a human driver to sit in the
driver seat and take control of the AV (disengage) if the vehicle performs an undesirable
maneuver.

2.6.2 Ego Vehicle
An Ego vehicle or object refers to the main actor in an environment, i.e. the environment around
the ego object is perceived from its perspective [13]. In the real world, a test AV is an example
of an Ego object and all the vehicles and objects around it are considered non-ego objects. In this
report, a reference to an Ego vehicle is referring to an AV undergoing a test run.

2.6.3 Disengagement
A Disengagement is defined by the Department of Motor Vehicles as “deactivation of the
autonomous mode when a failure of the autonomous technology is detected or when the safe
operation of the vehicle requires that the autonomous vehicle test driver disengage the
autonomous mode and take immediate manual control of the vehicle.” [14] The state of
California requires the autonomous mode of an AV to include lane keep and cruise control; the
moment either of these conditions is violated because of driver interference, a disengagement
occurs. The reasons for each disengagement are essential in analyzing and evaluating the
self-driving application and are required to be submitted to the California DMV annually in the
form of a disengagement report [15].

At Nvidia, every time a disengagement occurs, the IncidentUI users are required to fill out a
disengagement survey detailing the reasons for the disengagement, the lateral (sideways) and
longitudinal (back and forth) comfort, the position of the ego vehicle and other additional
information highlighting any discomfort caused by an unpredictable AV maneuver. Following a
disengagement, the AV’s actuation is blocked and the AV is not allowed to re-engage into

19

autonomous mode until the disengagement survey displayed on IncidentUI is filled out and
submitted.

2.6.4 Event
Events refer to scenarios where the test AV performs a maneuver that does not result in a
disengagement but still causes enough discomfort to warrant a log of the scenario. Such events
are manually invoked by the co-pilot or any IncidentUI users (by clicking a button) during a
driving session and involve filling out an event survey that records the time of the event via an
Event flag and the cause of the event along with the Lateral and Longitudinal discomfort. This
event data is a useful evaluation metric that takes user experience (data that cannot be collected
by the AV sensors) into account and thus supports the development of a more robust self-driving
application. Events are not attributed to blocked actuators since they do not result in
disengagement. Some examples of events include ride discomfort, engine failure, vehicle
stalling, and animal crossing. Every scenario (something as minor as ride discomfort or
something as major as engine failure) that is not detected as a disengagement but is determined
to be significant enough to be logged and needs further analysis is recorded as an event.

20

3. Methodology

We divided our methodology into six phases to ensure a modular, comprehensive, and reliable
project design and development. The first couple of phases were based around research, current
application and system architecture analysis, User Interface (UI) design, and requirements
gathering. The next few phases involved the actual design and development of the application,
with development of two betas (including front-end Android application development, system
integration, and hardware networking) corresponding to two proposed system architectures,
application, and system architecture evaluation, and a final stable release development using the
more robust and viable of the two proposed system architectures. The final phase involved
IncidentUI droid in-car testing and evaluation during an AV test drive, final project and application
demonstration, and feedback analysis for producing future work and feature recommendations.
We followed the Agile Software Development Methodology for the development of
IncidentUI droid. We utilized Jira, as portrayed in Figure 6, to track the progress of every sprint.

Figure 6: Jira Board for IncidentUIdroid Development

21

We ran 2-week long sprints with Sprint 1 covering Phases 1 and 2, Sprint 2 covering Phase 3,
Sprint 3 covering Phase 4, and Sprint 4 covering Phases 5 and 6. For every sprint, we developed
user stories, tasks, and sub-tasks to tackle the development of application features. We divided
these sub-tasks amongst us and tracked them using Jira. In addition to the Jira Board, we tracked
the progress of a sprint by Scrumming daily as a team and participating in AV Platform Team
Stand-up Meetings twice a week. This section describes the methods and steps involved in each
phase of the project development along with the results of implementing those methods.

3.1 Phase 1: Requirements and Feature Analysis

The first phase of the project focused on analyzing the current version of the IncidentUI
application for features and requirements gathering for IncidentUI droid. The IncidentUI was
analyzed and features were acquired using a code analysis of the IncidentUI application, a build
of IncidentUI set up, deployed and run on a Linux machine using the Qt Application Manager,
and resources available online like Confluence pages detailing the IncidentUI architecture, data
flow, sequence diagrams, and UI flow.

3.1.1 Current IncidentUI Data Flow and Feature Analysis
The first step in Phase 1 involved analyzing the components of the User Interface of IncidentUI
and determining the UI flow between these components along with how data flows between
these components and between IncidentUI and Roadrunner. To implement this step, we read
through the documentation of IncidentUI available on Nvidia’s Confluence pages describing the
architecture and the sequence and data flow for IncidentUI. We also ran IncidentUI on a Linux
machine after setting the machine up with the required packages and configurations. Running
IncidentUI on a machine and playing around with the User Interface gave us some insight into
the UI components and how the UI flow worked. We also analyzed the code for IncidentUI to
understand the flow of logic and data better and how IncidentUI interacted with Roadcast. The
existing version of IncidentUI was running on a low-resolution screen attached as a peripheral to
a Raspberry Pi that comes packaged with the Hyperion Developer Kit. The Raspberry Pi controls
the power relay and also dictates how the IncidentUI communicates with the Pegasus. IncidentUI
is developed in C++ with Qt as the UI development tool. IncidentUI, as shown in Figure 3,
involves three tabs: Power, Driver, and Survey.

The Power tab manages the Multiplexed Vehicle Electrical Center (mVEC) system power relay.
The mVEC controls power to the architecture components using a Controller Area Network
(CAN) bus interface.

22

The Driver tab is displayed every time there is a request for a Login Survey which is requested
by Roadrunner when it starts and involves filling out the Pilot and Co-pilot information for the
session of Roadrunner. This information is used by the Nvidia Driveworks Recorder to relate
session logs to the Pilot and Co-pilot.

The Event tab is used to display an Event Survey when an Event is triggered by the co-pilot by
pressing a green button attached to the dashboard of the AV, which sends an Event Flag to
Roadrunner recording the actual time of the event in the logs. When the Event Survey, which
contains information about the event and its cause, is filled out, it can be sent to Roadrunner by
clicking the Send Button on the screen. If multiple events are triggered by the co-pilot, then a tab
is created for each event. The co-pilot can switch between these tabs and access or fill out
corresponding event surveys.

A Disengagement Survey is displayed when disengagement is detected by Roadrunner and a
Disengagement Survey Request sent to IncidentUI. The Disengagement Survey involves
information about the disengagement, for instance, the cause of the disengagement like End of
Drive or Safety Issue, location of the Ego Vehicle, and other additional information describing
the disengagement. Once the disengagement survey has been filled out by the user, it can be sent
to Roadrunner by clicking the Send Button on the screen.

When a connection is established and maintained between Roadrunner and IncidentUI, heartbeat
messages are sent back and forth. A lack of heartbeat messages is inferred as a lack of a
Roadrunner connection and is displayed as an error message on the IncidentUI screen.

3.1.2 UI Screen and Flow Mockup Development
Based on the design of IncidentUI, we developed a rough mockup of what the screens would
look like for IncidentUIdroid. We redesigned the data displayed on the screens and how the screens
interacted with each other for a more intuitive UI flow. We decided on three main screens
(Activities) for the application.

Initiate Drive

As shown in Figure 7, we decided to make a dedicated screen for Pilot and Copilot login
information instead of a tab to force users to fill out the login survey information before being
able to access the disengagement surveys and event trigger button, which will ensure that the
Pilot and Co-pilot is filled out for the session logs.

23

Figure 7: Initiate Drive Screen Mockup

After the login information is filled out, the users can click on the Initiate Drive button to start a
new drive and load the dashboard screen.

Dashboard

We designed a dashboard, as shown in Figure 8, that stores information for the current drive. We
defined a drive as the duration of app use between user login and logout. The dashboard is
displayed as a standby buffer screen between multiple sessions. The design of the application
accommodates multiple drive sessions within a single drive owing to the common situation
where the same users logged in disconnect and connect roadrunner multiple times for testing
purposes and require data collected for each session while they are logged in. The use of a
dashboard gives a more concrete boundary between when Roadrunner is connected and a session
is underway, and when Roadrunner is disconnected and no data is being collected.

24

Figure 8: Dashboard Screen Mockup

A tab on the dashboard screen allows the user to view information about any past sessions. To
end the drive and go back to the Initiate Drive login screen, users can click on the End Drive
button.

Session

The original IncidentUI did not have a primary screen that would be displayed while Roadrunner
is connected and a session is active, as a result, we designed a session screen, as shown in Figure
9, to be displayed throughout the duration of a session.

We defined a session as the duration of app use during which Roadrunner is connected to
IncidentUI droid and there is an exchange of heartbeats, i.e. when a connection is initiated with
Roadrunner, a session starts and when a Roadrunner disconnects, a session ends. The sessions
screen shows information about the current session like session duration, number of events, and
number of disengagements. Another goal of the session screen was to display the Disengagement
Survey which appears as a pop-up when Disengagement is detected by Roadrunner. We also
decided to add a New Event button to trigger Events and display an Event Survey pop-up when it
is clicked to eliminate the need for the physical green button in the Ego car dashboard.

25

Figure 9: Session Screen Mockup

To ensure that the start and end of a session, i.e. Roadrunner connection, entirely dictated the
display of the session screen, we did not add any buttons to allow the user to toggle the session
screen. The session screen is displayed automatically when a Roadrunner connection is
established and the dashboard is automatically loaded when the Roadrunner connection ends.

3.1.3 Requirements Inference

After analyzing the IncidentUI application and designing a UI mockup for IncidentUI droid, we
inferred the requirements for the project development and developed a project timeline. We
needed to design the front-end of the application using the aforementioned screens along with
additional functional application features and reconstruct a more intuitive UI flow between them.
We also needed to redesign the system architecture to ensure communication between an
Android application running on a peripheral tablet and the Pegasus. We also needed to debate the
design and implementation of various aspects of the application, the integration techniques, and
system architecture components to ensure robust and viable system integration and data flow. In
order to ensure application viability and optimum user experience, we needed to develop
application betas and evaluate them. Using the suggestions provided during application
demonstrations, we needed to make changes to the application and finally develop a stable
release for the application and determine its efficacy by an in-car test.

26

3.2 Phase 2: System Architecture Analysis and Design

During the second phase, with a mock-up of the front end of the application designed, we
analyzed and redesigned the system architecture to ensure a robust and viable system integration
between the peripheral tablet running IncidentUIdroid and the Pegasus. This phase involved
analyzing the existing system architecture design and the nature of data flow between the
components of the system architecture, primarily how IncidentUI running on the Raspberry Pi
communicated with Roadrunner running on Pegasus using Protocol Buffers (Protobufs) and a
proprietary communications protocol, Roadcast. The system architecture analysis was done by
examining the Testing Bench which was built using the components and current system
architecture for Hyperion and used to evaluate different components of the Hyperion Kit. Code
analysis of IncidentUI, Roadrunner and Roadcast, and research into online resources like
Confluence pages detailing the system and IncidentUI architectures, data flow, sequence
diagrams, and UI flow gave us a better understanding of the architecture.

With the system architecture and data flow analyzed, we designed two new system architecture
plans to establish and maintain a robust communication and flow of data between the Android
tablet running IncidentUI droid and the Pegasus. These system architecture designs were developed
by using varying system integration interfaces which were researched and varied based on which
components of the architecture were redesigned, what tools were used to integrate the different
architecture components and how data and logic flowed amongst these components. We
developed two architecture designs:

Plan A involved the use of the Android Native Development Kit (NDK) to interface between the
Java Android Front-end of IncidentUI droid and the existing communications protocol, Roadcast
written in C++. This interface design allowed the use of existing Roadcast and existing C++
protobuf implementations for communication between Roadrunner and IncidentUI droid.

Plan B involved a redevelopment of Roadcast in Java on the IncidentUIdroid side and
implementation of existing protobuf definitions in Java, thus eliminating the need for the
Android NDK interface, resulting in a more robust and viable design. The Java implementations
of Roadcast and protobufs on the IncidentUI droid end processed and manipulated data identically
to the C++ implementations of Roadcast and protobufs on the Roadrunner end.

This section details the methods implemented for the analysis of the existing system architecture
and the design and development of the two aforementioned system architecture designs for
IncidentUI droid, along with the results obtained from the implementation of those methods.

27

3.2.1 Current System Architecture Analysis

The first stage of phase 2 involved the analysis of the existing system architecture. The analysis
of the system architecture was done using code analysis of IncidentUI, Roadrunner and
Roadcast, and research into online resources like Confluence pages detailing the system and
IncidentUI architectures, data flow, sequence diagrams, and UI flow. To gain even deeper insight
into the system architecture and how IncidentUI integrated and interacted with other components
of the system like the CAN bus, the green button, and primarily the Pegasus running Roadrunner,
we analyzed and interacted with the current system architecture set up on the Test Bench next to
us. The current system architecture for communication between IncidentUI running on a
Raspberry Pi and Roadrunner running on the Pegasus is represented in Figure 10.

Figure 10: IncidentUI Hyperion System Architecture: Test Bench

The current IncidentUI system sub-architecture primarily comprises the Raspberry Pi running
IncidentUI and the Pegasus AGX running Roadrunner. The Raspberry Pi and the Pegasus are
part of a local static IP network set up inside the Ego vehicle. The components of this network
communicate via ethernet. The primary communications protocol used for transferring data
between IncidentUI and Roadrunner is called Roadcast. Roadcast is developed in C++ and
utilizes protocol buffers (protobufs) for serializing data. As shown in Figure 9, Roadcast runs on
either end (Raspberry Pi and Pegasus) of the sub-architecture and regulates the flow of data
between the IncidentUI and Roadrunner. Roadcast packages survey requests and heartbeats
from Roadrunner and deserialize them on the IncidentUI end; similarly, it packages event and
disengagement data along with heartbeats sent by IncidentUI and deserializes them on the
Roadrunner end. The protobufs used to serialize data sent via products are implemented in C++
to integrate with the existing C++ written infrastructure containing the Roadrunner, Roadcast,
and IncidentUI. The system architecture also consists of a peripheral green button that is a part of
the central console of the Ego vehicle and is used to trigger events.

28

When a connection is established between Roadrunner and IncidentUI, heartbeat messages are
sent back and forth. These heartbeats are sent both ways during the entire time the connection
between Roadrunner and IncidentUI is maintained. When Roadrunner stops running and
recording data, the connection is closed and heartbeats are not detected anymore. This lack of
heartbeat is displayed as an error message on the IncidentUI screen and means that Roadrunner
has stopped collecting data for that session. When a connection is reestablished with Roadrunner,
heartbeats are sent and detected on either end and Roadrunner requests a new Login Survey for
this new session followed by the same flow of data and scenarios.

When disengagement is detected, Roadrunner sends a Disengagement Survey Request to
IncidentUI which brings up the Disengagement Survey. The time of the disengagement is
recorded in the Recorder. When the Disengagement Survey is displayed and being filled out, the
actuators are blocked, i.e. The AV cannot reengage and drive autonomously until the filled out
disengagement survey is sent to Roadrunner. After the Disengagement Data is sent to the
Roadrunner, the AV can re-engage. An Event Survey is displayed when an event is triggered by
the co-pilot by pressing the green button. Pressing the green button sends an Event Flag to
Roadrunner recording the actual time of the event in the logs. An event is not the result of
disengagement, so during an event survey is triggered or displayed, the AV is engaged. After the
event survey is filled out it can be submitted to the Roadrunner.

In order to implement an Android tablet running IncidentUI droid and integrate it with the system
architecture, we had to redesign the architecture. We came up with two plans for the new system
architecture design: Plan A revolved around integrating the Java-coded IncidentUI droid with the
C++-based system using the Native Development Kit and reusing the existing communications
and serialization protocols; Plan B involved redesigning the communications and serialization
schemes in Java and utilizing the Java-implemented Roadcast and protobufs to integrate
IncidentUI droid with the Java-C++ hybrid system architecture.

3.2.2 System Architecture Design Plan A

Plan A for redesigning the system architecture to integrate IncidentUI droid involved utilizing
Android’s Native Development Kit (NDK), which is the Java Native Interface (JNI) toolset that
comes bundled with Android Studio and can be used to design and deploy Android applications
in native C++. This plan, as represented in Figure 11, involved using NDK as an interface
between the Java-coded IncidentUI droid and Roadcast, which is developed using C++. This plan
allowed the use of the existing C++-based implementations of Roadcast and Protobufs since the
NDK interface allowed the construction of methods that convert data stored in Java classes on
the Android end into data stored in C data structures on the native end. These data structures are
identical to the ones packaged and transmitted back and forth between the current IncidentUI and
Roadrunner via Roadcast, thus allowing for seamless integration with the current system

29

architecture. This form of architecture design allowed the current version of Roadcast to run on
the Android Tablet and use the C++ implementations of protobufs to serialize data that is being
transmitted between IncidentUI droid and Roadrunner. The development of a robust native
interface between Roadcast and the Android application required the protobufs and Roadcast
libraries to be built in the Android environment as a part of the application apk (Android
Package) and run on Android OS.

Figure 11: IncidentUIdroid System Architecture Design Plan A

In plan A, Roadrunner sends heartbeats and survey requests via Roadcast that serializes the data
using protobufs. When these messages from Roadrunner are received by Roadcast on the
IncidentUI droid end, the data is deserialized and converted into C structures. The NDK interface
converts these C structures into Java classes which are then utilized by the Android front end to
access the data sent by Roadrunner and execute UI changes accordingly. Similarly, when a
survey is filled out by the users, the survey data is packaged into a java class, which is then
converted into C structures using the NDK interface. These C structures are then serialized and
transmitted to Roadrunner using the C++ implementation of Roadcast. This data is finally
deserialized by Roadcast on the Roadrunner end and stored in the Pegasus.

3.2.3 System Architecture Design Plan B

Plan B, as depicted in Figure 12, involved a more dramatic redesign of the system architecture,
and revolved around the redevelopment of Roadcast and Protobufs in Java on the IncidentUIdroid
end. IncidentUIdroid still communicated with Roadrunner using Roadcast and Protobufs were still
being used for serialization, however, the NDK interface between the Java Android front end and
C++-coded Roadcast was discarded for this plan, which eliminated the capability to integrate
IncidentUI droid with the C++-based Roadcast and Protobufs seamlessly. Consequently, the plan
involved the development of a new communications protocol coded purely in Java on the
IncidentUI droid end. This new communications protocol, termed RoadcastJava, mimicked the
functionality of Roadcast written in C++. In order to serialize and deserialize data on the

30

IncidentUI droid end using RoadcastJava, the Protobufs needed to be implemented in Java so that
they could be utilized in RoadcastJava. To ensure that the scheme that is used to serialize data by
RoadcastJava is compatible with Roadcast on the Roadrunner end, existing protobuf definitions
were used. This compatibility between data formats processed by RoadcastJava and Roadcast was
necessary to ensure that when the data that is serialized by Roadcast Java on IncidentUI droid end is
deserialized by Roadcast on the Roadrunner end, the data format will match the existing data
structures on that end and vice versa to ensure accurate data extraction. Implementing these
existing protobuf definitions in Java generated classes that enable serialization of survey data and
other messages by RoadcastJava into a data format that, on deserialization, can be processed by
Roadcast and extracted into an existing data structure scheme that can be used by Roadrunner.
These protobuf java classes also enable the deserialization and extraction of incoming
Roadrunner data directly into Android usable Java classes. So, this plan involved communication
between Roadrunner running C++-coded Roadcast and protobufs, and IncidentUI droid deploying
RoadcastJava and Java implementations of protobufs to ensure a robust Java-C++ hybrid system
architecture design.

Figure 12: IncidentUIdroid System Architecture Design Plan B

In plan B, Roadrunner sends heartbeats and survey requests via Roadcast that serializes the data
using protobufs. When these messages from Roadrunner are received by RoadcastJava on the
IncidentUI droid end, the data is deserialized directly into Java classes which are then utilized by
the Android front end to access the data sent by Roadrunner and execute UI changes accordingly.
Similarly, when a survey is filled out by the users, the survey data is packaged into a java class,
which is then serialized and transmitted to Roadrunner using RoadcastJava. This data is finally
deserialized by Roadcast on the Roadrunner end and stored in the Pegasus.

31

3.3 Phase 3: IncidentUIdroid Beta 1.0 Development
With the current system architecture analyzed, UI mockups constructed, and architecture
redesign plans devised, we proceeded to develop Beta 1.0 for IncidentUIdroid during Phase 3. Beta
1.0 involved the development of the Android front end of the application which was coded in
Java and deployed using Android Studio. Android XML (Extensible Markup Language) was
used to design the UI, and the data, UI, and functional flow were coded using Java. Beta 1.0
implemented Plan A for the system design architecture and thus involved the development of a
Java Native Interface (JNI) between Java and C++ which was developed using the Native
Development Kit (NDK) that comes bundled with Android Studio. Beta 1.0 was developed,
deployed, and tested iteratively on Nvidia Shield Android Tablets running Android version 7.0.
With the system integration not implemented yet, we utilized the tablets’ hardware buttons to
emulate Roadrunner messages. This section details the steps carried out and the implementation
actualized during the development of Beta 1.0 for IncidentUIdroid.

3.3.1 Front End User Interface (UI) Design

The UI mockup developed during the first phase inspired the UI design and flow for the
development of the front end for IncidentUI droid Beta 1.0. The UI consisted of three main screens
(activities) with multiple tabs (fragments) within each screen. The UI was designed and
developed using Android XML Layouts, and the functionality of the UI elements was coded in
Java. The application UI went through multiple iterations and testing phases before the final Beta
1.0 UI was deployed. Android studio was used to develop Beta 1.0 and the application apk was
deployed and tested iteratively on multiple Nvidia Shield Tablets. IncidentUI droid is an application
designed to collect surveys detailing the causes of ego AV disengagements and involves an
interface to track events detailing any ride discomfort experienced in the ego vehicle. This
section details the design of the three main application screens for the IncidentUI droid Beta 1.0 -
Initiate Drive, Dashboard, and Session along with the sub-tabs for each; it also describes the
design flow, i.e., the way these screens interact with each other.

Initiate Drive Screen

The first screen that is displayed when the application is launched after getting into the ego
vehicle is the Initiate Drive screen. A screenshot of the screen is shown in Figure 13. The screen
has text fields to enter the Pilot’s and Co-pilot’s Nvidia IDs. It also has a button “Start Drive ” to
initiate the drive and launch the dashboard screen. The pilot and copilot information are collected
for each drive and used to relate AV disengagements, events, ride comfort, session information,
and other test data to the test users.

32

Figure 13: Initiate Drive Screen

Dashboard Screen

The dashboard screen is displayed when a drive is initiated and in between active sessions. It has
the following three tabs under it.

Drive History Tab

Figure 14: Drive History Tab

33

The Drive History Tab, as shown in Figure 14, stores information about every past session after
it has ended. This tab generates a Session Card for every past session and contains information
about that session. These cards appear in a vertical list in this tab that can be scrolled through.
This tab is also available in the Session Screen, allowing the user to view the drive history during
an active session. This tab contains the cards for previous sessions. Each Session Card has the
sequence number of the session. It also displays the Nvidia ID of the Pilot for the current Drive
and the number of Disengagements for this session.

There is a “ View” button on each Session Card that, on being clicked, brings up a dialog window
that displays more information about that session, as shown in Figure 15. This Session
Information dialog window displays the Pilot’s and Co-pilot’s Nvidia IDs for the current drive. It
also displays the number of disengagement and events generated during that session. The dialog
window also shows the Session Duration, i.e. the length of time that session lasted. At the bottom
of the dialog window, there is a “Back ” button that dismisses this Session Information dialog and
goes back to the Drive History tab.

Figure 15: Session Information Window

Dashboard Tab

The dashboard tab, as shown in Figure 16, is displayed by default whenever the dashboard
screen is launched. This tab displays the Nvidia IDs of the Pilot and the Co-pilot on the current
drive. It has an “ End Drive ” Button that terminates the current drive and takes the user back to
the Initiate Drive Screen. At the top right corner of the screen, there is an indicator that shows the

34

current Roadrunner connection status, i.e. if the client running on IncidentUI droid detects a
heartbeat from Roadrunner or not.

Figure 16: Dashboard Tab

At the bottom of the screen, there is a navigation menu that allows users to switch between the
three tabs in the dashboard screen, i.e. Drive History Tab, Dashboard Tab, and Power Tab.

Power Tab

The power tab is currently empty but has been included as a tab in the UI in case the application
is further developed to include the power relay control functionality, thereby completely
eliminating the need for the Raspberry Pi in the Hyperion system architecture.

Session Screen

During an active session, the session screen is displayed. The ability to initiate or end a session is
not under the control of the user; instead, it is controlled by the status of the Roadrunner
connection, i.e. the moment Roadrunner connects, a session is initiated, and a session ends when
Roadrunner is disconnected. The session screen has the following two tabs:

35

Drive History Tab

The Drive History tab is also available in the Session screen to view information about past
sessions during an active session. The User Interface elements of this tab and their functions are
the same as explained previously for the Dashboard screen.

Session Tab

The session tab, as shown in Figure 17, is the main tab that is displayed during an active session.
It displays the current Pilot’s and Co-pilot’s Nvidia IDs, along with the number of
disengagements and events encountered in this session. There is a “New Event” button that
records a new event by bringing up the Event Survey. The number of events and disengagements
are updated in the session tab in real-time. There is also a chronometer that tracks the amount of
time that has elapsed since the current session started. At the top right corner of the screen, there
is an indicator that shows the current Roadrunner connection status, i.e. if the client running on
IncidentUI droid detects a heartbeat from Roadrunner or not.

Figure 17: Session Tab

The disengagement survey is brought up automatically on the screen when Roadrunner detects
an ego vehicle disengagement and sends a disengagement survey request to IncidentUI droid.
During the development and testing of Beta 1.0, Roadrunner messages sent to IncidentUI droid
were emulated using hardware buttons on the Nvidia Shield tablet; clicking the Volume-Down

36

hardware button on the tablet mimicked a disengagement survey request from Roadrunner and
displayed the Disengagement Survey on the tablet screen. At the bottom of the screen, there is a
navigation menu that allows users to switch between the two tabs in the session screen, i.e. Drive
History Tab and Session Tab.

Surveys

The main function of IncidentUI is to track events and disengagements and their causes using
surveys. They make use of pre-existing parameters to measure the comfort of the ego vehicle’s
maneuvers across 2 axes - lateral and longitudinal and use these parameters or other additional
information to report the reasoning for the lateral/longitudinal comfort rating assigned by the
co-pilot for the event/disengagement. These surveys are displayed and can be filled out only
while a session is active, i.e. Roadrunner connection is present. The survey responses are sent to
the Roadrunner using Roadcast and then stored in the Pegasus. There are two kinds of surveys
used for recording data:

Event Survey

The Event Survey is used to track an event. An event is recognized as a scenario where the ego
vehicle’s maneuver causes lateral and/or longitudinal discomfort without requiring a
disengagement from the pilot. Whenever the ego vehicle does a maneuver that the co-pilot
believes violates the comfort parameters, they can generate an event. To do so, they can click on
the “New Event” on the Session tab, which brings up the “Event Survey” as shown in Figure 18.
Ride comfort is measured across 2 axes using sliders on a scale of 0 to 5. Checkboxes let the user
choose potential causes for Lateral and Longitudinal Discomfort, with the option to select
multiple causes simultaneously. The possible causes of Longitudinal Discomfort are as follows:

● Collision Threat
● Jerky Acceleration

● Too Fast
● Jerky Break

● Too Slow
● False Breaking

The causes of Lateral Discomfort are as follows:

● Collision Threat
● Too Aggressive

● Swerve
● Too Conservative

● Lateral Jerk

The Event Survey also allows the Co-pilot to define the position of the Ego-vehicle at the time of
the discomfort event to give locational context to the cause of the event. This locational context
improves the quality of the event data, which can then be used to enhance the Drive Software
further. The Ego-Vehicle’s position is selected from radio buttons for the following options:

37

● Lane Keep
● Split

● Merge
● Ramp

● Lane Change

The Event Survey also allows the user to provide additional information related to the event that
is not covered by the predefined options. The user (usually the co-pilot) can fill out the
“ Additional Information ” in a dedicated text box.

Figure 18: Event Survey

Disengagement Survey

The Disengagement survey, as shown in Figure 19, is used to record disengagement data, i.e.
lateral and longitudinal ride comfort, cause of the disengagement, the explanations for the cause
of the disengagement, and any additional information describing the disengagement. In case of
an ego vehicle disengagement, Roadrunner sends a disengagement survey request to
IncidentUI droid using Roadcast, and consequently, the disengagement survey is displayed on the
tablet screen.

38

The ride comfort is measured across 2 axes: longitudinal and lateral, and can be selected using
sliders from a range of 0 to 5, where 0 is least comfortable and 5 is most comfortable.

The Cause of Disengagement can be selected from four possible options using Radio Buttons.
The possible causes of disengagement are as follows :

● Safety Issue
● Intended and safe

● End of Drive
● Other

Figure 19: Disengagement Survey

If the cause of the disengagement is some safety issue caused by the nature of the maneuver
performed by the ego vehicle that forced the pilot to take control and trigger a disengagement,
then the “Safety Issue ” option is selected as the Cause of Disengagement on the Disengagement
Survey. Selecting this option displays additional fields to provide explanations for the Safety
Issue. These fields include potential causes for Lateral and Longitudinal Discomfort and the

39

location of the Ego Vehicle at the time of the disengagement. The layout of the fields is identical
to that of the Event Survey, as described in the previous section.

If the disengagement is triggered by the pilot intentionally because of varying reasons and it is
not the result of a safety issue, i.e., the disengagement is the result of some reason external to the
ego vehicle misbehaving, then the “ Intended and Safe ” option is selected as the Cause of
Disengagement on the Disengagement Survey. Choosing the “ Intended and Safe” option prompts
the user to provide more context to the disengagement cause by selecting one of the following
explanations using radio buttons:

● Exiting ODD Road Type
● Planned break/stop
● Emergency Vehicle
● High Accident Zone
● Proactive or Discretionary

● Private Test Area
● Accidental Disengagement
● Choosing a better route/lane
● Disengagement Testing
● Other

From these aforementioned options, selecting “Exiting ODD Road Type” prompts the user to
provide more environmental context to the explanation for the disengagement like a High Traffic
Area, Weather Conditions or, a Construction Zone. The rest of the options are self-explanatory
and do not require additional context. If none of the predefined options give an accurate
explanation for the “Intended and Safe ” cause of disengagement, then the “ Other” option can be
selected, which displays a text box that can be used to provide an explanation for the
disengagement that is not covered by the predefined options.

At the end of an AV drive, the pilot takes control of the ego vehicle to mark the end of the test
session and the data collection process, which triggers a disengagement. This scenario can be
recorded by selecting the “ End of Drive ” option as the Cause of Disengagement on the
Disengagement Survey. If none of the aforementioned options accurately define the cause of
disengagement, then the “Other” option can be selected on the Disengagement Survey, which
displays a text box that can be used to provide a cause for the disengagement that is not covered
by the predefined options. The Disengagement Survey also allows the user to provide additional
information related to the disengagement that is not covered by the predefined options. The user
(usually the co-pilot) can fill out the “Additional Information” in a dedicated text box.

During an AV test drive at Nvidia’s private test track, multiple disengagements and events are
triggered to test and tweak the Hyperion Software and Hardware. The Disengagement Survey
has a “Test Drive ” button on the top-right corner that automatically submits a disengagement
survey with the following information filled out:

40

● Longitudinal Comfort: 0
● Lateral Comfort: 0
● Cause of Disengagement: Intended and Safe
● Explanation: Private Test Area
● Additional Information: None

This feature is set up to ensure that the test users are not bogged down by having to fill out the
disengagement survey with duplicate information every time an intentional disengagement is
triggered as part of the test session on the private test track.

3.3.2 Android Native Development Kit (NDK) Interface Design

With the front end Android application set up, an NDK interface needed to be developed to
enable robust data transfer between the Java-coded Android application and the system libraries
and protocols like Roadcast, which were developed using C++. Android Native Development Kit
(NDK), which is a Java Native Interface package that comes bundled with Android Studio, was
used to develop an interface consisting of methods that repackage data in Java objects into C++
structure instances and vice versa.

When Roadrunner sends a survey request message to IncidentUI droid via Roadcast, the message is
received by Roadcast running on the IncidentUI droid end and it is deserialized using Protobufs to
generate a C structure instance. The data stored in this C structure is processed by a method in
the NDK interface and converted to a Java class object. Based on the contents of this Java class
object, UI elements are triggered; for instance, a survey pops up on the IncidentUIdroid screen.
After the survey is filled out and submitted, a Java object is generated with its data derived from
the fields filled out in the survey. This Java object is then processed by the NDK interface and
converted into a C structure that is serializable by the Protobufs that are utilized by Roadcast and
matches the data scheme on the Roadrunner end. This serialized data is sent to Roadrunner,
where it is deserialized by Roadcast and stored in the Pegasus.

The NDK interface comprises two primary methods, one to handle messages from Roadrunner to
IncidentUI droid and the other for messages from IncidentUI droid to Roadrunner. Each of these
methods utilizes a unique method for every type of message transmitted between Roadrunner
and IncidentUIdroid, i.e. a disengagement survey request will be translated from C++ to Java using
a method different from the one used to translate disengagement data from Java to C++. The
NDK interface is developed entirely in C++ with seamless access to C++-coded system libraries
and protocols and involves calls to JNI methods that access Java methods and objects that are a
part of the Android end of the application.

41

3.3.3 Beta 1.0 Demonstration

The final stage of the development of Beta 1.0 for IncidentUIdroid involved a demonstration of the
beta to the end-users of IncidentUI droid, i.e. the IFORV (End-to-End Product Testing) and the
SQA (Quality Control) teams. The demonstration focused on the User Interface (UI) Design and
Flow of the Android application with some insight into the system integration strategies and
architecture design.

The demonstration began with a presentation highlighting the UI screens and tabs along with the
functions of the various UI elements. This presentation was followed by a walkthrough of the
actual Android application beta running on an Nvidia Shield Tablet. The walkthrough
demonstrated the UI and data flow along with the way users could interact with the application.
It also demonstrated the UI changes resulting from the interaction between IncidentUI droid and
Roadrunner, where the messages from Roadrunner were simulated using the hardware buttons on
the tablet. The walkthrough highlighted the changes in the UI design and flow along with the
enhanced intuitiveness, compatibility, and robustness of the new Android IncidentUI droid,
compared to the existing IncidentUI deployed on the Raspberry Pi.

After the walkthrough, the tablet was passed down to the SQA and IFORV teams as part of a
free user interaction and evaluation session. This session was followed by a Q&A that involved
discussions about UI design and flow, application use, suggested features, and some general
feedback. The Q&A also involved a discussion about system integration, architecture design, and
platform compatibility, which also highlighted the versatility, efficacy, and enhanced robustness
of deploying IncidentUI droid in an Android environment. The demonstration also displayed the
ease of use and portability of a tablet application.

Feedback Analysis

The demonstration of Beta 1.0 for IncidentUIdroid broadly received positive feedback from the
SQA and IFORV teams. Some of the quotes from the discussions with the team members are as
follows:

● “The biggest issue with IncidentUI is typing on that small screen. It is much easier to
type on this tablet.”

● “I don’t like the current UI. This UI is a lot better and easier to interact with.”
● “The fixed display cannot be passed on to the people in the backseat. This tablet is much

more portable.”
● “Using the in-console display disturbs the pilot. This tablet will remain with the co-pilot

so that’s safer.”

42

● “Android is more versatile. Like I can have this application running on my phone which
means multiple people can use it at the same time.”

As can be devised from the aforementioned quotes, the teams really appreciated the redesigned
User Interface and screen flow along with the enhanced user interactivity of IncidentUI droid. They
were in favor of Android as an environment for the application because of its enhanced
robustness and greater compatibility with various platforms. Another aspect of the new design
they appreciated was the deployment of the application on a tablet which is much more portable
and easy to use than a fixed in-console display, allowing for feedback from multiple users. The
teams had many questions about the system architecture design and integration strategies and
were in favor of both system architecture design plans discussed previously.

In a nutshell, the SQA and IFORV teams really appreciated the transition of IncidentUI from a
fixed Raspberry Pi display to a portable Android tablet and commented that using the Android
Tablet-based IncidentUI droid would considerably improve their testing experience during the
disengagement and ride comfort data collection process.

3.4 Phase 4: IncidentUIdroid Beta 1.0 System Integration

With the IncidentUI droid Beta 1.0 application developed, deployed, and evaluated on the Nvidia
Shield tablets and an NDK interface set up, we began integrating the application with the
existing system architecture utilizing Design Plan A . The integration strategy under system
architecture design Plan A involved utilizing the existing Protobuf and Roadcast C++
implementations in an Android environment and integrating them with IncidentUI droid via the
NDK interface. The NDK interface, which is developed in C++, has methods that regulate data
transmission between Roadcast and Android end of IncidentUI droid. This section describes the
steps taken to deploy the C++ implementations of Protobuf and Roadcast in an Android
environment and couple Roadcast on the IncidentUI droid end with the NDK interface. This section
also highlights the issues encountered during system integration under Architecture Design Plan
A which resulted in a pivot to Design Plan B.

3.4.1 Protobufs Implementation in C++

Nvidia utilizes Protocol Buffers as a part of the Hyperion Kit to serialize data that is transmitted
between Roadrunner and IncidentUI. System integration of IncidentUI droid under Architecture
Design Plan A involved using the existing C++ implementation of Protobufs. Since Roadcast
utilizes the protobuf classes and methods for serialization, the building of the Roadcast libraries
is dependent upon the building of the protobufs library, which is termed “avprotos”. This plan
involved deploying the C++ protobuf classes generated from the existing “ .proto ” files in an
Android environment and then calling the methods associated with these classes to serialize data

43

on the IncidentUI droid NDK interface end. As part of this deployment, we configured and built the
system Protobuf libraries using the same Protobuf compiler, i.e. “ protoc” file used by Roadcast,
to maintain compatibility between the serialization scheme implementations on the Roadrunner
and IncidentUIdroid end. Each “ protoc” file is built using the Protobuf source files. This “protoc ”
file is then used to configure the “make scheme” used for building the system Protobuf libraries.
This “ protoc” file is also used to generate the required Protobuf classes from the “ .proto ” files.

The limited documentation available online for utilizing C++ implementations of protobufs in an
Android environment pointed towards the generation of a cross-compiled system Protobuf
library using cross-compilation standalone toolchains. This cross-compiled system Protobuf
library enables the utilization of C++ implementations of Protobufs, i.e. the Protobuf classes
generated from the “ .proto ” files, by the NDK interface in an Android environment. A
cross-compilation standalone toolchain was developed for each of the 32-bit and 64-bit versions
of ARM architecture, which is the instruction set architecture used by the Tegra K1 chipset in
Nvidia Shield Tablets [17]. We also developed a cross-compilation standalone toolchain for each
of the 32-bit and 64-bit versions of Linux-x86 architecture to enable the testing of the application
in the Android Studio Emulator deployed on the Testing Host Machine running Ubuntu Linux.
The “make scheme” was reconfigured for the Android environment using the newly generated
cross-compilation standalone toolchains and the same “protoc ” file. This reconfigured “make
scheme” was then used to build and compile the cross-compiled Protobuf library. However, the
generation of the cross-compiled system Protobuf library using the standalone toolchains was
met with some Android NDK version compatibility issues as discussed in detail later in section
3.4.3.

Once the cross-compiled system Protobuf library is compiled, the “ protoc” file is used to
generate the Protobuf classes as part of the “ avprotos” library. The “avprotos” files utilize the
cross-compiled system Protobuf library to support robust data serialization in an Android
environment. The NDK interface is coupled with Roadcast, which utilizes classes in the avprotos
library to serialize data that is transmitted between IncidentUI droid and Roadrunner.

3.4.2 Roadcast Integration

Another aspect of system integration of IncidentUI droid is the deployment of Roadcast in an
Android environment and the coupling of Roadcast with the NDK interface. The coupling of the
NDK interface and Roadcast involved setting up a loop that listens for incoming survey requests
and heartbeats sent to the IncidentUIdroid Roadcast Client from Roadrunner. When a message is
received and deserialized by the Roadcast client, the listener loop is alerted and it forwards these
messages that are packaged as C++ structures to the NDK interface where they are processed and
converted into Java objects. The loop also listens for survey data and heartbeat messages
received from the NDK interface and forwards them to the Roadcast Server running on the

44

IncidentUI droid end. When the survey data is processed by the NDK interface and converted into a
C++ structure, the listener loop is alerted and it forwards the message to the Roadcast Server,
which serializes the data and transmits it to Roadrunner.

To enable IncidentUI droid to utilize Roadcast, all of the libraries and files associated with
Roadcast needed to be deployed in an Android environment as part of the system integration of
IncidentUI droid. This deployment involved building an Android apk consisting of the application
itself, i.e. IncidentUI droid, and the Roadcast library as a support library. However, the deployment
of Roadcast in an Android environment resulted in some compatibility issues between the NDK
system files and the Roadcast library files, which is discussed in detail in the next section.

3.4.3 Issues with Beta 1.0 System Integration

The process of integrating the Beta 1.0 for IncidentUI droid with the system architecture using
Design Plan A was concluded prematurely owing to some insurmountable barriers encountered
while deploying Protobufs and Roadcast in an Android environment.

Issues with Protobufs Integration

The primary issue with the deployment of C++ Protobufs implementations in an Android
environment is the incompatibility between the standalone toolchains required for generating the
cross-compiled Protobuf library and the Android NDK version required to accommodate the
C++ system libraries required by Roadcast. The minimum NDK version required for the
necessary C++ system libraries used by Roadcast is “r21 ”, but the standalone toolchains become
obsolete with version “ r19” [18], which makes it impossible to accommodate a cross-compiled
Protobuf library and Roadcast simultaneously. Lowering the NDK version below “ r19 ” allows a
cross-compiled Protobuf library to build with standalone toolchains but the C++ system libraries
required by numerous Roadcast files aren't included in the NDK bundle for this version which
results in numerous undeclaration and import errors. On the other hand, raising the NDK version
to “ r21” accommodates the C++ system libraries required by Roadcast, but obsoletes standalone
toolchains, which eliminates the capability to build a cross-compiled Protobuf library. This
inability to reconcile the two major facets of system integration: Roadcast and Protobufs, became
a point of failure for the system integration of Beta 1.0 under Architecture Design Plan A.

Issues with Roadcast Integration

The deployment of Roadcast in an Android environment was met with numerous redeclaration
and compatibility issues between the Roadcast library files and the NDK C++ system libraries.
These file, class, function, and variable redeclaration issues arose from the fact that the existing
Roadcast library comprises of customized redeclared versions of existing C++ system library
files; however, these redeclaration issues are only resolved for a Linux environment, in which the

45

current version of Roadcast is deployed. A redeployment of Roadcast libraries into an Android
environment reproduced these redeclaration issues as a result of incompatibility with the
identical C++ system library files in the NDK bundle. A resolution of these redeclaration errors
required manually sifting through hundreds of thousands of lines of Roadcast and NDK bundle
system code and rebuilding the entire Android apk with every minute code patch, which, after
two weeks of debugging, still resulted in a failed apk build. The compatibility issues were
amplified by the fact that Roadcast is compiled using GCC, but Android Studio relies on Clang
for compiling native code, which resulted in further build errors. We predicted that debugging
these errors would require an indefinite amount of time and ultimately result in an unstable
system architecture, which resulted in another point of failure for the system integration of Beta
1.0 under Architecture Design Plan A.

Owing to the aforementioned issues, strong time constraints, and the lack of progress regardless
of several attempts and help from software engineers at Nvidia, the team decided to conclude the
development Beta 1.0 and pivot to the development of Beta 2.0 utilizing Design Plan B for
integrating IncidentUIdroid, which involved a more drastic but robust system architecture redesign.

3.5 Phase 5: IncidentUIdroid Beta 2.0 Development
With the overwhelming issues encountered during the development, and more specifically the
system integration, of Beta 1.0, we decided to pivot to the development of Beta 2.0 for
IncidentUI droid. Beta 2.0 incorporates the same Java-coded Android front end design as Beta 1.0
but involves a more drastic redesign of the system architecture under Design Plan B, with the
IncidentUI droid back end and system sub-architecture developed entirely in Java to build a robust
system and ensure seamless data transmission throughout this system. In addition to the
development and evaluation of Beta 2.0, this phase also involved extensive IncidentUIdroid
integration and functional testing using a Roadrunner Emulator. This section details the steps
taken during the design, development, system integration, and evaluation of the Java-coded
IncidentUI droid Beta 2.0.

3.5.1 Android Front End and Interface Redesign

Since the front end of the IncidentUI droid application developed during Beta 1.0 was deemed
intuitive and effective on evaluation, Beta 2.0 incorporates the same front end design for the
Android application with some minor UI changes to improve text readability and incorporate a
practical screen design regardless of the screen orientation. To limit application use exclusively
to IncidentUI droid during a test drive and ensure absolute user attention and participation, the
application is configured as the default Android application launcher, which forces IncidentUI droid
to be displayed on boot up and stay on-screen throughout the duration of device use. In order to
actualize Java implementations of Protobufs and Roadcast on the back end and develop a system

46

sub-architecture developed entirely in Java according to Architecture Design Plan B, the Android
NDK interface was decoupled. This decoupling involved eliminating the NDK system libraries
and the NDK interface developed to transform data from Java objects to native structures and
vice versa. On the system end, the C++ Roadcast support libraries and the Protobufs C++ system
libraries were also removed from the Android apk. This decoupling resulted in a Java-coded
front end Android application identical to the one developed during the Front End Development
of Beta 1.0 for IncidentUIdroid.

3.5.2 RoadcastJava

With the front end developed for Beta 2.0 and the NDK interface and C++ system libraries
decoupled, the system integration of IncidentUIdroid under Architecture Design Plan B was
initiated, which involved the development of RoadcastJava: a new communications protocol coded
purely in Java. RoadcastJava replicates the functionality of the C++-coded Roadcast and utilizes
Java implementations of Protobufs to serialize and deserialize data on the IncidentUI droid end.
Similar to Roadcast, Roadcast Java implements a Client and a Server to regulate the exchange of
data with Roadrunner.

Figure 20: RoadcastJava Client Sub-architecture

The RoadcastJava Client, as shown in Figure 20, is responsible for receiving and processing
survey requests and heartbeat messages sent by Roadrunner. The Client runs on a background
worker thread as an “IntentService ’’ and listens for incoming data from Roadrunner in a loop.
The RoadcastJava Client is configured to listen for messages from Roadrunner on a specific port
and from a specific Server IP address that the Roadcast Server running on Roadrunner is bound
to. Since the Client runs as a background service on a worker thread, the Android front end of the
application running on the main UI thread remains interactive and functions parallel to the
background listener Client. The Roadcast Java Client, on receiving a message from the Roadcast

47

Server running on Roadrunner, deserializes the message data directly into a Java object using the
Java implementations of Protobufs, i.e. Java class serialization methods derived from the
“avprotos” Protobufs definitions. The Client then sends this object or a corresponding signal to
the UI thread using a “Handler”. This “ Handler” is utilized by the Android front end to access
the data sent by Roadrunner and execute UI changes accordingly.

RoadcastJava utilizes a server to generate and send survey data and heartbeat messages to
Roadrunner. The Roadcast Java Server, as shown in Figure 21, runs on another background worker
thread as an “ IntentService’’ and sends generated messages to Roadrunner in a loop. The Server
is bound to a specific IP address and configured to accept client connections on a specific port.
The Server also utilizes this port to send serialized messages to the Roadcast Client running on
Roadrunner.

Figure 21: RoadcastJava Server Sub-architecture

When a survey is filled out and submitted on the main UI thread, the survey data is packaged
into a Java object. The Server then sends this object or a corresponding signal to the background
worker thread using a “ Handler”. On receiving the Java survey object and/or the signal from the
“ Handler”, the Roadcast Java Server utilizes the Java class serialization methods to serialize the
Java object and generate a message, which is then transmitted to the Roadcast Client running on
Roadrunner.

On application startup, the Roadcast Java client attempts to connect to the Roadcast server in a loop
using a specific port and Server IP address. On a successful connection, the Roadcast Java client
receives and processes the heartbeat messages sent by the Roadcast server. Similarly, the
RoadcastJava server gets initialized and bound to a specific IP address and starts listening for
client connections on a specific port. On a successful Roadcast client connection, the RoadcastJava

48

server generates and sends heartbeat messages to the connected Roadcast client. After a
successful and robust two-way connection is established between Roadrunner and IncidentUI droid,
varying survey request messages and corresponding survey response messages are sent back and
forth during an active test session. At the start of every active session, a Login Survey Request is
sent by Roadrunner and the corresponding Login Survey Response containing information about
the current Pilot and Copilot is sent back by IncidentUIdroid. This exchange is followed by a series
of Event and Disengagement survey requests and responses sent back and forth between
Roadrunner and IncidentUIdroid. Throughout the span of an active session, heartbeats are
exchanged between Roadrunner and IncidentUIdroid to indicate an active roadrunner connection
status. After a test session ends and Roadrunner disconnects, the Roadcast Java client retries
connecting to the Roadcast server in a loop, and simultaneously the Roadcast Java server continues
to listen for incoming Roadcast client connections. After a successful two-way handshake is
established, a new test session is generated.

The IP addresses and the ports used by the Roadcast Java server and client are modified depending
upon the communication medium used to transmit data between Roadrunner and IncidentUI droid.
For instance, if IncidentUI droid is connected to Roadrunner over the Nvidia corporate WiFi
network, then the Roadcast Java server and client are assigned dynamic IP addresses and
corresponding ports, and if IncidentUI droid is connected to Roadrunner via USB tethering then the
RoadcastJava server and client are assigned static IP address and corresponding ports as part of the
local AV static network. Roadcast Java maintains a robust Java-based system sub-architecture for
IncidentUI droid whilst also successfully replicating the functionality of the C++-coded Roadcast to
ensure a robust integration of Roadrunner and IncidentUIdroid.

3.5.3 Protobufs Implementation in Java
Beta 2.0 still utilizes Protobufs for serializing data sent back and forth between Roadrunner and
IncidentUI droid. Under Architecture Design Plan B, the Protobufs are implemented in Java to
enable RoadcastJava to utilize them and ensure robust serialization on the IncidentUIdroid end. To
maintain compatibility between the serialization scheme implementations on the Roadrunner and
IncidentUI droid end, we configured and built the Java system Protobuf libraries and the Java-based
“ avprotos” library using the same Protobuf compiler, i.e. “ protoc” file used by Roadcast. Since
the system architecture under Design Plan B does not involve native code and libraries and the
system Protobufs libraries are generated in Java and include support for Android, system
integration under Design Plan B doesn't require a cross-compiled Protobufs library that
accommodates standalone toolchains and native system libraries. We also used the existing
Protobufs definitions in the “ .proto ” files to generate Java implementations of Protobufs, i.e.
Java Protobufs serialization classes, to maintain compatibility between Roadrunner and
IncidentUI droid. The methods associated with these Java Protobufs serialization classes are

49

utilized by Roadcast Java to deserialize incoming messages from Roadrunner into Android-usable
Java objects. These methods are also utilized by RoadcastJava to serialize data stored in Java
objects into messages that are transmitted by IncidentUI droid to Roadrunner. The Java
implementations of Protobufs maintain a robust Java-based system sub-architecture for
IncidentUI droid whilst also successfully integrating with the C++ implementations of Protobufs
utilized by Roadrunner to ensure a robust Java-C++ hybrid system architecture integration.

3.5.4 Android Tablet Networking

The final aspect of system integration for IncidentUI droid Beta 2.0 involved configuring the
hardware and network settings for the Nvidia Shield Tablet that was used for developing,
deploying, and evaluating IncidentUI droid. The three varying hardware network solutions provided
to integrate the Nvidia Shield Tablet running IncidentUI droid with the Pegasus that deploys
Roadrunner, are as follows:

● Tethering using USB On-The-Go (OTG)
● Ethernet LAN
● WiFi - Nvidia’s Corporate Wireless Network

Each route to configure the hardware networking for the Nvidia Shield Tablet requires a unique
setup. In order to debug the functionality of IncidentUI droid and ensure that the application is
working as intended, we utilized the Android Debug Bridge (ADB). ADB is a command-line
tool that enables communication with an Android device via a Unix shell [19]. The Unix shell is
also used to execute a variety of commands to tweak the system and hardware settings for a
connected Android device. We utilized ADB for IncidentUIdroid debugging and Android Tablet
hardware network and system configuration for all three aforementioned hardware network
solutions.

To enable communication via USB Tethering and Ethernet LAN, we configured new network
interfaces on the Pegasus. These network interfaces were configured to be in the same static local
sub-network as the Nvidia Shield Tablet to allow steady communication between the two,
without drastic modifications to the network configuration. The WiFi network solution was more
straightforward and involved configuring the IP address assigned to the IncidentUIdroid Android
Tablet in the Pegasus’ network configuration files.

Each proposed network solution has its pros and cons. USB Tethering involves a wired
connection between the Pegasus and the Nvidia Shield Tablet, and contrary to the other proposed
network solutions, it provides support for charging the tablet while it is connected to the Pegasus.
Compared to the other network solutions, Ethernet LAN requires the least amount of time. The
WiFi network solution requires the least amount of network configuration modifications and is
the most practical to use. Even though future iterations of IncidentUI droid will depend heavily on

50

the WiFi network solution, Nvidia’s current AV infrastructure does not comprise a WiFi network
owing to network security concerns.

3.5.5 Integration and Functional Testing with Roadrunner Emulator

In addition to the iterative user interface, hardware network configuration, and front end
functional testing, this phase involved the development of a custom Roadrunner test build to
emulate the functionality of the Hyperion Kit Roadrunner. The Roadrunner build is set up to test
the functionality of IncidentUIdroid and the integration stability of the Beta 2.0 system
sub-architecture. The Roadrunner build is deployed on the Pegasus that is set up as a component
of a test sub-architecture identical to the IncidentUI Test Bench sub-architecture. The custom
build runs a sample test session recorded during a previous AV test drive.

The custom-built Roadrunner connects to IncidentUI droid and automatically exchanges Heartbeat
messages throughout the span of an active test session. At the start of the test session, it sends a
Login Survey Request to IncidentUI droid. The custom build is set up to run in a Linux
environment from the command line of the Jetson AGX Xavier A module in the Pegasus and
allows the user to manually trigger Event, Disengagement and Login Survey Requests. The
command line can also be used to manually alter the Lateral and Longitudinal Sequence
Numbers on the Disengagement Survey Requests. In addition to the IncidentUI droid connection
status, the Roadrunner build prints out the Message Type (Heartbeat, Event Flag, Event Survey,
Disengagement Survey, or Login Survey) and the Message Content, i.e. the Survey Data, for
every message it receives from IncidentUIdroid. The build is designed to emulate every possible
Roadrunner scenario during an AV test drive and is used to ensure the proper functioning of
IncidentUI droid. It is also used to evaluate the quality of data transmission between Roadrunner
and IncidentUIdroid and the integration stability of the Beta 2.0 system sub-architecture under
Design Plan B.

3.6 Phase 6: Evaluation and Stable Release Deployment
With a functional Beta 2.0 for IncidentUI droid deployed and integrated with the redesigned system
sub-architecture, the sixth and final phase in the development of IncidentUI droid was initiated.
This phase involved a Beta 2.0 application demonstration and the development, deployment,
evaluation, and in-car testing of the stable release for IncidentUIdroid. This section details the steps
taken during this phase to evaluate and enhance Beta 2.0 and deploy the final stable release for
IncidentUI droid.

3.6.1 IncidentUIdroid Beta 2.0 Application Demonstration

This step of Phase 6 involved a demonstration of Beta 2.0 to the AV Platform Team that includes
the IFORV and the SQA teams. The demonstration described the User Interface Design, System

51

Architecture Design and Integration Strategy, and the functionality of IncidentUIdroid Beta 2.0.
The demonstration began with a presentation highlighting the steps involved in the development
of Beta 2.0, with an overview of the issues encountered during the development and system
integration of Beta 1.0 using Architecture Design Plan A, and the consequent pivot to Beta 2.0
and Design Plan B. The presentation also mentioned the design and flow of the User Interface
along with the development of the system integration strategies involving Roadcast Java and Java
implementations of Protobufs.

This presentation was followed by a walkthrough of the actual Android application Beta 2.0
running on an Nvidia Shield Tablet. The walkthrough demonstrated the functionality of
IncidentUI droid and the nature of data transmission between Roadrunner and IncidentUI droid by
utilizing the test sub-architecture set up in the previous phase. We utilized the custom
Roadrunner build to emulate an AV test drive and manually trigger disengagements and events
using shell commands. Secure Shell (SSH) was used to remotely access the test Pegasus running
the custom Roadrunner build. The test Pegasus running the Roadrunner build was connected to
the Nvidia Shield tablet running IncidentUI droid over Nvidia’s wireless corporate network by
utilizing the WiFi hardware network solution mentioned previously.

SSH was used to access the Roadrunner build logs during the demonstration that displayed the
Heartbeats and the Survey Data that Roadrunner received from IncidentUIdroid. The heartbeat
messages sent and received by the Roadrunner build were displayed in the logs throughout an
active session which indicated a continuous exchange of heartbeats between Roadrunner and
IncidentUI droid. Manually triggering a disengagement on the Roadrunner build sent a
Disengagement Survey Request to IncidentUIdroid, which was recorded in the Roadrunner session
logs. Receipt of this Disengagement Survey Request by IncidentUIdroid triggered the
disengagement survey, which was displayed on the IncidentUIdroid screen. The disengagement
survey, on being filled out and sent to the Roadrunner build, appeared in the session logs as well.

After the walkthrough, the tablet was passed down to the AV Platform team members as part of a
free user interaction and evaluation session. This session was followed by a Q&A that involved
discussions about the UI design and flow, application use, suggested features, and some general
feedback. The Q&A also involved a discussion about system integration, architecture design, and
platform compatibility, which also highlighted the versatility, efficacy, and enhanced robustness
of deploying IncidentUI droid in an Android environment and developing a Java-based system
sub-architecture. The demonstration also displayed the ease of use and portability of a tablet
application.

Feedback Analysis

The demonstration of Beta 2.0 for IncidentUIdroid broadly received positive feedback from the
AV Platform Team. The team members really appreciated the redesigned User Interface and the

52

enhanced user interactivity of IncidentUI droid. They were in favor of Android as an environment
for the application because of its enhanced robustness and greater compatibility with various
platforms. Another aspect of the new design they appreciated was the deployment of the
application on a tablet which is much more portable and easy to use than a fixed in-console
display, allowing for feedback from multiple users. The team members also appreciated the
enhanced integration stability of a Java-based system sub-architecture and the deployment of
RoadcastJava and Java implementations of Protobufs in an Android environment. As part of the
discussion about the design, development, integration, and evaluation of IncidentUI droid, the AV
Platform Team provided some useful insight on the aspects of IncidentUIdroid that could be
further improved and suggested some additional features for the final stable release of
IncidentUI droid. The team also discussed the possible direction for the future development of
IncidentUI droid.

In a nutshell, the AV Platform Team team really appreciated the transition of IncidentUI from a
fixed Raspberry Pi display to a portable Android tablet and commented that using the Android
Tablet-based IncidentUI droid would considerably improve their testing experience during the
disengagement and ride comfort data collection process. They also believe that the deployment
of IncidentUI droid in an Android environment and the development of a purely java-based system
sub-architecture would facilitate the maintenance and modification of the user interface,
application features, and system architecture of IncidentUIdroid.

3.6.2 IncidentUIdroid Stable Release Development

With the IncidentUI droid Beta 2.0 deployed, evaluated, and demonstrated, we concluded its
development and pivoted to the development of a full stable release for IncidentUI droid, which
focused on the development of some new features suggested during the Beta 2.0 application
demonstration. This step also involved some general debugging, UI cleanup, and code
refactoring. This section describes the design, development, and testing of the four major
IncidentUI droid stable release features suggested during the Beta 2.0 application demonstration.
The development of these new features was focused on the Android application end and was
done to improve user experience by implementing intuitive features that are designed to give the
users more control of the application and enhance the data collection process. This step
concluded with the deployment of a final Stable Release for IncidentUIdroid.

Feature 1: Display Active Session Data on User Login

One of the features implemented during the development of the IncidentUI droid stable release was
designed to handle a functional edge case where a disengagement or Roadrunner connection is
detected by IncidentUI droid before the user has entered the Pilot and Co-pilot Login Information.
The application screen flow for IncidentUIdroid has been designed to require the users to enter the

53

Pilot and Co-pilot Login Information for every test drive to ensure that the disengagement and
ride comfort data for every session can be related to a pilot and co-pilot. This requirement is
enforced by forbidding the users from accessing the Session screen and the Event and
Disengagement Surveys until the login information has been filled out on the Login screen and
the Login Survey has been submitted to initiate the test drive. During normal operation, as
depicted in Figure 22, the Login screen is displayed on application startup, where the user fills
out the Pilot and Co-pilot Login Information and starts the drive to launch the Dashboard screen.

Figure 22: Feature 1 - IncidentUIdroid Normal Operation

From the Dashboard screen, the Session screen is loaded and the login information is sent to
Roadrunner when a Roadrunner connection is established. If a Disengagement is detected during
this active session, Roadrunner sends a Disengagement Survey Request to IncidentUI droid, which
displays the Disengagement Survey on the IncidentUIdroid screen. Once the Disengagement
Survey is filled out and submitted, the Session screen is loaded again.

The aforementioned scenario takes place during the normal operation of IncidentUIdroid.
However, this feature is set up to handle the edge case where a Roadrunner connection is
established with IncidentUI droid before the user has entered the Pilot and Co-pilot Login
Information. For this edge case, as depicted in Figure 23, when a Roadrunner connection is
established with IncidentUI droid, the Login screen is displayed because the Login Information has
not been filled out and submitted to initiate the drive. In this scenario, once the user fills out and
submits the login information by clicking the “Initiate Drive ” button on the Login screen, the
Dashboard screen is skipped and the Session screen is displayed directly to account for the
ongoing session that was initiated when the Roadrunner connection was established on the Login
screen. If a Disengagement is detected during this active session, Roadrunner sends a

54

Disengagement Survey Request to IncidentUIdroid, which displays the Disengagement Survey on
the IncidentUI droid screen. Once the Disengagement Survey is filled out and submitted, the
Session screen is loaded again.

Figure 23: Feature 1 - Roadrunner Connection Edge Case

This feature is developed to handle another edge case where a Roadrunner connection is
established and a disengagement is generated before the user has entered the Pilot and Co-pilot
Login Information. For this edge case, as depicted in Figure 24, when a disengagement is
detected by Roadrunner, it sends a Disengagement Survey Request to IncidentUIdroid, which
continues to display the Login screen because the Login Information has not been filled out and
submitted to initiate the drive. Since the AV remains disengaged until the Disengagement Survey
is submitted to Roadrunner, the users are required to fill out the Disengagement Survey to
re-engage the AV, and as the Login screen is displayed during an active disengagement in this
scenario, the users are forced to fill out the Pilot and Co-pilot Login Information to gain access to
the Disengagement Survey. Once the user fills out and submits the login information by clicking
the “Initiate Drive ” button on the Login screen, the Dashboard screen is skipped and the
Disengagement Survey on the Session screen is displayed directly to account for the
disengagement that was detected previously on the Login screen. Once the Disengagement
Survey is filled out and submitted, the Session screen is loaded again.

55

Figure 24: Feature 1 - Disengagement Edge Case

The development of this feature revolved around configuring flags for Roadrunner Connection
Status and Disengagement Detection. If any of these flags are raised prior to user login as a result
of an established roadrunner connection or a triggered disengagement, then the “ Initiate Drive ”
button skips the Dashboard screen and directly loads the Session screen or the Disengagement
Survey depending upon the type of flag raised. This feature enhances the user interactivity of
IncidentUI droid by implementing an automated conditional screen flow design for some common
scenarios and giving a more intuitive structure to the user interface.

Feature 2: Save and Edit Event Surveys

In a scenario that involves the AV performing an undesirable maneuver that causes some ride
discomfort, the users of IncidentUI droid have the ability to trigger an Event by clicking the “New
Event” button on the Session tab, which displays the Event Survey on the screen. In the previous
iterations of IncidentUI droid, users have had the ability to either submit the Event Survey and send
it to Roadrunner or discard the Event Survey in case the corresponding event was generated
unintentionally. The development of this feature involved equipping the users with the ability to
“ Save” a partially filled out Event Survey so that it can be edited, discarded, or submitted later.
This feature, as shown in Figure 25, involved the development of a “ Save” button at the bottom
of the Event Survey. Clicking the “Save” button preserves the progress for an Event Survey and
creates a card associated with that Event Survey in the Session tab.

56

Figure 25: Event Survey Save Button

This feature also gives the users the ability to create and save multiple Event Surveys, each of
which is stored as an Event Survey Card in a scrollable list. The Event Survey Cards, as shown
in Figure 26, display the Event Sequence Numbers for the Event Surveys they are associated
with. These cards also include an “ Edit” button, which can be clicked to access the associated
Event Survey filled out with the previously saved progress.

Figure 26: Event Survey Cards

After editing the Event Survey, users have the ability to save it again, which preserves the
updated progress for the Event Survey in the same associated Event Survey Card. The users also
have the ability to discard or submit the Event Survey, both of which result in the associated
Event Survey Card being removed from the Session tab. This feature enhances the user

57

interactivity of IncidentUIdroid by developing an intuitive user interface that gives the users more
control over the ride comfort data collection process.

Feature 3: Event Comfort Feedback Console

The enhanced portability of the Android Tablet deploying IncidentUI droid and the cross-platform
compatibility of the Android environment that allows it to support multiple devices prompted the
development of this feature, which involved implementing an Event Comfort Feedback Console,
as depicted in Figure 27.

Figure 27: Event Comfort Feedback Console

The Event Comfort Feedback Console allows all the passengers in the Ego Vehicle to submit the
Longitudinal and Lateral ride comfort rating for an Event generated by the co-pilot. This
additional feedback improves the quality of the ride comfort data as it utilizes multifaceted
responses from people with varying ride experiences and discomfort perceptions occupying
different vehicle seating positions to generate a more comprehensive and well-rounded ride
comfort rating for the event. The variations in the ride comfort ratings for different seating
positions provide more positional context to the lateral and longitudinal ride discomfort
experienced during an event. The multiple varying ride comfort feedback ratings also help
eliminate outliers and erroneous responses. Similar to the Event Survey, the Longitudinal and
Lateral ride comforts for the event are rated on a scale of 0 to 5. Clicking the “ Send Feedback ”
button generates and sends an Event flag and an Event Survey message to Roadrunner with just
the Longitudinal and Lateral comfort ratings filled out. This feature enhances the data collection
capabilities of IncidentUIdroid by developing an intuitive UI that improves the quality of ride
comfort data and gives the users more control over the ride comfort data collection process.

58

Feature 4: Fill out Pending Event Surveys after End of Session

The development of Feature 2 generated an edge case scenario where a session ends before the
user has submitted or discarded all of the pending Event Surveys. During normal operation, a
session ends when Roadrunner disconnects from IncidentUI droid, which automatically dismisses
the Session screen and loads the Dashboard screen. However, in this particular edge case, the
demand for the ability to discard or submit an edited pending Event survey after the end of the
session, prompted the development of a feature that delays the loading of the Dashboard screen
until after all of the pending Event Surveys have been submitted or discarded.

Figure 28: Pending Event Survey after End of Session

This feature, as depicted in Figure 28, involved the design and development of a user interface
scheme and a conditional screen flow. When a session ends before the user has submitted or
discarded all of the pending Event Surveys, this feature modifies the User Interface of the
Session screen by displaying “SESS END” and disabling the UI elements that generate a new
event or ride comfort feedback. This feature, instead of dismissing the Session screen and

59

launching the Dashboard screen automatically, utilizes the UI elements to indicate the end of the
session. If a session ends according to this scenario, a flag is raised to indicate the presence of
some pending Event Surveys. Once all of the pending Event Surveys are submitted or discarded,
the Session screen is dismissed and the Dashboard screen is launched automatically. This
feature enhances the user interactivity of IncidentUI droid by implementing an automated
conditional screen flow design and utilizing an intuitive user interface scheme for a common
scenario.

3.6.3 IncidentUIdroid Hyperion Kit Autonomous Vehicle Test Drive

With the IncidentUI droid stable release developed, deployed, and evaluated, the final step in the
development of IncidentUIdroid was initiated. This step involved an AV test drive with the
IncidentUI droid stable release functioning as a component of the Hyperion Kit in-car architecture.
For this test, the Nvidia Shield Tablet running IncidentUI droid was integrated with the Pegasus,
which is a component of the Hyperion architecture deployed in Nvidia’s Ford Fusion Test
Autonomous Vehicle. The Pegasus was connected to the Nvidia Shield Tablet via USB
Tethering, and modifications were made to the hardware network configurations for the Pegasus
and the Nvidia Shield Tablet to integrate the tablet as a part of the local static in-car network and
enable communication between Roadrunner and IncidentUIdroid using the USB Tethering
hardware network solution designed previously.

With hardware and network integration achieved, the IncidentUI droid in-car testing was initiated.
The Test AV was manually driven to Nvidia’s private test track where some test laps were
conducted to calibrate the perception sensors and the AI computing platform. With the
calibration completed and the Pilot and Co-pilot Login information filled out on IncidentUIdroid,
Roadrunner was initiated, which immediately started exchanging heartbeat messages with
IncidentUI droid. The exchange of heartbeats indicated an active Roadrunner connection and
started the test session by launching the Session screen on IncidentUI droid. With the session
initiated, the pilot engaged the car in self-driving mode, where the actuators assumed control of
the test vehicle. In self-driving mode, the AV accelerated, braked, performed lane changes, and
turn left and right on the test track.

Next, the IncidentUI droid event and disengagement handling systems were tested. When the pilot
disengaged the AV, a Disengagement Survey was displayed on the IncidentUI droid screen. The
AV was not allowed to re-engage until the Disengagement Survey was filled out and submitted.
Once the Disengagement Survey was received by Roadrunner, its receipt was acknowledged, the
actuators were released, and the AV was allowed to re-engage. The disengagement testing was
done multiple times using varying disengagement techniques like manual steering wheel control
and manual braking with different longitudinal and lateral sequence numbers to ensure that
IncidentUI droid functions predictably in every possible scenario. In addition to vigorous

60

disengagement testing, event testing was conducted by generating a new event using the “New
Event” button on the Session Tab of IncidentUI droid. The successful generation of a new event
was acknowledged by the display of an Event Survey on the IncidentUIdroid screen and receipt of
an Event Flag by Roadrunner. Once the Event Survey was filled out and submitted, its receipt
was also acknowledged by Roadrunner.

Throughout the testing, Roadrunner was disconnected and restarted multiple times to test the
integration strength of new architecture design for IncidentUI droid and the robustness of
RoadcastJava. The final phase of the evaluation involved testing the UI flow, application
functionality, and additional features of IncidentUIdroid, including the four new features
developed for the stable release. The stable release for IncidentUI droid integrated effortlessly with
the Test AV Hyperion architecture. IncidentUIdroid also functioned faultlessly during the AV test
drive and replicated the functionality of IncidentUI accurately whilst greatly improving the user
experience, robustness, portability, and compatibility of the original application. This test
concluded the project and the development of the IncidentUIdroid application.

61

4. Results

After eight weeks of design, development, and evaluation of multiple iterations of IncidentUI droid,
we implemented the final stable release for IncidentUI droid. The final stable release is deployed on
an Nvidia Shield Android Tablet and utilizes a Java-based system sub-architecture with
RoadcastJava and Java implementations of Protobufs. IncidentUI droid greatly improves upon many
aspects of IncidentUI with one of the major facets being the enhanced user interactivity of
IncidentUI droid that comes with the design of an intuitive user interface. Owing to the multitude of
support libraries that come bundled with Android and a comprehensive and intuitive UI
development environment included with Android Studio, IncidentUI droid implements a fluid,
intuitive, versatile, and readily-modifiable user interface that enhances the AV ride comfort data
collection experience.

Another facet of improvement for the IncidentUIdroid is its enhanced portability owing to the
deployment of IncidentUI droid on an Android tablet, which is in contrast to the fixed in-console
Raspberry Pi used for deploying IncidentUI. The Android Tablet running IncidentUIdroid is
integrated with the in-car Hyperion system architecture and network infrastructure by utilizing
one of the previously mentioned hardware network solutions, i.e. USB Tethering, Ethernet LAN,
and WiFi. The Android Tablet, owing to its portability, can be passed on to other passengers in
the AV which allows multiple passengers to interact with IncidentUI droid and contribute to the
ride comfort data collection process. Since the tablet is not fixed to the console and the user
interface for IncidentUI droid has been designed to support multiple screen orientations, the tablet
can be held and used in any desired orientation, which simplifies the ride comfort data collection
experience. Contrary to the IncidentUI deployed on the Raspberry Pi, IncidentUI droid provides
support for ride comfort feedback from multiple users. The enhanced cross-platform
compatibility of the Android environment and the hardware and software capabilities of an
Android tablet provide support for pairing other Android devices to IncidentUIdroid to give
additional context and feedback and consequently, improve the quality of the ride comfort and
disengagement data compiled during a test drive. Since the tablet is not fixed to the console and
can be conveniently decoupled from the in-car Hyperion system architecture, the users have the
option to readily swap the tablet in and out of the AV. For instance, the tablet running
IncidentUI droid can be decoupled from the AV after a test drive and taken away for further
analysis of the ride comfort data compiled during the test drive.

Finally, one of the most powerful aspects of IncidentUIdroid is the ability to modify and augment
the Android front end implementation and the Java-based system sub-architecture for
IncidentUI droid. The deployment of IncidentUIdroid in an Android environment using Android
Studio and the redevelopment of the system sub-architecture in pure Java provide a plethora of

62

system and support libraries that support a flexible and robust feature development process.
IncidentUI droid also supports prompt modifications to the system sub-architecture, user interface,
and application functionality.

In addition to the aforementioned aspects of IncidentUI droid and the extent of their improvement
over IncidentUI, this section details the user interface design, system architecture
implementation, and the screen and data flow schemes for the final stable release of
IncidentUI droid.

4.1 IncidentUIdroid Front End User Interface Design

The user interface for IncidentUIdroid went through multiple iterations of design and development
with each iteration built upon the previous one. The feedback received from IncidentUI droid
demonstrations and testing was utilized to develop new UI elements and enhance the existing
ones. The final UI consists of three main screens: Initiate Drive, Dashboard, and Session, with
multiple tabs within each screen. The UI is designed and developed using Android XML
Layouts, and the functionality of the UI elements is coded in Java. This section elucidates the
design and functionality of the final iteration of the user interface and the screen flow scheme
implemented for the final IncidentUIdroid stable release. Every UI screen and fragment for the
IncidentUI droid stable release has been designed and configured to support multiple screen
orientations to enhance the user interactivity of IncidentUIdroid by enabling effortless application
use for any tablet orientation.

4.1.1 Initiate Drive Screen

The first screen that is displayed when the application is launched after getting into the ego
vehicle is the Initiate Drive screen. A screenshot of the screen is shown in Figure 29. The screen
has text fields to enter the Pilot’s and Co-pilot’s Nvidia IDs. It also has a button “Start Drive ” to
initiate the drive and launch the dashboard screen. The pilot and copilot information are collected
for each drive and used to relate AV disengagements, events, ride comfort, session information,
and other test data to the test users. The final iteration of the Initiate Drive screen includes the
logo for the IncidentUI droid application. The logo along with the other Initiate Drive screen UI
elements have been reoriented to support seamless UI function for multiple screen orientations.

63

Figure 29: Initiate Drive Screen

4.1.2 Dashboard Screen
The dashboard screen is displayed when a drive is initiated and in between consecutive active
sessions. It has the following three tabs under it.

Drive History Tab

Figure 30: Drive History Tab

64

The Drive History Tab, as shown in Figure 30, stores information about every past session after
it has ended. This tab generates a Session Card for every past session and contains information
about that session. These cards appear in a scrollable vertical list in this tab. This tab is also
available in the Session Screen, allowing the user to view the Drive History during an active
session. This tab contains the cards for previous sessions. Each Session Card has the sequence
number for the session associated with it. It also displays the Nvidia ID of the Pilot for the
current Drive and the number of Disengagements for the associated session.

There is a “ View” button on each Session Card that, on being clicked, brings up a dialog window
that displays more information about that session, as shown in Figure 31. This Session
Information dialog window displays the Pilot’s and Co-pilot’s Nvidia IDs for the current drive. It
also displays the number of disengagement and events generated during that session. The dialog
window also shows the Session Duration, i.e. the length of time that session lasted. At the bottom
of the dialog window, there is a “Back ” button that dismisses this Session Information dialog and
goes back to the Drive History tab.

Figure 31: Session Information Window

Dashboard Tab
The dashboard tab, as shown in Figure 32, is displayed by default whenever the dashboard
screen is launched. This tab displays the Nvidia IDs of the Pilot and the Co-pilot on the current

65

drive. It has an “ End Drive ” Button that terminates the current drive and takes the user back to
the Initiate Drive Screen. At the top right corner of the screen, there is an indicator that shows the
current Roadrunner connection status, i.e. if the client running on IncidentUI droid detects a
heartbeat from Roadrunner or not.

Figure 32: Dashboard Tab

At the bottom of the screen, there is a navigation menu that allows users to switch between the
three tabs in the dashboard screen, i.e. Drive History Tab, Dashboard Tab, and Power Tab.

Power Tab
The power tab is currently empty but has been included as a tab in the UI in case the application
is further developed to include the power relay control functionality, thereby completely
eliminating the need for the Raspberry Pi in the Hyperion system architecture.

4.1.3 Session Screen
During an active session, the session screen is displayed. The ability to initiate or end a session is
not under the control of the user; instead, it is controlled by the status of the Roadrunner
connection, i.e. the moment Roadrunner connects, a session is initiated, and a session ends when
Roadrunner is disconnected. The session screen has the following two tabs:

66

Drive History Tab

The Drive History tab is also available in the Session screen to view information about past
sessions during an active session. The User Interface elements of this tab and their functions are
the same as explained previously for the Dashboard screen.

Session Tab

The session tab, as shown in Figure 33, is the main tab that is displayed during an active session.
It displays the current Pilot’s and Co-pilot’s Nvidia IDs, along with the number of
disengagements and events encountered in this session. There is a “New Event ” button that
records a new event by bringing up the Event Survey. The number of events and disengagements
are updated in the session tab in real-time. There is also a chronometer that tracks the amount of
time that has elapsed since the current session started. At the top right corner of the screen, there
is an indicator that shows the current Roadrunner connection status, i.e. if the client running on
IncidentUI droid detects a heartbeat from Roadrunner or not.

Figure 33: Session Tab

The Session Tab also includes an Event Comfort Feedback Console that allows all the
passengers in the Ego Vehicle to submit the Longitudinal and Lateral ride comfort rating for an

67

Event generated by the co-pilot. Similar to the Event Survey, the Longitudinal and Lateral ride
comforts for the event are rated on a scale of 0 to 5. Clicking the “ Send Feedback ” button
generates and sends an Event flag and an Event Survey message to Roadrunner with just the
Longitudinal and Lateral comfort ratings filled out. This feature enhances the data collection
capabilities of IncidentUIdroid by developing an intuitive UI that improves the quality of ride
comfort data and gives the users more control over the ride comfort data collection process.

Below the Event Comfort Feedback Console, there is space for a scrollable list of Event Survey
Cards, where each card is associated with a pending Event Survey. When an Event Survey is
“ Saved”, its progress is saved and a card associated with that Event Survey is created and added
to the Event Survey Cards section in the Session tab, as portrayed in Figure 34.

Figure 34: Event Survey Cards Section

Users are allowed to create and save multiple Event Surveys, each of which is stored as an Event
Survey Card in a scrollable list. The Event Survey Cards, as shown in Figure 34, display the
Event Sequence Numbers for the Event Surveys they are associated with. These cards also
include an “ Edit” button, which can be clicked to access the associated Event Survey filled out
with the previously saved progress. Editing an Event Survey and saving it again preserves the
updated progress for the Event Survey in the same associated Event Survey Card. The users also

68

have the ability to discard or submit the Event Survey, both of which result in the associated
Event Survey Card being removed from the Session tab.

Figure 35: Session Tab after End of Session with Pending Event Survey

When a session ends before the user has submitted or discarded all of the pending Event
Surveys, the User Interface of the Session screen is modified as shown in Figure 35. The end of
the session is indicated by displaying “SESS END” in the Time Elapsed window and disabling
the UI elements that generate a new event or ride comfort feedback data, i.e. the New Event
Button and the Event Comfort Feedback Console respectively. This application feature, instead
of dismissing the Session screen and launching the Dashboard screen automatically, utilizes the
UI elements to indicate the end of the session. Once all of the pending Event Surveys are
submitted or discarded, the Session screen is dismissed and the Dashboard screen is launched
automatically.

The disengagement survey is brought up automatically on the screen when Roadrunner detects
an ego vehicle disengagement and sends a disengagement survey request to IncidentUI droid. At
the bottom of the screen, there is a navigation menu that allows users to switch between the two
tabs in the session screen, i.e. Drive History Tab and Session Tab.

69

4.1.4 Surveys
The main function of IncidentUI is to track events and disengagements and their causes using
surveys. They make use of pre-existing parameters to measure the comfort of the ego vehicle’s
maneuvers across 2 axes - lateral and longitudinal and use these parameters or other additional
information to report the reasoning for the lateral/longitudinal comfort rating assigned by the
co-pilot for the event/disengagement. These surveys are displayed and can be filled out only
while a session is active, i.e. Roadrunner connection is present. The survey responses are sent to
the Roadrunner using Roadcast and then stored in the Pegasus. There are two kinds of surveys
used for recording data:

Event Survey

The Event Survey is used to track an event. An event is recognized as a scenario where the ego
vehicle’s maneuver causes lateral and/or longitudinal discomfort without requiring a
disengagement from the pilot. Whenever the ego vehicle does a maneuver that the co-pilot
believes violates the comfort parameters, they can generate an event. To do so, they can click on
the “New Event” on the Session tab, which brings up the “Event Survey” as shown in Figure 36.
Ride comfort is measured across 2 axes using sliders on a scale of 0 to 5. Checkboxes let the user
choose potential causes for Lateral and Longitudinal Discomfort, with the option to select
multiple causes simultaneously. The possible causes of Longitudinal Discomfort are as follows:

● Collision Threat
● Jerky Acceleration

● Too Fast
● Jerky Break

● Too Slow
● False Breaking

The causes of Lateral Discomfort are as follows:

● Collision Threat
● Too Aggressive

● Swerve
● Too Conservative

● Lateral Jerk

The Event Survey also allows the Co-pilot to define the position of the Ego-vehicle at the time of
the discomfort event to give locational context to the cause of the event. This locational context
improves the quality of the event data, which can then be used to enhance the Drive Software
further. The Ego-Vehicle’s position is selected from radio buttons for the following options:

● Lane Keep
● Split

● Merge
● Ramp

● Lane Change

70

The Event Survey also allows the user to provide additional information related to the event that
is not covered by the predefined options. The user (usually the co-pilot) can fill out the
“ Additional Information ” in a dedicated text box.

Figure 36: Event Survey

Once the Event Survey has been filled out, users have the ability to submit it and send it to
Roadrunner. Users can discard the Event Survey by clicking on the “Cancel” button in case the
corresponding event was generated unintentionally. The Event Survey also has a “Save” button,
which on getting clicked saves a partially filled out Event Survey so that it can be edited,
discarded, or submitted later. Clicking the “ Save” button preserves the progress for an Event
Survey and creates a card associated with that Event Survey in the Session tab.

71

Disengagement Survey

The Disengagement survey, as shown in Figure 37, is used to record disengagement data, i.e.
lateral and longitudinal ride comfort, cause of the disengagement, the explanations for the cause
of the disengagement, and any additional information describing the disengagement. In case of
an ego vehicle disengagement, Roadrunner sends a disengagement survey request to
IncidentUI droid using Roadcast, and consequently, the disengagement survey is displayed on the
tablet screen.

The ride comfort is measured across 2 axes: longitudinal and lateral, and can be selected using
sliders from a range of 0 to 5, where 0 is least comfortable and 5 is most comfortable.

Figure 37: Disengagement Survey

72

The Cause of Disengagement can be selected from four possible options using Radio Buttons.
The possible causes of disengagement are as follows :

● Safety Issue
● Intended and safe

● End of Drive
● Other

If the cause of the disengagement is some safety issue caused by the nature of the maneuver
performed by the ego vehicle that forced the pilot to take control and trigger a disengagement,
then the “Safety Issue ” option is selected as the Cause of Disengagement on the Disengagement
Survey. Selecting this option displays additional fields to provide explanations for the Safety
Issue. These fields include potential causes for Lateral and Longitudinal Discomfort and the
location of the Ego Vehicle at the time of the disengagement. The layout of the fields is identical
to that of the Event Survey, as described in the previous section.

If the disengagement is triggered by the pilot intentionally because of varying reasons and it is
not the result of a safety issue, i.e., the disengagement is the result of some reason external to the
ego vehicle misbehaving, then the “ Intended and Safe ” option is selected as the Cause of
Disengagement on the Disengagement Survey. Choosing the “ Intended and Safe ” option prompts
the user to provide more context to the disengagement cause by selecting one of the following
explanations using radio buttons:

● Exiting ODD Road Type
● Planned break/stop
● Emergency Vehicle
● High Accident Zone
● Proactive or Discretionary

● Private Test Area
● Accidental Disengagement
● Choosing a better route/lane
● Disengagement Testing
● Other

From these aforementioned options, selecting “Exiting ODD Road Type” prompts the user to
provide more environmental context to the explanation for the disengagement like a High Traffic
Area, Weather Conditions or, a Construction Zone. The rest of the options are self-explanatory
and do not require additional context. If none of the predefined options give an accurate
explanation for the “Intended and Safe ” cause of disengagement, then the “ Other” option can be
selected, which displays a text box that can be used to provide an explanation for the
disengagement that is not covered by the predefined options.

At the end of an AV drive, the pilot takes control of the ego vehicle to mark the end of the test
session and the data collection process, which triggers a disengagement. This scenario can be
recorded by selecting the “ End of Drive ” option as the Cause of Disengagement on the
Disengagement Survey. If none of the aforementioned options accurately define the cause of

73

disengagement, then the “Other” option can be selected on the Disengagement Survey, which
displays a text box that can be used to provide a cause for the disengagement that is not covered
by the predefined options. The Disengagement Survey also allows the user to provide additional
information related to the disengagement that is not covered by the predefined options. The user
(usually the co-pilot) can fill out the “Additional Information” in a dedicated text box.

During an AV test drive at Nvidia’s private test track, multiple disengagements and events are
triggered to test and tweak the Hyperion Software and Hardware. The Disengagement Survey
has a “Test Drive ” button on the top-right corner that automatically submits a disengagement
survey with the following information filled out:

● Longitudinal Comfort: 0
● Lateral Comfort: 0
● Cause of Disengagement: Intended and Safe
● Explanation: Private Test Area
● Additional Information: None

This feature is set up to ensure that the test users are not bogged down by having to fill out the
disengagement survey with duplicate information every time an intentional disengagement is
triggered as part of the test session on the private test track.

4.2 IncidentUIdroid Screen Flow Scheme

The user interface for IncidentUIdroid consists of three main screens: Initiate Drive, Dashboard,
and Session, with multiple tabs within each screen. Users can interact with the user interface by
switching between the screens or modifying the UI elements. The screen flow scheme for
IncidentUI droid is represented in Figure 38. The first screen that is displayed when the application
is launched after getting into the ego vehicle is the Initiate Drive screen. The Initiate Drive
screen has text boxes to fill out the Pilot’s and Co-pilot's Nvidia IDs, and an “Initiate Drive ”
button, which on getting clicked initiates a new drive and launches the Dashboard Screen.

The Dashboard Screen has three Tabs: Dashboard Tab, Power Tab, and Drive History Tab, with
the Dashboard Tab displayed by default. Each of these tabs can be displayed by selecting them
from the Tab Navigator at the bottom of the Dashboard screen. The Drive History Tab consists
of a scrollable list of Session Cards that contain information about the associated sessions. The
session cards also have a “ View” button, which on being clicked expands the corresponding
session card and displays a Session Info dialog window with more information for the associated
session. The expanded Session Card dialog window has a “Back ” button, which on getting
clicked dismisses the dialog window and displays the Drive History Tab.

74

When a Roadrunner connection is detected by IncidentUI droid, the Session Screen is loaded
automatically. The Session screen has two tabs: the Drive History Tab and the Session Tab, with
the Session Tab displayed by default. Either of these tabs can be displayed by selecting them
from the Tab Navigator at the bottom of the Session screen.

Figure 38: IncidentUIdroid Screen Flow Scheme

The Drive History tab for the Session screen follows the same screen flow scheme as the one for
the Dashboard screen. When an AV disengagement is detected by IncidentUI droid, the
Disengagement Survey is displayed on the screen as a pop-up dialog window. Once the

75

Disengagement Survey has been filled out, it can be submitted or discarded by clicking the
“ Submit” and “ Cancel” buttons respectively, both of which dismiss the survey and display the
Session screen. The users can click the “ New Event ” button on the Session tab to trigger a new
Event. Triggering a new Event displays the Event Survey on the screen. Similar to the
Disengagement Survey, the Event Survey can be submitted or discarded by clicking the “Submit ”
and “Cancel” buttons respectively. The Event Survey can also be saved for editing later by
clicking the “Save” button. Saving, discarding or, submitting the Event Survey dismisses the
Event Survey dialog window and displays the Session screen.

When the active Roadrunner connection is terminated, the Session screen is dismissed and the
Dashboard screen is launched again. If another Roadrunner connection is detected, a new session
is initiated and the Session screen is launched. The Dashboard screen has an “ End Drive ” button,
which, on getting clicked, ends the current test drive, and launches the Initiate Drive screen
again. The aforementioned intuitive screen flow scheme is designed to enhance the user
experience for IncidentUIdroid’s user interface and to implement a screen flow that complements
and enhances IncidentUIdroid’s features.

4.3 IncidentUIdroid System Architecture Design
The system architecture for IncidentUIdroid went through multiple system integration design plans
and numerous iterations of development with each iteration built upon the previous one. System
integration testing using the Roadrunner Emulator was used to evaluate the efficacy of the
system architecture design. The evaluation results were used to modify and enhance the system
architecture design and implementation. The final system architecture design, as represented in
Figure 39, is developed using Architecture Design Plan B, which involves the development of
RoadcastJava: a new communications protocol coded purely in Java. Roadcast Java replicates the
functionality of the C++-coded Roadcast and utilizes Java implementations of Protobufs to
serialize and deserialize data on the IncidentUI droid end. Similar to Roadcast, Roadcast Java
implements a Client and a Server to regulate the exchange of data with Roadrunner. The final
system architecture involves a Java-based IncidentUI droid system sub-architecture integrated with
the Roadrunner system architecture.

The IncidentUI droid System Architecture consists of the RoadcastJava Client and Server that
communicate with the Roadrunner Server and Client respectively. RoadcastJava utilizes Java
implementations of Protobufs on the IncidentUI droid side, while Roadcast utilizes C++
implementations of the same Protobufs definitions on the Roadrunner end to maintain
compatibility between the data structures and serialization schemes on either side of the system
architecture. The RoadcastJava Client and Server run on two separate background worker threads
and constantly listen for messages in a loop. The interactive user interface for IncidentUIdroid runs
on the main User Interface thread, which is independent of and runs parallel to the Client and

76

Server background threads. The separate UI thread enables the user interface to remain
interactive throughout the operation of the Roadcast Java Client and Server.

Figure 39: IncidentUIdroid System Architecture Design

The RoadcastJava Client is responsible for receiving and processing survey requests and heartbeat
messages sent by Roadrunner. The Client runs on a background worker thread as an
“ IntentService’’ and listens for incoming data from Roadrunner in a loop. The RoadcastJava Client
is configured to listen for messages from Roadrunner on a specific port and from a specific
Server IP address that the Roadcast Server running on Roadrunner is bound to. The RoadcastJava
Client, on receiving a message from the Roadcast Server running on Roadrunner, deserializes the
message data directly into a Java object using the Java implementations of Protobufs. The Client
then sends this object or a corresponding signal to the UI thread using a “ Handler”. This
“ Handler” is utilized by the Android front end to access the data sent by Roadrunner and execute
UI changes accordingly.

RoadcastJava utilizes a server to generate and send survey data and heartbeat messages to
Roadrunner. The Roadcast Java Server runs on another background worker thread as an
“ IntentService’’ and sends generated messages to Roadrunner in a loop. The Server is bound to a
specific IP address and configured to accept client connections on a specific port. The Server
also utilizes this port to send serialized messages to the Roadcast Client running on Roadrunner.
When a survey is filled out and submitted on the main UI thread, the survey data is packaged
into a Java object. The Server then sends this object or a corresponding signal to the background

77

worker thread using a “ Handler”. On receiving the Java survey object and/or the signal from the
“ Handler”, the Roadcast Java Server utilizes the Java class serialization methods to serialize the
Java object and generate a message, which is then transmitted to the Roadcast Client running on
Roadrunner.

On application startup, the Roadcast Java client attempts to connect to the Roadcast server in a loop
using a specific port and Server IP address. On a successful connection, the Roadcast Java client
receives and processes the heartbeat messages sent by the Roadcast server. Similarly, the
RoadcastJava server gets initialized and bound to a specific IP address and starts listening for
client connections on a specific port. On a successful Roadcast client connection, the RoadcastJava
server generates and sends heartbeat messages to the connected Roadcast client. After a
successful and robust two-way connection is established between Roadrunner and IncidentUI droid,
varying survey request messages and corresponding survey response messages are sent back and
forth during an active test session. At the start of every active session, a Login Survey Request is
sent by Roadrunner and the corresponding Login Survey Response containing information about
the current Pilot and Copilot is sent back by IncidentUIdroid. This exchange is followed by a series
of Event and Disengagement survey requests and responses sent back and forth between
Roadrunner and IncidentUIdroid.

Disengagement Survey Flow

During an active Session, if Roadrunner detects an AV disengagement, the Roadrunner Server
creates and sends a Disengagement Survey Request message to IncidentUI droid. When the
RoadcastJava Client receives the message, it reads the included Disengagement Lateral and
Longitudinal Sequence Numbers and sends a signal to the UI thread using the “ Handler” to
display the Disengagement Survey.

Figure 40: Disengagement Survey Flow

After the Disengagement Survey is filled out, a signal is sent back to the RoadcastJava Server
using the “Handler”. The RoadcastJava Server packages the Disengagement Survey data into a

78

Disengagement Survey Response message and sends it to the Roadrunner Client, which, on
receiving the message, deserializes it into a C++ structure. The Lateral and Longitudinal
Sequence Numbers packaged with the Disengagement Survey Response message match the ones
received with the Disengagement Survey Request message to ensure that the disengagement data
is sequentially organized and can be related to the corresponding Survey Request message. After
the message is received, a full cycle of operation is complete and normal operation resumes. The
data and logic workflow for the Disengagement Survey is represented in Figure 40.

Event Survey Flow

During an active session, if the user triggers an event by clicking on the “New Event” button, the
Event Survey is displayed on the screen, and a signal is sent to the Roadcast Java Server via the
“ Handler”. The Roadcast Java Server, on receiving this signal, creates an Event Flag with an Event
Sequence Number attached to it and sends the Event Flag to the Roadrunner Client. After the
Event Survey is filled out, another signal is to the RoadcastJava Server using the “ Handler”. The
RoadcastJava Server packages the Event Survey data into an Event Survey Response message and
sends it to the Roadrunner Client, which, on receiving the message, deserializes it into a C++
structure. The Event Sequence Number packaged with the Event Survey Response message
matches the one sent with the Event Flag to ensure that the event data is sequentially organized
and can be related to the corresponding Event Flag that records the time of the Event. After the
message is received, a full cycle of operation is complete and normal operation resumes. The
data and logic workflow for the Event Survey is represented in Figure 41.

Figure 41: Event Survey Flow

Throughout the span of an active session, heartbeats are exchanged between Roadrunner and
IncidentUI droid to indicate an active roadrunner connection status. When the Roadrunner
connection terminates, the test session is concluded.

79

5. Conclusion

For the final deliverable, we submitted a fully functional IncidentUI droid prototype set up on an
Nvidia Shield Tablet, which, in addition to replicating and enhancing the functionality of the
existing IncidentUI, demonstrated an intuitive user interface and further practical features. Over
the span of the development process, we transplanted the IncidentUI from an in-console
Raspberry Pi Auxiliary Display to an Android Tablet Platform by developing a new Android
front end, redesigning the system architecture and integration scheme, and testing the application
functionality iteratively and comprehensively.

The main sticking point we tackled and resolved during the span of this project was the lack of
portability, user interactivity, and cross-platform compatibility of the existing IncidentUI
application. The development of IncidentUIdroid in an Android environment solves every aspect
of the aforementioned sticking point. Android application development through Android Studio
provides the tools and features needed to develop an intuitive, lightweight, and practical User
Interface coded in XML. The use of an Android tablet to deploy IncidentUI droid enhances the
portability of the application and provides support for ride comfort feedback from multiple users.
The enhanced cross-platform compatibility of the Android environment and the hardware and
software capabilities of an Android tablet provide support for pairing other Android devices to
IncidentUI droid to give additional context and feedback and consequently, improve the quality of
the ride comfort and disengagement data compiled during a test drive. The deployment of
IncidentUI droid in an Android environment using Android Studio and the redevelopment of the
system sub-architecture in pure Java provide a plethora of system and support libraries that
support a flexible and robust feature development process. IncidentUIdroid also supports prompt
modifications to the system sub-architecture, user interface, and application functionality.

The user interface for IncidentUIdroid went through multiple iterations of design and development
with each iteration built upon the previous one. The feedback received from IncidentUI droid
demonstrations and testing was utilized to develop new UI elements and enhance the existing
ones. IncidentUI droid’s UI is designed to enhance the ride comfort data collection experience by
implementing an intuitive user interface that complements and enhances IncidentUI droid’s
features. IncidentUIdroid runs on a peripheral Android tablet that is integrated with the in-car
Hyperion architecture using a hardware network solution like USB Tethering, Ethernet LAN, or
WiFi. Since the Android tablet running IncidentUI droid is not fixed to the central console, it can be
used to any screen orientation and passed around to other passengers in the ego vehicle to collect
ride comfort feedback. This additional feedback improves the quality of the ride comfort data as
it utilizes multifaceted responses from people with varying ride experiences and discomfort

80

perceptions occupying different vehicle seating positions to generate a more comprehensive and
well-rounded ride comfort rating.

The enhanced cross-platform compatibility of the Android environment and the hardware and
software capabilities of an Android tablet provide support for pairing other Android devices to
IncidentUI droid to give additional context and feedback and consequently, improve the quality of
the ride comfort and disengagement data compiled during a test drive. Since the tablet is not
fixed to the console and can be conveniently decoupled from the in-car Hyperion system
architecture, the users have the option to readily swap the tablet in and out of the AV.

In a nutshell, the transition of IncidentUI from a fixed Raspberry Pi display to a portable Android
tablet enhances the user experience for the disengagement and ride comfort data collection
process. IncidentUI droid enhances the portability, intuitive user interactivity, and cross-platform
compatibility of the existing IncidentUI application. The deployment of IncidentUI droid in an
Android environment and the development of a purely java-based system sub-architecture
facilitates the maintenance and modification of the user interface, application features, and
system architecture of IncidentUIdroid.

81

 6. Future Work Recommendations

With the deployment of the stable release for IncidentUI droid, we laid the groundwork for
developing an Android-based AV disengagement and ride comfort evaluation application, but
owing to the 8 week-long duration of the project, we couldn’t implement every possible feature
and so, there is still a lot of room for improvement. The Android-based IncidentUIdroid provides a
versatile environment for future improvement and extension. In this section, we mention some
ideas for future development and new features that would enhance IncidentUI droid.

Multiple Devices Connection
The portability of the tablet deploying IncidentUI droid allows it to be passed around to other
passengers in the ego vehicle to collect ride comfort feedback. This additional feedback
improves the quality of the ride comfort data. Another way to improve the quality of the ride
comfort data and gather ride comfort feedback from multiple passengers is to enable multiple
devices to connect to the IncidentUI droid running on the Co-pilot’s tablet. The enhanced
cross-platform compatibility of the Android environment and the hardware and software
capabilities of an Android tablet provide support for pairing other Android devices to
IncidentUI droid. The Event Comfort Feedback Console is designed to work as the front end for
this feature.

The development of this feature, which is supported by the Event Comfort Feedback Console
and Android’s integration versatility, would involve setting up the co-pilot’s IncidentUIdroid as the
master and other passengers’ devices as the slaves. When the master IncidentUI droid generates an
event, all the slave IncidentUI droids are notified to utilize the Event Comfort Feedback Console to
submit the longitudinal and lateral comfort ratings for the event. These event comfort feedback
ratings can be sent directly to Roadrunner with the same Event Sequence number as the Event,
which would require unidirectional master-to-slave sync. The ratings can also be sent to the
master IncidentUI droid, where they are compiled into one Event Survey Response message and
sent to Roadrunner; this design would require a bidirectional master and slave sync. The
development of this feature improves the quality of the ride comfort data as it utilizes
multifaceted responses from people with varying ride experiences and discomfort perceptions
occupying different vehicle seating positions to generate a more comprehensive and
well-rounded ride comfort rating for the event.

82

App Store or Cloud Support

Currently, the Android Application Package (apk) for IncidentUI droid is modified and installed
directly from Android Studio. Publishing IncidentUI droid on an app store or cloud would allow
multiple devices to run IncidentUI droid and make the application updates more readily available to
all devices running IncidentUI droid. Instead of requiring access to the development machines to
update the version of IncidentUI droid, all of the devices running IncidentUIdroid could be
simultaneously updated by installing the latest version of IncidentUI droid from the cloud. The
development of this feature would improve the accessibility of IncidentUI droid and also facilitate
its development. The increased availability of IncidentUIdroid would also enhance the ride comfort
data collection experience and improve the quality of the ride comfort data.

Dedicated Web Application and Remote Database

The AV team uses an online spreadsheet to track which employees are using which AV during a
test drive. This spreadsheet is filled out manually for every test drive. Developing a web
application that replicates the functionality of the spreadsheet and offers some additional
IncidentUI droid sync features would enhance the user experience for IncidentUI droid. A suggested
feature involves the Pilot and Co-pilot Login information on the IncidentUI droid being
automatically filled out once it is pulled from the web application, which stores the Pilot and
Co-pilot information prior to the test drive. Attaching a Remote Real-Time Database to the web
application would also enable unified data management and analysis. This feature involves
configuring IncidentUI droid to push all the ride data to the remote database after every test drive.
This ride data is accessible from the attached web application. Storing the data on a remote
database in addition to the Pegasus SSD creates a copy of the data for comparison in case the
SSD encounters data loss. The web application can also be utilized to run scripts to analyze the
data stored in the remote database. The development of this feature would enhance the user
experience for IncidentUIdroid and also improve the accessibility and quality of the ride comfort
data.

83

7. Discussions

After eight weeks of design, development, and evaluation, we delivered the final stable release
for IncidentUI droid that yielded the desired functionality while testing on an AV test drive and
received positive feedback from Nvidia’s AV Developers. IncidentUI droid enhances the
portability, intuitive user interactivity, cross-platform compatibility, and feature development
flexibility of the existing IncidentUI application. Our contribution towards laying the
groundwork for developing an intuitive and robust Android-based AV disengagement and ride
comfort evaluation application paved the way for Nvidia’s AV Developers to further modify,
scale, and enhance the IncidentUI application.

Over the duration of this project, we successfully tackled our goal to develop an Android
application that runs on a peripheral tablet and communicates with the Pegasus to detect AV
disengagements and report ride comfort. We designed and developed an Android XML-based
intuitive user interface for IncidentUIdroid. We also redesigned the system architecture by
implementing the system communications protocol: Roadcast, and the data serialization scheme,
i.e. Protobufs, in Java. In addition to contributing to Nvidia’s AV infrastructure, we also
improved our technical skills and gained invaluable industry experience working for Nvidia.
Working on a team software development project utilizing the agile methodology taught us the
importance of collaborative development and introduced us to the industry guidelines and
standards for project planning and code design. From analyzing the existing IncidentUI and
system architecture design to designing, developing, and implementing the Android-based
IncidentUI droid and the Java-based system sub-architecture, to ultimately evaluating and
modifying various aspects of IncidentUI droid to develop a final stable release, every step of our
Major Qualifying Project equipped us with a more comprehensive understanding of the software
development process.

Facing obstacles during the development process, like failure to integrate IncidentUI droid with the
system architecture using an NDK interface, was also valuable and taught us how to adapt and
improvise to devise a new solution and steer development in a viable direction. The collaborative
development environment we established during the project was based around not only dividing
up tasks and features but also around sharing resources and technical knowledge to improve
work efficiency. This project experience was very informative and allowed us to grow personally
and professionally. Working with Nvidia prepared us for the technology industry and served as a
perfect conclusion to our undergraduate studies in Computer Science. We would again like to
extend our gratitude to everyone who assisted us in the development of our project.

84

8. References

[1] NVIDIA DRIVE Hyperion Developer Kit. (2020, May 11). Retrieved from
https://developer.nvidia.com/drive/drive-hyperion

[2] Jadhav, A. (2018, May). Autonomous Vehicle Market by Level of Automation (Level 3, Level
4, and Level 5) and Component (Hardware, Software, and Service) and Application (Civil, Robo
Taxi, Self-driving Bus, Ride Share, Self-driving Truck, and Ride Hail) - Global Opportunity
Analysis and Industry Forecast, 2019-2026 Update Available On-Demand. Retrieved from
https://www.alliedmarketresearch.com/autonomous-vehicle-market

[3] NVIDIA DRIVE - Software. (2020, May 11). Retrieved from
https://developer.nvidia.com/drive/drive-software

[4] NVIDIA DRIVE Planning. (2020, May 11). Retrieved from
https://developer.nvidia.com/drive/drive-planning

[5] NVIDIA DRIVE - Autonomous Vehicle Development Platforms. (2020, May 11). Retrieved
from https://developer.nvidia.com/drive

[6] What is a Raspberry Pi? (n.d.). Retrieved March 20, 2020, from
https://opensource.com/resources/raspberry-pi

[7] Nvidia’s Proprietary Confluence Page for Roadcast. (n.d.). Retrieved March 21, 2020, from
https://confluence.nvidia.com/display/AV/Roadcast

[8] What is android - javatpoint. (n.d.). Retrieved March 25, 2020, from
https://www.javatpoint.com/android-what-where-and-why

[9] Rouse, M., & Walter, D. (n.d.). What is Android Studio? - Definition from WhatIs.com.
Retrieved March 25, 2020, from
https://searchmobilecomputing.techtarget.com/definition/Android-Studio

[10] How to use Protobuf for data interchange. Retrieved March 26, 2020, from
https://opensource.com/article/19/10/protobuf-data-interchange

[11] What is Linux? (n.d.). Retrieved April 3, 2020, from https://www.linux.com/what-is-linux/

85

https://developer.nvidia.com/drive/drive-hyperion
https://www.alliedmarketresearch.com/autonomous-vehicle-market
https://developer.nvidia.com/drive/drive-software
https://developer.nvidia.com/drive/drive-planning
https://developer.nvidia.com/drive
https://opensource.com/resources/raspberry-pi
https://confluence.nvidia.com/display/AV/Roadcast
https://www.javatpoint.com/android-what-where-and-why
https://searchmobilecomputing.techtarget.com/definition/Android-Studio
https://opensource.com/article/19/10/protobuf-data-interchange
https://www.linux.com/what-is-linux/

[12] The 6 Levels of Vehicle Autonomy Explained. (n.d.). Retrieved April 3, 2020, from
https://www.synopsys.com/automotive/autonomous-driving-levels.html

[13] Halzel, Z., & Nurbekova, M. (2019, March 1). Scenario Generation for Autonomous
Vehicle Simulation and Testing. Retrieved from
https://web.cs.wpi.edu/~claypool/mqp/sv/2019/nvidia-drive/

[14] Hawkins, A. J. (2019, February 13). California's self-driving car reports are imperfect, but
they're better than nothing. Retrieved from
https://www.theverge.com/2019/2/13/18223356/california-dmv-self-driving-car-disengagement-r
eport-2018

[15] California Department of Motor Vehicles. (n.d.). Testing of Autonomous Vehicles with a
Driver. Retrieved April 18, 2020, from
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing

[16] Qt (n.d.). Cross-platform software development for embedded & desktop. Retrieved April
19, 2020, from https://www.qt.io/

[17] CNET. Nvidia Shield Tablet Specs. (n.d.). Retrieved April 28, 2020, from
https://www.cnet.com/products/nvidia-shield-tablet/specs/#p=nvidia-shield-tablet-32gb-wi-fi-lte/

[18] Standalone Toolchains (Obsolete): Android NDK: Android Developers. (n.d.). Retrieved
May 3, 2020, from https://developer.android.com/ndk/guides/standalone_toolchain

[19] Android Debug Bridge (adb): Android Developers. (n.d.). Retrieved May 6, 2020, from
https://developer.android.com/studio/command-line/adb

86

https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://web.cs.wpi.edu/~claypool/mqp/sv/2019/nvidia-drive/
https://www.theverge.com/2019/2/13/18223356/california-dmv-self-driving-car-disengagement-report-2018
https://www.theverge.com/2019/2/13/18223356/california-dmv-self-driving-car-disengagement-report-2018
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
https://www.qt.io/
https://www.cnet.com/products/nvidia-shield-tablet/specs/#p=nvidia-shield-tablet-32gb-wi-fi-lte/
https://developer.android.com/ndk/guides/standalone_toolchain
https://developer.android.com/studio/command-line/adb

