

A Playout Buffer for Moonlight Cloud-Based Game

Streaming to Smooth out Network Jitter

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted By:

Nicholas Heineman - Computer Science

Yu-Chi Liang - Computer Science

Aaron Nguyen - Computer Science

William Ryan - Computer Science

Date:

Thursday, April 25, 2024

Report Submitted to:

Professor Mark Claypool

Worcester Polytechnic Institute

This report represents the work of one or more WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on the web without

editorial or peer review.

ii

Acknowledgement

We would like to thank our Advisor Professor Claypool and our Graduate Assistant Xiaokun Xu

for greatly assisting and supporting our project. This project would have been unachievable

without their help and expertise in the field.

Advisor

Mark Claypool claypool@wpi.edu

Graduate Assistant

Xiaokun Xu xxuu11@wpi.edu

mailto:claypool@wpi.edu
mailto:xxuu11@wpi.edu

iii

Abstract

Cloud game streaming allows a game to be run on a server and streamed over the Internet

to a lightweight client that plays the game like a video. This setup is sensitive to delay in the

network and network jitter that can cause frame jitter, which produces visible interrupts in the

playout, affecting quality of experience. To address this, we added a client-side playout buffer to

open-source streaming software, which stores frames to smooth out network jitter. Then we

created several algorithms that regulated the size of this buffer to protect against jitter. We tested

our system on a streaming testbed setup by introducing delay jitter. We found that having a frame

buffer and a queue monitoring system lowered frame jitter with controlled amounts of delay.

iv

Table of Contents
Acknowledgement .. ii

Abstract .. iii

Tables and Figures .. vi

1.0 Introduction .. 1

2.0 Background ... 4

2.1 History of Cloud Gaming ... 4

2.2 The Benefits and Disadvantages of Cloud Gaming ... 5

2.3 Moonlight and Sunshine ... 6

2.4 Playout Buffering Algorithms .. 7

2.4.1 E-Policy ... 7

2.4.2 I-Policy .. 8

2.4.3 Queue Monitoring ... 10

3.0 Methodology .. 11

3.1 Buffer Implementation and Placement .. 11

3.2 Logger ... 12

3.3 Implement Buffer Algorithms ... 12

3.3.1 E-Policy ... 13

3.3.2 I-Policy .. 15

3.3.3 Queue Monitoring ... 16

3.4 Experiment Setup ... 17

3.4.1 Benchmark ... 17

3.4.2 Data Collection ... 19

3.4.3 Experimentation .. 19

3.5 Evaluation Metrics .. 23

3.5.1 Dashboard .. 24

3.5.2 Magnitude and Interrupt ... 24

4.0 Results ... 25

4.1 Dashboard ... 25

v

4.1.1 E-Policy ... 26

4.1.2 Base Moonlight .. 27

4.1.3 Adjusted E-Policy - Target Queue Size 2 ... 28

4.1.4 Adjusted E-Policy - Target Queue Size 10 ... 32

4.2 Aggregate Performance Across 50 Runs ... 34

4.3 Limitations .. 36

5.0 Conclusion... 38

6.0 Future Works .. 40

6.1 Imperfect Average Calculation .. 40

6.2 Moonlight Inconsistencies .. 40

6.3 Location of Buffer System ... 41

6.4 Variable Queue Target .. 41

6.5 User Studies .. 42

7.0 References .. 43

8.0 Appendices ... 44

Appendix A .. 44

Appendix B .. 45

vi

List of Figures and Tables
Figure 1: I-Policy and E-Policy after jitter spike (Stone & Jeffay, 2002) ... 8

Figure 2: I-Policy and E-Policy (Stone & Jeffay, 2002) ... 10

Equation 1: Formula for calculating an exponentially weighted moving average 13

Figure 3: Base Moonlight Capture between War Thunder and Tomb Raider .. 19

Figure 4: War Thunder In-Game Graphics Setting ... 21

Figure 5: Example Lab Setting ... 21

Figure 6: Tc Netem command example. ... 22

Figure 7: E-Policy dashboard at no delay jitter setting ... 26

Figure 8: Dashboard for base Moonlight playout at different delay jitter settings 27

Table 1: Summary statistics of 50 experiment runs for base Moonlight ... 28

Figure 9: Adjusted E-Policy Target Queue 2 dashboard at different delay jitter settings 30

Table 2: Summary statistics of 50 experiment runs for Adjusted E-Policy Target Queue 2 31

Figure 10: Adjust E-Policy Target Queue 10 dashboard at different delay jitter settings 32

Table 3: Summary statistics of 50 experiment runs for Adjusted E-Policy Target Queue 10 33

Figure 11: Interrupts/s for each policy at different delay jitter settings .. 34

Figure 12: Magnitude for each policy at different delay jitter settings ... 35

Figure 13: Average queue size for each policy at different delay jitter settings .. 35

Figure 14: E-Policy Dashboard from Adaptive Queue Monitoring .. 44

1

1.0 Introduction

As technology advances, computer hardware is also getting more powerful. Video games

have benefitted from these advancements as a result. Video game graphics are getting better and

better, but this also means they demand stronger CPUs and GPUs. A game played at 4K

resolution and 60FPS needs a computer with high end components. However, these

advancements mean people need to have high-end setups to play games in traditional systems.

This is the problem that cloud-based gaming aims to solve.

 Unlike traditional gaming setups, cloud-based gaming does not rely only on local

hardware. Instead, cloud-based gaming shifts the processing power to remote servers, allowing

players to stream games over the Internet without the need of high-end gaming setups. While

cloud-based gaming helps lessen the demand on local hardware, to be able to stream games in a

stable state, a fast and stable Internet connection is needed. As a result, cloud-based gaming is

affected by network latency. A delay can occur in the time between sending the packet and being

displayed on screen. In addition, network latency can vary over time, and when this happens it

causes jitter or interruptions during the streaming session. Jitter in the network takes several

forms, but notable types are delay jitter and bandwidth jitter. Delay jitter is caused by packets

being delayed between the server and client. Bandwidth jitter is caused by the amount of data

being sent varying, changing the bitrate. Both of these cause frame jitter, which is when the

stream is interrupted and freezes for some time. Since there is no frame to be played, the client

can only display the last frame until the new frame has arrived. Both delay and frame jitter are

problematic because players need up-to-date information and smoothness in the streaming during

their gaming experience. Both of these factors can negatively affect the Quality of Experience

2

(QoE) of the user as it lowers the smoothness of the stream and increases the amount of delay. It

is necessary to alleviate both of these issues in order to make cloud gaming more viable in the

future.

Our project focused on handling frame jitter caused by delay jitter spikes. In order to test

possible solutions, we worked using Moonlight, an open-source streaming client, and Sunshine,

its paired open-source server. We implemented a buffer that takes frames assembled by the

Moonlight software and stores them in a queue. In the event of a delay jitter spike, frame playout

is not immediately affected since there are frames in reserve. Additionally, we created a system

that regulates the size of the queue to allow for a delay-frame jitter tradeoff. We studied existing

buffering algorithms used in other fields, such as video conferencing, looking at how they deal

with delay jitter and implemented algorithms. The E-Policy dequeues frames at an average rate,

allowing a buffer to build naturally as jitter spikes occur. The I-Policy also dequeues frames at a

consistent rate, but it also discards any frames that arrive later than is expected, keeping.

We ran experiments evaluating our system through two computers connected by Ethernet,

running a Sunshine server streaming content to Moonlight running on the other. To mimic the

client-server relationship in cloud game streaming, we used a Raspberry Pi as a switch to add

varying amounts of network jitter. Our experiments consisted of streaming a game’s benchmark

from the server to the client with different jitter settings for 1 minute. We tested base moonlight,

and two versions of our complete E-policy algorithm, 50 times at each jitter setting to get

meaningful results.

Our results showed that adding a buffer can reduce or eliminate frame jitter caused by

delay jitter. In the base Moonlight settings, as the amount of delay jitter increased, the frame

jitter increased alongside it, making the amount of interruptions in gameplay increase. However,

3

when our adjusted E-policy system is added with a low queue target, the majority of frame jitter

is removed at lower settings. The spikes remained at the high delay jitter setting. When it is

added with a high queue target, nearly all frame jitter is removed. However with our algorithm,

the larger the queue target gets, the larger the overall delay in the system becomes.

The remainder of the paper is divided as follows: Chapter 2 provides background

information on cloud streaming and jitter compensation techniques; Chapter 3 describes the

setup of the buffer and experimentation process; Chapter 4 covers the analysis and results of the

experiments; Chapter 5 concludes the findings and provides key takeaways; and Chapter 6

provides potential avenues for future research and current limitations.

4

2.0 Background

 Throughout the next chapter, we are going to discuss the history of cloud gaming, its

benefits and disadvantages, the tools we plan to use, and a variety of buffering techniques and

algorithms.

2.1 History of Cloud Gaming

Cloud game streaming goes back to the early 2000s, with G-Cluster being the prominent

founding startup of the industry. G-Cluster relied on Quality of Service support from network

providers, which can be attributed to the less mature Internet at the time (Cai et al., 2016). It

never really took off and services designed with “Over-the-top” (OTT) network designs, such as

OnLive and GaiKai began to emerge in the late 2000s. OTT designs tend to go directly from the

host to the user, rather than rely fully on infrastructure from Internet Service Providers (Cai et al.,

2016). OnLive struggled to gain support from publishers because the idea of its subscription

model was not common in the industry at the time (“Cloud Gaming”, 2022). Sony acquired

GaiKai in 2012, and began development on its Playstation Now platform, and acquired the

patents from OnLive in 2015 (Cai et al., 2016). PlayStation Now and Sony’s acquisition of

GaiKai was a signal to the rest of the games industry that cloud game streaming had a future (Cai

et al., 2016). NVIDIA soon followed suit with NVIDIA GRID, their cloud streaming solution

geared towards their Shield TV devices. It would later be rebranded to GeforceNow and

redeveloped for more platforms. In 2018. Microsoft and Google began development on their own

cloud game streaming solutions, Project xCloud and Project Stream respectively (“Cloud

Gaming”, 2022). Google would launch Google Stadia in 2019 and Microsoft launched Xbox

Cloud Gaming in late 2020. Amazon also entered cloud game streaming with its Luna game

5

streaming service in 2020 (“Cloud Gaming”, 2022). Despite the loss of Google Stadia in early

2023, the cloud gaming industry is still growing in support, with platforms expanding and

constantly updating to better the experiences for the end users.

2.2 The Benefits and Disadvantages of Cloud Gaming

In general, gaming is known to be one of the most computationally heavy tasks the

average user runs. In cloud computing, the actual computing power is in a remote data center.

Cloud game streaming utilizes a client-server relationship with a nearby data center rendering the

game and computing all logic on a remote server, then streaming the gameplay to a thin client.

For example, GeforceNow, NVIDIA’s cloud game streaming solution, finds the nearest data

center to the player and streams their game from there. This allows gamers to use much lower-

power hardware, as only an Internet connection is needed to connect to the server and start

playing, drastically reducing the barrier to entry. The cloud infrastructure does introduce some

potential issues that would not be as present otherwise; specifically, network latency and network

jitter begin to impact the experience whereas they are not present in a locally played game.

Latency, the delay between transmissions on the network, is one of the common factors

that hurt the QOE of a cloud game stream. This delay is experienced by players through input by

the user as the discrepancy between the player input and visual output grows (De-Yu Chan,

2017).

Network jitter is the variance in network conditions. Jitter spikes occur when there are

spikes of high latency, or drops in bandwidth in the network connection (Hassan Iqbal et al.,

2021). Traditionally, a playout buffer is used in video streaming to account for jitter spikes.

YouTube for example will buffer portions of the video before it begins its initial playback in

6

order to accommodate network jitter. For use in game streaming, a playout buffer causes an

increase in latency that scales linearly with the number of frames in the buffer.

Both latency and jitter impact the game streaming experience. Latency causes a temporal

desync with the gameplay experience. While latency does not impact visual quality or

smoothness in similar ways to Jitter, higher latency environments make the user feel like they are

not playing the game in real-time, due to the perceivable delay with their inputs (De-Yu Chan,

2017). Jitter spikes impact cloud gaming by causing freezes and stutters in the video playback

(Hassan Iqbal et al., 2021). We implemented a playback buffer like those used in traditional

video streaming and set out to apply it to cloud game streaming.

2.3 Moonlight and Sunshine

 Moonlight was built as an open-source client for NVIDIA’s gamestream protocol,

allowing PC gamers to take their games anywhere on their network, or even over the internet.

Sunshine is an open-source game stream server, and it was built to work with Moonlight in

particular. Sunshine serves as a drop-in replacement for NVIDIA’s proprietary game stream

server, and when paired with Moonlight, the two tools create an open-source self-hosted game

stream solution. Together they enable gamers with high-end PCs to host a cloud game streaming

server and use any light weight device as the client. These are important because the basis of our

project revolves around Moonlight. Our goal is to implement a playout buffer in Moonlight that

balances gameplay smoothness and latency for an improved game streaming solution.

7

2.4 Playout Buffering Algorithms

 Playout buffers manage the flow of data within the system in which they are implemented.

Playout buffers are vital in reducing the effects of latency, by reducing interrupts in play and

maintaining a consistent frame rate.

2.4.1 E-Policy

 The policy starts off with a low initial display latency and is increased based on any late

arriving frame (Stone & Jeffay, 2002). This builds a natural buffer as frames are played out at a

consistent rate and delays occur. This can be seen in Figure 1 where frame c arrives late by over

two frame times. Because of this the buffer is increased to 3 frame times for all subsequent

frames. With the E-Policy no frames are discarded in the process, and the number of interrupts is

reduced over time as the buffer size increases to a large enough value to handle future jitter

spikes. The drawback is that the buffer increases with the delay permanently.

8

a) I-Policy b) E-Policy

Figure 1: I-Policy and E-Policy after jitter spike (Stone & Jeffay, 2002)

2.4.2 I-Policy

 The I-Policy is another playout buffer used within video conferences; similarly to the E-

Policy, it plays out frames at a consistent rate. The way the I-Policy differs is the buffer comes

with a fixed display latency meaning the delay is the same for every frame that is played

achieving this by discarding any frames that arrive later than the expected arrival time (Stone &

Jeffay, 2002). This process can be seen in Figure 2 when frame b arrives two frame times late

and is discarded in the I-Policy, leaving a gap between when frame a and frame b is played. The

pros of the I-Policy are that it causes lower latency overall and it shows frames that are more up-

to-date based on the time they arrive compared to the E-Policy. The cons of the I-Policy are a

9

larger number of interrupts compared to the E-Policy and some information is lost when the

frames are discarded.

10

a) I-Policy b) E-Policy

Figure 2: I-Policy and E-Policy (Stone & Jeffay, 2002)

 2.4.3 Queue Monitoring

 Queue Monitoring is a type of playout buffer that dynamically changes based on network

traffic on how many frames are arriving at a time. In this policy threshold values are

implemented which are the length in frame times for a queue length where if the queue has more

frames then the specified queue length the display latency will be reduced(Stone & Jeffay, 2002).

The buffer then discards the oldest frame in the queue and displays the oldest frame left. The

pros of a monitor are that it is flexible based on different threshold values which can cause

higher latency and fewer interruptions or lower latency with more interruptions. The con is that

the buffer only changes based on late-arriving frames.

11

3.0 Methodology

 This chapter describes the process of implementing our buffering algorithms in

Moonlight. In addition, it describes the methods we used to evaluate our buffer algorithms by

logging and graphing the data collected through the scripted runs of the War Thunder benchmark

on various jitter settings.

3.1 Buffer Implementation and Placement

 Before we implemented our buffer, we needed to decide whether to place the buffer on

the frame or packet level of the program. If placed at the packet level our program would

regulate the individual data packets sent by the server to the client and let Moonlight handle

assembly and rendering of frames. At the frame level, our code would regulate fully assembled

frames during rendering, leaving Moonlight to handle packet management. We decided to place

the buffer at the frame level, because we thought it would give us better control of the user

experience, since users are seeing frames when playing. Our initial implementation of the buffer

was placed directly before the rendering pipeline, taking the frame that moonlight assembled and

using it in our own code.

 The initial design was on the same thread as the render, and would queue the frame into

the buffer and immediately dequeue. The reason for this was to test our buffer to see if it would

interfere with anything from base Moonlight’s functionality. After this initial debugging period,

to get the buffer to work we split the base Moonlight render function into two separate threads:

one that would queue the frames into the buffer, and another to dequeue the frames to be

rendered as shown in Code Listings 1 and Code Listings 2.

12

3.2 Logger

A logger was necessary for the experiment because we need specific key values as

evaluation metric and a mean for debugging. We need a logger that can be accessed from

anywhere and freely add new variables we want to record. In addition, we want this logger to

produce data in a form that can easily be graphed. Such a logger increases efficiency during our

design process.

Creating the logger involved implementing a singleton instance of a Logger class, which

all parts of the Moonlight code could then reference and use. Mutex locks controlling access to

the logger instance were used to avoid race conditions. Our first iteration of this logger only

involved storing output messages in a text file. However, we also wanted to make a system that

would create easily graphable data, so we constructed a CSV creator that defined each column as

a variable we wanted to track. Each entry was paired with a timestamp registered directly at the

moment of logging, so that threading would not create inconsistent times. With this system, we

were easily able to create graphs with the CSV, plotting the stored time values against whichever

variables we chose to log.

3.3 Implement Buffering Algorithms

We implemented and tested two different buffering algorithms, the I-Policy and E-Policy.

We also implemented Queue Monitoring as a setting that would adjust both of these algorithms

based on the on queue size.

3.3.1 E-Policy

The first policy that we implemented was the E-Policy, which is the simplest algorithm. It

works by storing frames in a buffer before they are sent to be rendered, and then dequeuing the

frame at a regular interval. We tested two different methods to decide the length the buffer would

13

hold onto a frame. The first method used a constant time of 16.670 ms, this is due to moonlight

running at 60 frames per second, which means a frame is rendered every 16.670 ms. Our second

method was a weighted moving average, which takes the average interframe time over the entire

run of the program and adjusts the time based on each incoming interframe time. The formula for

the weighted moving average is shown in Equation 1. The value of the alpha is between 0 and 1.

It determines the influence of the new frame time. We used 0.95 as the alpha value, as seen in

Code Listings 1, to ensure that the average frame time does not increase too quickly. The average

value is adjusted after each run based on the expected sleep time and the actual sleep time, which

is calculated by measuring the time before the program goes to sleep and the time after and

calculates the difference. This value is then used during the next time a frame would be rendered

and is subtracted from the current sleep time to make up for the added time from the previous run

as seen in Code Listings 2. Before any frames are sent to be rendered the dequeue thread checks

if the buffer is currently dequeuing as seen in Code Listings 2, which checks if the buffer is in a

fill state when frames are added to the buffer with no dequeue or a drain state when frames are

able to be dequeued.

Equation 1: Formula for calculating an exponentially weighted moving average

Average = (Average * α) + (Current * 1 - α)

14

Code Listing 1: Pseudo code of E-Policy queueing function.

Queuing Thread:

E-Policy (Frame):

 time_arrived = current time

 time_between_frames = time_arrived - last_frame_arrival_time

 lock queue mutex

 add frame to buffer queue

 unlock queue mutex

 lock sleep mutex

 average_frame_time = (average * α) + (time_between_frames *1-α)

 unlock sleep mutex

last_frame_arrival_time = time_arrived

15

Code Listing 2: Pseudo code of rendering function in dequeue thread

Dequeue Thread:

render_frame_dequeue_thread():

repeat forever

 if DRAIN state then

 start_time = current time

 frame = buffer[front]

 send frame to render

end_time = current time

 run_time = end_time - start_time

 average_sleep = average interframe time

 if queue_monitoring_flag = true then adjust sleep offset value

 sleep_off_set = current sleep offset value

 expected_sleep = average_sleep - run_time - sleep_difference -

sleep_off_set

 if expected_sleep > 0 then

 begin_sleep_time = current time

 sleep for expected_sleep

 end_sleep_time = current time

 real_sleep_time = end_sleep_time-begin_sleep_time

 sleep_difference = real_sleep - expected_sleep

 else

 sleep_difference = 0

 else

 sleep for 500 microseconds

3.3.2 I-Policy

The I-Policy works similar to the E-Policy, except that it discards any frame that arrives

later than it is expected to. It also has a fill and drain state: at the start of the program the buffer

will be in the fill state and fill to the set amount of frames before it starts dequeuing. It then

enters the drain state for the remaining run of the program, and will dequeue at the same moving

average rate from E-policy. The value we set for the expected arrival rate of each frame is double

the dequeue rate of 16.670 ms discarding any frames that arrive later besides keyframes as they

16

are needed to render any following frames, as seen in Code Listings 3.

Code Listing 3: Pseudo code of I-Policy queueing function

Queuing Thread:

I-Policy (Frame):

 time_arrived = current time

 time_between_frames = time_arrived - last_frame_arrival_time

 if time_between_frames > 33333 microseconds and not a key frame then

 discard the frame

 else

 lock queue mutex

 add frame to buffer queue

 last_frame_arrival_time = time_arrived

 unlock queue mutex

3.3.3 Queue Monitoring

Queue Monitoring is a setting that can be used by any of the two policies previously

mentioned. This monitoring evolved over time. At the start, we set the value as a constant offset

to the average calculation. Later, we adapted it to have a target queue size: when the queue is too

small or too big, the offset value would be added or subtracted until it restabilizes. Then, we

made the value of the offset more adaptive, scaled by the difference between current and target

queue size. Finally, we settled on a system that relies on built in constants. The system sets the

offset at a large value of 4000μs when the queue is large, a smaller value of 2500μs when the

queue is too small, and at a stabilizing value of 1250μs when the queue is within acceptable

parameters as seen in Code Listings 4. The reasoning for using these constants will be discussed

17

in the next chapter.

Code Listing4: Pseudo code of playout offset function for queue monitoring

Adjust Offset Value ():

 queue_length = current queue size

 lock offset mutex

 if queue_length > queue_monitor_target then

 sleep_offset_value = LARGE

 else if queue_length < queue_monitor_target then

 sleep_offset_value = STABLE

 else

 sleep_offset_value = SMALL

 unlock offset mutex

3.4 Experiment Setup

 This next section is going to cover our experiment setup and testing environment. It will

also include how we designed the experiment and evaluation metrics we used.

3.4.1 Benchmark

 For our experiments, we have considered two options, a user study or game

benchmarking. A user study allows us to gather feedback on how the participants feel about the

different policies in varying network settings. One concern with this approach is consistency.

Since the goal is to evaluate and compare the performance of different policies, it is necessary to

select a game that creates the same gameplay for all trials. Given that most games create variance

during its gameplay from run to run and the participants have varying skill levels, it was difficult

for us to settle on a game. On the other hand, benchmarking was the more consistent approach.

During development and testing, we have determined that the type of game we use does not

impact the performance. We tested games with benchmarks that are available to us such as

18

Shadow of the Tomb Raider and War Thunder before reaching this conclusion. The capture for

the two different games using base Moonlight can be seen in Figure 3 with the top graph as War

Thunder and bottom graph as Tomb Raider. While the Tomb Raider run had more variance than

War Thunder, it is within the normal range. Finally, we decided to use War Thunder’s built-in

benchmark as the base testing game. While not inherently better than other benchmarks, the

benchmark of War Thunder is easily accessible from the main screen and sets up an efficient

testing environment. While Shadow of the Tomb Raider has a built-in benchmark, it is harder to

access compared to War Thunder. To access the benchmark for Shadow of the Tomb Raider, we

have to navigate to the graphics settings and then enter the benchmark tab. After that, we can

enter the benchmark. The issue is that when exiting the benchmark, it does not always return to

the menu before entering the benchmark. We cannot reenter the benchmark quickly after each

run. The exit timing for this benchmark is also inconsistent. These are all factors that make

creating the experiment script harder. In comparison, War Thunder has the benchmark located in

its main menu. To access it, we need to go over to the Battles tab and select the benchmark in the

drop down menu. After exiting the benchmark, we are always back in the main menu with a

benchmark summary pop up. We then press enter to return. The way War Thunder exits the

benchmark is more consistent and easy to automate.

19

3.4.2 Data Collection

 As mentioned in the earlier section, we have built a logger for data collection purposes.

Specifically, we are logging the queue occupancy, frame enqueue and dequeue rate. These are

useful metrics for observing the performance of each policy. The queue occupancy reveals how

many frames are in the queue and the delay introduced by the buffer. Since we are streaming at a

rate of 60 FPS, each frame time is about 16.67 ms (1/60). This means a queue occupancy of,

number adds number delay. The frame enqueue rate is used to study the effect of delay jitter on

frame arrival rate. Earlier, we discussed how a delay jitter event will subsequently cause frame

jitter. The enqueue rate captures this behavior and visually demonstrates the effect. The dequeue

rate is used to represent the playout for the stream. We want to make a comparison between the

arrival and playout rate to show that the policies can mitigate the effects of delay jitter events.

Figure 3: Base Moonlight Capture between War Thunder and Tomb Raider

20

Besides our logger, we are also using an additional tool called PresentMon (Appendix X).

This tool is used for capturing and analyzing the performance of graphics applications.

PresentMon also generates its own resulting CSV. Among the data PresentMon is able to track, a

useful value is “msBetweenPresents”. This is the same information as the frame dequeue rate.

We use PresentMon as a means to verify our captured data. This information is also used for

calculating the evaluation metrics.

3.4.3 Experimentation

 The experiment is done in a lab setting where two computers are connected by ethernet

with a Raspberry Pi acting as a switch as shown in Figure 5. The computers we are using have an

i7-8700k CPU and a Nvidia GTX1080 graphics card. They also have 64GB of ram. The stream

is done in 1080p resolution with 60 FPS. The benchmark we are using in War Thunder is

“Pacific war (Day)” and the specific graphics settings we are using is in Figure 4. In the 1 minute

capture, after the loading screen, it will show two scenes with just the sky and cloud. Next, it

presents multiple scenes with transitions where different types of planes are flying at different

angles. Towards the end of the capture, we are starting to see battles between the planes with

gunfire and explosions. The scene and their order will be the exact same in each run. This creates

the consistency that could be lacking from a user study.We are testing 4 different policies total

with base Moonlight as the default comparison. We have included E-Policy and Queue

Monitoring at queue size of 2 and 10. The purpose of including two versions of Queue

Monitoring is to study the effect of a shallow vs deep buffer in the context of cloud game

streaming.

21

 Originally, we were going to include I-Policy in the experiment since we did design and

implement a version of it. However, after some updates and code changes, it started to have

abnormal behavior. The stream starts off as normal, but as soon as it enters the benchmark, it

Figure 4: War Thunder In-Game Graphics Setting

Figure 5: Example Lab Setting

22

does not render any new frames. We suspected that this was due to a discard of the key frames,

but after more testing, we cannot find a solution. Due to time constraints on the project, we

decided to omit I-Policy from the experiment, but encourage future works to investigate and test

this policy.

 For adding delay jitter to the network, we are using tc with Netem. Tc stands for traffic

control and Netem is a Linux tool for network emulation. The core principle of adding delay

jitter is through running a command and adding qdisc, or queueing discipline. By specifying the

type of qdisc, we are giving instructions to the network on how to handle the flow of packets.

This creates the effect of delay and jitter. We set up 3 different types of scripts that apply the

specified delay jitter settings through Netem with a jitter stop script, see Figure 6 for reference.

Figure 6: Tc Netem command example.

23

 We tested a variety of network settings. These settings are no jitter, low jitter, medium

jitter, and high jitter. The purpose of a no jitter and high jitter environment is to test the two

extreme conditions for the different policies. The two remaining settings are to mimic common

network conditions in everyday activity. The main change per jitter setting is the magnitude.

Magnitude refers to the intensity of the jitter. The values of the jitter setting from low to high is:

25 ms, 40 ms, and 100 ms. All settings are applying jitter every 0.1ms, or 10 times a second.

These settings are the independent variable of the experiment.

To run the experiment, we have developed a Python script that automatically enters the

War Thunder benchmark with PresentMon capture and changes the policy and jitter settings.

First, the script generates all possible pairs between policies and network settings. It then iterates

through all pairs and runs the benchmark at the jitter setting 50 times. The duration of each

capture is one minute, and it then exits Moonlight and restarts the capture process. After the end

of each run, the script appends a number tag to the resulting CSV files created by our logger and

PresentMon. This is to correctly match the file from each run so we are comparing files from the

same run. After the 50 runs are over, it generates a summary file with calculated evaluation

metrics from each run. Each policy-setting pair also has a specific folder to store all the data and

resulting CSV.

3.5 Evaluation Metrics

 We are going to use using 3 evaluation metrics, dashboards, magnitude and interrupts.

Dashboards are our developed evaluations metrics while magnitude and interrupts are common

metrics for Quality of Experience.

24

3.5.1 Dashboard

 One of the evaluation metrics we developed is a dashboard-like graph that displays the

frame enqueue and dequeue rate with the queue size. An example of this can be seen in the

results section. This is to visually show the effectiveness of each policy and how it can smooth

out the frame jitter event that occurs during the run. For base Moonlight, we are only displaying

the PresenMon’s capture result. This is because Moonlight does not have a designated queue and

we are unable to log that information. Thus, we assume the queue is constantly at zero as

Moonlight dequeues the frame as soon as it arrives.

3.5.2 Magnitude and Interrupt

 The other evaluation metrics we used are magnitude and interrupts. Interrupt occurs when

the frame’s arrival time has exceeded double the expected time. The expected frame time will be

different depending on the streaming frame rate. For our experiment, since we are streaming at

60 FPS, each frame time is about 16.67ms. So, an interrupt occurs when the frame arrives later

than 33.34ms. The number of interrupts will tell us how the network condition affects the

streaming session. We compute interrupts as a rate across the experiment run, and it has a unit of

interrupts/s. Magnitude is the strength/intensity of the given delay jitter event. Magnitude is

calculated from interrupts. Once we have determined where all the interrupts occur during the

run, we find the difference between the frame time and double the standard frame time. Then we

sum that difference for all interrupts and divide by the run duration. These metrics will be able to

determine how effective the policy is at mitigating a frame jitter spike. The policy is performing

better when it has a low number of interrupts and magnitude.

25

4.0 Results

In this chapter, we present the results of the experiment through the defined evaluation

metrics. We depict the dashboard of a single run for each delay jitter setting per policy and

review the performance graphs. We represent jitter events visually and how the policies are

affected. Then, we calculate interrupts, magnitude, and queue occupancy over 50 runs for each

policy-setting pair.

4.1 Dashboard

As mentioned in methodology, we built a system that quickly constructs a dashboard of

three key graphs based on data gathered from a single run. The default run conditions were a

War Thunder benchmark with a capture duration for 60 seconds. The X-axis is the capture

time in seconds. From top to bottom, the Y-axes are: The frame enqueue (in milliseconds), the

queue occupancy (the number of frames), and frame dequeue rate (in milliseconds). If the

Enqueue and Dequeue graphs exhibit near constant values, appearing as a straight line, it means

that the we are enqueueing or dequeueing at a constant rate. This is what we describe as a

smooth playout. If the graph does not show a constant value but goes up and drops back down

quickly, it indicates a spike. The target dequeue rate is 16.67 ms, as this translates to the 60 f/s

we are expecting based on our settings. For queue size, users prefer a stable queue that dips

during lag spikes and rises back up again afterwards, with the queue occupancy at a specified

value.

26

4.1.1 E-Policy

Figure 7: E-Policy dashboard at no delay jitter setting

 As mentioned in the methodology chapter, we initially planned to include E-Policy with

no queue monitoring during the experiment. However, as shown in Figure 7, the frame enqueue

and dequeue frame time consistently increased. The queue size also increased and stayed at a

constant between 16 and 17. The frame time increased to the point where it can no longer be

contained in the graph. This caused the bitrate of the stream to drop significantly and become

pixelated. We suspect this behavior is a mechanism of Moonlight. Once the bitrate and delay

reach a certain threshold, Moonlight may control the amount of incoming frames and drop

frames accordingly. The increase in delay is caused by the way we designed the E-Policy

algorithm. In its current form, there is a negative feedback loop. Once the dequeue rate increases

in delay, it causes the future frames to delay. This would explain why both the enqueue and

dequeue rate are increasing. In the end, we were unable to identify a flaw in our system that

27

created this feedback loop. Due to this behavior, we decided that it is best to not include the base

E-policy model as part of the evaluation.

4.1.2 Base Moonlight

 The dashboard we designed for base Moonlight is different from our algorithms because

base Moonlight does not have a playout queue. Figure 8 only shows the playout rate. In the top

left of the figure, we observed the value of the playout rate is near a constant value, which is

what we described as smooth. Moonlight performs well in a no jitter environment, but as the

magnitude of the delay jitter increases, the number of spikes in the playout also increases. The

statistical summary at the bottom indicates an upward trend in interrupts per second. These

spikes indicate a jitter event, and each spike is considered to be an interruption. Because base

Figure 8: Dashboard for base Moonlight playout at different delay jitter settings

28

Moonlight does not have a built-in queue, it plays a frame as soon as it arrives. So upon

encountering an interrupt, it leaves a gap in the playout and no frame is rendered at the moment.

With high delay jitter, this gap happens more often and the impact of jitter is more apparent.

During the streaming session, we can visually observe pauses in playout. It is clear that

Moonlight suffers in a high delay jitter environment as it was difficult to have a session without

interrupts. The magnitude also reflects how intense each interrupt is. We also gathered summary

statistics from 200 runs of base moonlight, with 50 runs of each delay jitter setting. This is

displayed in Table 1. We measured average queue size, number of interrupts, and magnitude of

jitter spikes on no, low, medium, and high delay jitter. Each column in the table represents the

average values 50 runs, with the uncertainty of each calculation listed. Similar to our sample run,

moonlight performs well at low jitter levels, but gets progressively worse the higher jitter

gets. By using both data and observation, cloud game streaming with base Moonlight in a

 network with jitter does not provide a smooth user experience.

Table 1: Summary statistics of 50 experiment runs for base Moonlight

4.1.3 Adjusted E-Policy - Target Queue Size 2

 While we described implementing a queue monitoring algorithm to be applied to E-

Policy, we did not completely implement that design. While we were designing the algorithm, we

were unable to find a proper way to calculate an offset to adjust the playout rate. We mainly used

Delay Jitter Setting None Low Medium High

Average Queue Size 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Interrupts/s 0.00 (0.01) 1.06 (0.13) 1.41 (0.14) 1.44 (0.17)

Magnitude(ms/s) 0.03 (0.07) 8.28 (1.04) 24.82 (2.46) 103.30 (11.86)

29

algebraic based formulas to calculate the offset and they were unsuccessful. Our calculations

created a dequeue rate that fluctuates up and down around the target, as depicted in the Appendix

X. This is due to how fast the frames are arriving, but our calculation is too slow to keep up. We

were always behind in the offset calibration and not able to maintain the queue at the correct

value. As a result, to implement the behavior of queue monitoring, we decided to use hard coded

values. These values were 2500, 1200, and 4000 μs. The 2500 μs is the regular offset, meaning

that when the queue is at the specified size, we will subtract the value from the playout rate as

adjustment. 1200 μs is the minimum playout adjustment. When the queue size is below the target

size, subtracting a smaller value will make the playout slower and allow the queue time to be

filled. Lastly, the 4000 μs is the maximum playout adjustment. In Chapter 8, code listings 4, each

of these adjustments are applied to the playout rate on lines 5, 7, and 9. If the queue occupancy

is too high, then making the playout faster can drain the queue. We used μs in our code to

achieve higher accuracy with the decimal point. These are constant values that are used across all

runs of our experiment. Since we are no longer using an adaptive algorithm to calculate an offset

for the playout rate, it is not appropriate to call our implementation queue monitoring anymore.

This is a version of E-Policy with a specified queue target. So from this point in the paper, we are

going to address our implemented algorithm as Adjusted E-Policy instead of queue monitoring.

30

Figure 9 shows the playout performance of adjust E-Policy with a target queue of 2 for

Figure 9: Adjusted E-Policy Target Queue 2 dashboard at different delay jitter settings

31

each delay jitter setting. With no jitter, the performance is similar to base Moonlight. However,

at low and medium delay jitter, the playout is smooth compared to playouts in Figure 8. If we

observe the dashboard in the bottom right of the Figure 9, we can see the presence of spikes in

both enqueue and playout. The queue is not deep enough to handle large jitter events. Based on

the queue size graph, during large jitter spikes, the queue is drained to zero. The queue is not set

up to handle a jitter event where the magnitude is greater than two frame times. This creates the

gap in playout mentioned earlier. Although it appears a queue size of two does not seem

adequate, the magnitude of the interrupts are lower than the applied setting. The magnitude for

the high delay jitter setting is 100ms while the resulting average magnitude is only 40ms/s for

our policy. With a queue size of two, we can effectively mitigate all frame jitter in low and

medium settings at values 25ms and 40ms. For high delay jitter, it can decrease the magnitude of

the frame jitter, but cannot completely avoid it. We also performed 200 runs with this queue size,

with 50 runs for each delay jitter. This data is displayed in Table 2. The data organization is the

same as Table 1. Similar to the sample run for this policy, the system handles low and medium

levels of frame jitter but cannot fully counteract high levels of frame jitter. Our adjusted E-Policy

is working correctly based on our design and hypothesis.

Table 2: Summary statistics of 50 experiment runs for Adjusted E-Policy Target Queue 2

None Low Medium High

Average Queue Size (Frames) 1.88 (0.01) 1.83 (0.01) 1.89 (0.02) 2.81 (0.07)

Interrupts/s 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 1.08 (0.11)

Magnitude(ms/s) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 37.35 (2.82)

32

4.1.4 Adjusted E-Policy - Target Queue Size 10

 Here, with Figure 10, we are showing the playout performance of adjusted E-Policy with

a queue size of 10. The performance from low to medium delay jitter is the same as with queue

size of 2. For high delay jitter setting though, the larger queue size eliminated the chance of any

frame jitter event from happening. The queue size graph shows that the queue does not drain to

Figure 10: Adjust E-Policy Target Queue 10 dashboard at different delay jitter settings

33

zero but at four or five frames. This is expected because 100ms of delay jitter is about six frames.

A deeper queue is more equipped to handle large delay jitter events. The results of 200 runs with

this queue size are depicted in Table 3. The data organization is the same as Tables 1 and 2. This

policy can successfully handle frame jitter in all conditions tested. These dashboards show our

queue can control the smoothness of frame playout in a network with delay jitter.

Table 3: Summary statistics of 50 experiment runs for Adjusted E-Policy Target Queue 10

None Low Medium High

Average Queue Size 9.88 (0.01) 9.83 (0.02) 9.75 (0.02) 9.30 (0.05)

Interrupts/s 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Magnitude(ms/s) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

 We next show the results of 50 runs per policy-setting pair. This is to show that the

policies are not only working once, but also showing statistically significant results.

34

4.2 Aggregate Performance Across 50 Runs

Figure 11: Interrupts/s for each policy at different delay jitter settings

 After we finished the experiment, we calculated the average interrupts per second for

each policy at the different delay jitter settings. We plotted the result with 95% confidence

interval in Figure 11. As we have shown with the dashboards, the interrupts for base Moonlight

steadily increase as we apply more intense delay jitter. Adjusted E-Policy with both shallow and

deep queues can effectively compensate for frame jitter at low and medium settings. Only a large

queue can adequately compensate for frame jitter caused by high delay jitter.

35

Figure 12: Magnitude for each policy at different delay jitter settings

Figure 13: Average queue size for each policy at different delay jitter settings

36

We calculated the average magnitude at each interrupt in Figure 12. Since each frame

inside the queue has a frame time of 16.67ms, each queued frame adds that much delay. Hence,

we calculate the total delay added to the playout by multiplying frame time with queue size. For

our experiment, we are adding an additional 33.34ms by implementing a queue of two and

166.7ms worth of delay for a queue size of ten. In Figure 13, we show the queue occupancy of

each policy, and our adjusted E-Policy can maintain the specific target queue size for all settings.

For a queue size of ten, the added delay may be preferable than large frame jitter spikes, but it

also maintains that queue size for no frame jitter. With no frame jitter, this added delay will

significantly reduce the quality of experience for the user. On the other hand, with the queue size

of two, we are not adding as much delay, not affecting the experience nearly as much. The cost

for handling frame jitter in our approach is adding additional delay to the playout, especially in a

fixed target size queue.

4.3 Limitations

 Our experiment has several limitations. First, due to technical difficulty and time

constraints, we were unable to thoroughly test all the existing buffering algorithms. This limits

our scope and only shows that an algorithm with a queue can improve the performance

of Moonlight. In addition, our version of the queue monitoring in the experiment is incomplete.

The goal of queue monitoring is maintaining the queue occupancy at the specified value by

adjusting the playout rate to adapt to the delay jitter events. However, we have attempted

multiple calculations for such calibration, but all have resulted in increasing or decreasing the

rate too quickly and recovering too slowly. Ultimately we decided to use hard coded values in

order to achieve the desired design. Our implementation is not a true adaptive version.

37

 Next, as we mentioned in the last section, there is a cost of having a large queue. Since

our queue size is determined beforehand, it would be hard to determine the best queue size

without adding a large amount of delay. Additionally, we are simulating a network condition

where the delay jitter is constantly at a specific level. In normal network conditions, we should

be seeing varying magnitudes of delay jitter. The queue size must be able to handle every delay

jitter condition in a single run. Finally, while we determined that the type of game we use does

not have an impact on the performance of the algorithms, that only applies to benchmarking.

Since we did not do a user study, we cannot fully evaluate the extent to which the added delay

impacts user experience. Different types of games may require different types of buffering

algorithms. We were able to see that adding a buffer can boost the performance of cloud game

streaming in different delay jitter settings, but more extensive research is needed to find the ideal

buffering algorithm.

38

5.0 Conclusion

Cloud-based gaming reduces the need for the player to invest in upgrading or purchasing

expensive computer hardware. The cloud server handles the heavy rendering and processing

while the client focuses on decoding frames and sending inputs. However, to be effective, cloud-

based game streaming is reliant on the connection between the server and client. Delay jitter is

the variation in latency between the server and client. Bandwidth jitter is resulted from the

variance in the bandwidth that changes the amount of data transmitted. Both delay jitter and

bandwidth jitter can cause frame jitter. Frame jitter is the variance during playout which causes

interrupts during the stream and degrades the Quality of Experience of the gaming session. It is

necessary to develop a way to deal with the different types of jitter events to achieve better

Quality of Experience.

Our work primarily focused on handling frame jitter caused by delay jitter. Since delay

jitter causes the transmitted frame to arrive late at the client, it results in frame jitter. We

implemented a buffer at the client side to store frames. With this approach, in the event where a

delay jitter happens, we still have frames to play and the stream remains smooth. The buffer

drains when a delay jitter event occurs and fills it back up when it is over. When sufficiently

large, the buffer can absorb all magnitudes of delay. This solution comes at the cost of

introducing additional delay into the system, however, which decreases playability and this delay

will cause the frame to be displayed later than when it was rendered on the server. It also makes

player input slower and not matching the most up-to-date event in the game.

39

Our experiments show adjusted E-Policy, with a target queue size of two, can alleviate

frame jitter in low and medium jitter settings. While it cannot fully handle a high jitter

environment, the algorithm still reduced the magnitude of the jitter by over half compared to the

magnitude of jitter applied, keeping the stream more smooth. We needed a queue with a target

size of ten to fully smooth out the playout in a high jitter environment. Despite the smooth

playout, this comes at a cost of added delay to the system, an additional 16.67ms worth of delay

per frame.

40

6.0 Future Works

 This chapter describes further research that could expand on our project.

6.1 Imperfect Average Calculation

 All of our algorithms included a weighted moving average calculation that was supposed

to converge towards a playout rate that would keep the queue in a stable state. However, when

left unchecked, the value would always be more than required and increased to the point of

extreme latency. Our solution to this was implementing a constant offset value that kept the

playout stable. This offset value was difficult to manage, and not very precise; adjusting the

playout rate naturally would likely have made this process easier. We were unable to identify the

source that causes excess growth in latency; further research could delve deeper into finding

another way to calculate and measure the playout rate. This also includes finding other sources

that could contribute to this issue. With the problem identified, an algorithm could be developed

that relies only on a dynamic average calculation, and doesn’t need hardcoded average values.

6.2 Moonlight Inconsistencies

At the beginning of the project, we assumed that Moonlight had no lag compensation

techniques. However, we found this may not be true. As the queue gets higher, moonlight

reduces the bitrate. At a certain point, the reduction of bitrate is large enough that the queue

stabilizes, usually around 16-18 frames. This is mostly not relevant to our project, as our frame

goals were always well under these values and our working implementations were never affected

by this problem. We suspect that this could mean Moonlight has some metric for determining

delay in playout, and lowers the bitrate so the stream can proceed. Another possibility is that the

41

16-18 frames are related to the ratio between dependent frames and a keyframe. Ultimately we

are not sure of the cause, and replicating and understanding this behavior would be crucial for

any future Moonlight research. Outlining and tweaking this system could be an additional source

of stability for the system, or it could be a more flexible way of reducing lag than the algorithms

we have developed.

6.3 Location of Buffer System

We chose to place the buffer towards the end of the Moonlight rendering pipeline. With

this system, the frames were already assembled from their individual packets. However, there

may be a better location to put our buffer structure. The Moonlight client has its own queue to

take in information and assemble the frames; modifying this system may be a better place to

construct a buffer. Additionally, throughout the project we had to deal with Moonlight quirks,

including an inability to render with threads due to OpenGL being outdated. We suggest that

future projects could find additional locations where the buffer can be placed and compare their

performances.

6.4 Variable Queue Target

 The majority of our work was spent tweaking our average calculation and queue

monitoring to achieve a constant queue occupancy across runs. We tested the effectiveness of

each under consistent jitter settings. However, in home use, the amount of jitter fluctuates due to

varying internet status, and a better approach is to have the system adapt to that variance. There

are several directions to tackle this idea. One way is to consider the amount of frames in the

buffer, or the rate of change of frames. This could be used to analyze jitter conditions and set an

appropriate queue size target. Alternatively, other metrics such as frame enqueue rate could be

42

used to calculate the magnitude of current jitter conditions and alter the queue size target. Further

research could test one or both of these systems, and compare them against our system to see if

an adapting system is better than simply choosing an adequate queue target.

6.5 User Studies

 Our research was focused on how our system dealt with queue size, spike magnitude, and

number of interrupts. Additionally, to limit variance, we tested our program on a static

benchmark that performed roughly the same each run. Because of this, we have limited

knowledge about how our system works under normal gaming conditions. Therefore, future

research should consider testing our system and subsequent systems with user studies. Statistics

to test include using multiple games, having different goals in each of the games, and getting a

spread of gaming skill among the participants. For our specific system, it would be beneficial to

test both differing levels of jitter, and different queue sizes. Measurement techniques could

include in-game metrics such as points earned, and also user-based metrics such as a

questionnaire asking how much lag affected gameplay. Ultimately any gaming-based jitter

compensation should be thoroughly tested with users before being deemed effective.

43

7.0 References

Cai, Wei, et al. “The Future of Cloud Gaming [Point of View].” Proceedings of the IEEE, vol. 104,

no. 4, Apr. 2016, pp. 687–91, https://doi.org/10.1109/JPROC.2016.2539418.

“Cloud Gaming: The Past, The Present And The Future.” Gameopedia, 18 Feb. 2022,

https://www.gameopedia.com/cloud-gaming/.

De-Yu Chan. “Impact of Information Buffering on a Flexible Cloud Gaming System.” Magda El-

Zarki, 2017, pp. 1–6, https://doi.org/10.1109/NetGames.2017.7991543.

GameTechDev. (n.d.). PresentMon (Version 2.00). GitHub.

https://github.com/GameTechDev/PresentMon

Hassan Iqbal, et al. “Dissecting Cloud Gaming Performance with DECAF.” Association for

Computing Machinery, vol. 5, no. 3, Dec. 2021, https://doi.org/10.1145/3491043.

Moonlight Game Streaming: Play Your PC Games Remotely. https://moonlight-stream.org/.

Accessed 9 Apr. 2024.

Stone, Donald L., and Kevin Jeffay. “An Empirical Study of Delay Jitter Management Policies”

Readings in Multimedia Computing and Networking, Elsevier, 2002, pp. 525–37,

https://doi.org/10.1016/B978-155860651-7/50131-5.

Sunshine Documentation. https://docs.lizardbyte.dev/projects/sunshine/en/latest/. Accessed 15 Sept.

2023.

https://www.gameopedia.com/cloud-gaming/
https://github.com/GameTechDev/PresentMon

44

8.0 Appendices

Appendix A

Figure 14: E-Policy Dashboard from Adaptive Queue Monitoring

In Figure 14 we present a more detailed dashboard showing the different recorded

metrics with PresentMon’s capture. Specifically, the graph for queue size, sleep offset value,

which is the adjustment we make, and the frame times are all wavelike. These are produced from

our attempts at an adaptive queue monitoring algorithm. We tried to alter the playout rate based

on the difference between the queue target and the current queue size. However, the adjustment

adapted far too quickly and caused our queue to overshoot the target, and the same thing would

repeat when the queue was above its target. After multiple attempts, we were unable to find a

mathematical calculation that would allow us to achieve the desired dynamic adjustment.

45

Appendix B

 PresentMon is a capturing and performance analysis tool developed by Intel

(GameTechDev, n.d.). PresentMon has two different versions; one is a user interface and the

other is an executable. During early testing, we used the interface version. The interface is nicely

designed but starting and ending capture needs to be done manually through hotkey. We found

this to be inconsistent and when graphing, we would notice a massive spike that resembles a

frame jitter. That spike is due to us ending the stream and the capture. To avoid this problem, we

switched to using the executable version as it does not have the described problem. The

executable version also adds more customization options such as altering the capture duration,

file name and location, and modifying the result CSV it produces. The customization also allows

easy organization through specifying the file location and name. We heavily suggest spending

time on reading the PresentMon documentation and testing with it.

Another important note is that the executable version may not have privileges to access

the running applications, and PresentMon will not be able to log data. There are two methods to

handle this error. One is going through the group policies and editing the permission. The other

approach is running the script with administration, which is what we did. By running our

experiment script inside a command prompt opened with the administrator, it will not have a

permission error.

