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Abstract
As broadband Internet grows in popularity, it is important to determine if improvements
can be made to broadband hardware and TCP. Motorola captured three hours of traffic
from a cable network, which we analyzed to identify trends that may lead to
optimizations in Motorola’s hardware. We found that TCP-SACK provides a
performance increase and recommend its further deployment. We also found that peer-to-
peer applications account for a large portion of Internet traffic and suggest measures that
may be taken to address this change.
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1 Introduction
Broadband Internet services affect millions of computer users all throughout the world.
High-speed Internet adoption at home continues to rise sharply in the United States,
increasing by 50% from March 2002 to March 2003.  About 21 million broadband users
connected by cable modem in March 2003, up from 13 million a year earlier [1].
Broadband is inexpensive, almost universally available, and simple to setup.  The
increased capacity offered by broadband allows subscribers to use the Internet in ways
that were impractical with dial-up.  One example of this is high-resolution streaming
media.  Because of this, broadband and dial-up service providers are faced with different
classes of traffic that require different optimization methods.  As the popularity of
broadband continues to grow, so too does the need for these improvements.

Another significant change is the nature of Internet traffic.   In the past, the vast majority
of Internet traffic was WWW based.  Now, for broadband networks aimed towards the
home user, peer-to-peer (P2P) traffic accounts for the majority of HTTP bytes
transferred, exceeding traffic due to WWW accesses by nearly a factor of three [1].
Furthermore, P2P documents are three orders of magnitude larger than web objects, and a
small number of extremely large objects account for an enormous fraction of observed
P2P traffic [2].    These significant changes in Internet traffic suggest that there may be
potential to improve broadband hardware to increase performance.

This project was initiated by Motorola under Dan Grossman.  In order to remain current,
Motorola is interested in finding out more about network behavior from a cable
broadband service perspective.  They are interested in characterizing trends in network
traffic, and applying this knowledge to create high performance hardware.

The purpose of this project was to assist Motorola in optimizing cable modem hardware.
There have been many studies regarding TCP behavior and performance [2] [3] [5], but
ours differs from studies that have been performed in the past in that we are interested in
how specific options and conditions affect broadband network performance.  The
motivation for these conditions and options is important to consider.

Our first goal was to characterize the traffic contained in the trace files.  To do this, we
first examined which transport protocols were present in the trace.  We also attempted to
determine which application protocols were contained in the trace files by making
assumptions from port numbers.  Finally, we looked for trends in packet sizes to
determine if there was a significant difference from previous studies.  All of this
information aided us in developing a clearer picture of the traffic in the trace files and to
identify changes in Internet use.

Another goal was to study the prevalence of selective acknowledgements (SACK).
SACK is an extension to TCP that allows a host to acknowledge that it received a packet
without acknowledging the packets that came before it [14].  Though there have been
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studies that analyze the performance benefits of SACK, most of them used simulated data
rather than actual packet traces from the Internet [12].

Explicit congestion notification (ECN) is another extension to TCP.  Using ECN, a router
can set 2 bits in IP’s differentiated services field or 2 bits in TCP’s reserved field to
indicate that there is congestion on a network link.  ECN is especially helpful when used
in conjunction with an active queue management mechanism that allows a router to
detect congestion before the queue overflows [18].  In [3], the authors measured the
prevalence of ECN in packet traces and discovered that it was enabled in just 0.14% of
the packets.  Our goal was to confirm or refute their findings.

We also wanted to study the effects of non-responsive traffic on TCP performance.  Non-
responsive traffic is defined as traffic that does not respond to congestion control.  UDP
is non-responsive by default.  During congested periods, it is possible that a surge of non-
responsive traffic could significantly decrease the performance of TCP [19].  Our goal
was to determine if there is evidence of this in the trace files we were given.

This paper analyzes Internet traffic from a cable broadband service provider. Motorola
captured header packets by means of a packet sniffer installed at the ISP head-end, and
they generated trace files with ‘tcpdump’.  Motorola generated traces both downstream to
the client, and upstream to the Internet at large.  We analyzed three gigabytes of packet
traces spanning three consecutive hours on July 10, 2003.  These traces contained
42,485,439 packets from 38,572 hosts transmitting 52,838,056,419 bytes.  Our results
quantify: (1) aggregate application-oriented capacity usage statistics, (2) the prevalence
and usage impacts of TCP-SACK, (3) the prevalence of Explicit Congestion Notification
(ECN), (4) the effects of non-responsive (UDP) traffic on TCP, and (5) proper sampling
sizes and techniques. Based on trends in these quantifications and results we are able to
make optimization recommendations both on the hardware level (cable modems) and on
the software level (TCP).  Overall, we present important implications for Motorola’s
broadband department.

The paper is organized in 5 sections.  Section 2 contains additional background and
information on previous work that is related to this project.  Section 3 outlines packet
trace files that we analyzed, the available tools that we used in our data analysis, and the
custom tools developed to extract relevant data from the trace files.  Section 4 is a
detailed results section and contains the bulk of our analysis.  Finally, section 5 features
the conclusions that we drew from our analysis, as well as the implications of our study.

2 Related Work
Many studies have used real-world packet captures to discover trends and changes in
Internet traffic.  Likewise, there have been studies that attempted to identify performance-
enhancing changes that can be made to the TCP/IP suite and broadband networks.  These
studies have made important contributions to our own work.  In this section, we compare
our work to some of these studies and list the points that make our work unique.
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2.1 Characterization of Internet Traffic
One such study, conducted by Sharad Jaiswal, et. al., formulated a passive methodology
that infers the sender’s congestion window by noting TCP segments that pass through a
measurement point [3].  As in our work, this study gathered its data from real-world
network connections rather than generated by a simulation.  In the case of this study, the
source was a Tier-1 network provider, which provided them with over 10 million
connections.  Using this data, the team was able to develop methods for estimating the
sender’s congestion window and round-trip time (RTT). They found that: (1) a major
cause of sender throughput limitation is often the lack of data to send, instead of network
congestion and (2) connections do not usually experience large RTT variations
throughout their lifetimes.

The estimation methods derived in [3] are similar to the ones used by the tcptrace utility,
which was used in our research.  Perhaps the most important difference between this
study and ours is that Jaiswal et al were primarily concerned with measuring TCP
performance, not improving it.   Our project focuses more on characterizing trends in
network traffic that may lead to hardware or software improvements.  This study
provided us important background information regarding TCP characteristics that aided
in our understanding of RTTs and general TCP behavior.

In [4], Felix Hernandez-Campos, Kevin Jeffay, and F.Donelson Smith studied trends in
web traffic using nearly 1 terabyte of packet traces that were collected in 1999, 2001 and
2003 from the University of North Carolina at Chapel Hill’s link to its Internet service
provider.  In addition, their results were compared to smaller but similar analyses by
other researchers spanning the 1995-1998 timeframe.  The authors noticed an increase in
the complexity of web pages as well as the size of requests.

As in our study, the authors of [4] worked with anonymized capture data, and were
interested in finding out how small a sample duration could be and still maintain a high
level of accuracy.  Of particular interest to us were the conclusions they reached
regarding sampling sizes.  The researchers found that their 90-second traces produced
results that were virtually indistinguishable from the 4-hour traces.  Though our study
focused on more than one class of Internet application, the methods they used to derive
the proper sample sizes were generic enough for our use as well.

Karthik Lakshminarayanan and Venkata Padmanabhan [5] focused on the growth of
peer-to-peer networking applications.  These applications exist primarily to allow their
users to share large media files with other peers.  The team found that the bandwidth
usage of broadband hosts is asymmetric with downstream bandwidth usage approaching
five times the level seen on the upstream.  Like our work, the researchers focused on
broadband hosts but they limited their work to a single class of applications. The
methodology used in this effort is significantly different than ours.  As opposed to using
hardware to passively collect data, they installed measurement agents on residual hosts.
They gathered various data including TCP throughput, ping, packet-pair and traceroute
measurements from various vantage points.
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In another study, Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D.
Gribble, and Henry M. Levy [2], took interest in the growing popularity of peer-to-peer
networking.  Using packets traces gathered from May 28, 2002 to June 6, 2002 at the
University of Washington, the researchers found that peer-to-peer applications have
eclipsed the World Wide Web as the leading use of the Internet.  Further, they found that
Kazaa, a popular P2P file sharing program, alone accounts for more than a third of all
TCP traffic and that the majority of peer-to-peer traffic is generated by a small number of
hosts.  They also posed suggestions for improving the performance of peer-to-peer
applications including a proxy cache to store frequently downloaded objects.  Though
very similar to ours, this study did little to analyze the behavior of the flows and instead
focused on statistical data.

2.2 TCP-SACK
Jitendra Padhye and Sally Floyd’s study [6] took interest in the deployment of various
congestion control algorithms and TCP options, including ECN and SACK.  The
outcome of this project was TBIT, a tool that analyzes the behavior of the TCP
implementations found on public web servers.  TBIT can check any web server in a non-
disruptive manner without any special privileges.  Our project differs in that we analyzed
data that was captured between two points, as opposed to querying web servers.  An
understanding of this project provided us additional insight as to how ECN, SACK and
other TCP-related options should operate.

Sally Floyd also participated in [12], a study of the performance increase SACK
provides.  In this study, the authors used simulated data rather than packet traces from the
Internet to reach their conclusions.  They compare the time needed by various TCP
implementations to recover from dropped packets and conclude that without SACK, TCP
performance suffers because it can only retransmit one dropped packet per round-trip
time.

2.3 ECN
Sally Floyd explored the performance implications of ECN in [20] using simulated
packet traces.  In this study, a random early detection (RED) gateway was used to set the
ECN bits.  Floyd discovered that ECN does give a modest performance gain to TCP/IP
but cautions that the study should only be viewed as “a preliminary investigation” of
ECN.  Floyd also concludes that the main advantage of ECN is that it decreases packet
drops, which benefits connections that depend on the timely arrival of data.

The authors of [21] arrived at conclusions that were similar to Floyd’s.  Using a small
experimental test bed, they compared the performance of TCP connections using ECN in
conjunction with RED against that of TCP connections without ECN.  The authors found
that by using ECN, their experimental hosts were able to download a 20 megabyte file 14
seconds faster than they were able to without ECN.  Further, they found that a single
ECN-capable host had a negative effect on the performance on non-ECN hosts on the
same network.



5

2.4 Effects of Non-Responsive Traffic on TCP
In [22] Sarah Joyce was interested the effect unresponsive traffic would have on TCP
traffic. She chose to investigate how network gaming over UDP impacted the overall
network performance. The authors ran simulations at two different measurement sites
where network games were played.  One is located in Auckland University in New
Zealand and the other in The New Zealand Internet Exchange. The particular games that
were considered were Quake World and Unreal Tournament.

The results of her simulation suggested that the network games did in fact restrict the
throughput of TCP on a heavily loaded link. She concluded that the effect of UDP on a
link is comparable to putting a "cap" on a network.  Voice over IP applications had
similar results, which suggested that unresponsive traffic brings the same negative results
regardless of the application.

We used a different methodology to measure unresponsive traffic’s impact on TCP
traffic.  We isolated periods in the trace where unresponsive traffic was high and periods
where unresponsive traffic was low. We then compared these two groups using average
round-trip-time (RTT) per flow and packet retransmissions per flow as performance
metrics.

3 Tools Used in Analysis
During the course of this study we used three open source tools and several custom
scripts to gather information from the trace files.  In this section, we list these tools and
explain how we used them.

The data that was used in this study was obtained using the process described in [7].  In
summary, Motorola designed a Capture System for Internet Subscriber Traffic (CSIST)
to capture packet headers of IP traffic on a Hybrid Fiber Coax (HFC) cable network.
This system is capable of passively collecting and monitoring IP sessions from one
100baseT branch of a Hybrid Fiber Coax network.

The system’s software performs packet collection, packet sanitization, trace file
compression, and trace direction combination.  The tool tcpdump [17] was used to collect
the packets for the system.  Tcpdump uses the libpcap [17] library, a system-independent,
open-source interface for user-level packet capturing.  The tool tcpdpriv [8] was then
used to sanitize the collected packets.  The data sanitization includes anonymizing the IP
addresses, overwriting the MAC addresses and removing other private packet
information.

The captured headers themselves consist of the first 100 bytes of each packet.  This is a
sufficient size to capture the IP header, the transport layer header, and all of the pertinent
header option fields.  The packet’s actual payload is not captured.  The IP addresses map
to unique, anonymous addresses, and the network port numbers are conserved.

The capture files used in this project were collected by one of Motorola’s clients and
represented three consecutive hours worth of TCP headers. We received two files from
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Motorola: one containing packets from the upstream link and the other containing packets
from the downstream link.  We used ipsumdump [9], a tool written by Eddie Kohler of
the International Computer Science Institution, to summarize the libpcap files into a more
easily read combination file where both the upstream and the downstream packet traces
were combined sorted by timestamp.

As explained previously, the capture files were generated using tcpdump.  Tcpdump is an
open source project that uses the libpcap library to capture packets.  It also provides a
flexible filtering syntax that allowed us to reduce the capture files to smaller, more
manageable sizes.  Its filtering ability is somewhat limited because it cannot detect TCP
options.

Ethereal is an application that provides a graphical interface for viewing packet capture
files.  It also has a more advanced filtering language than tcpdump, allowing the user to
filter based on a wide variety of TCP and application layer protocol options.  Ethereal can
create simple time-sequence, RTT, and throughput graphs that enable the user to quickly
visualize the packets in the capture file.  All of these features proved useful to us when
identifying periods of data within the capture files that were of particular interest.

Of all the tools used during this project, tcptrace was perhaps the most useful and
versatile.  Developed by Shawn Ostermann at Ohio University, tcptrace recreates the
events that occurred during a connection and gathers a plethora of useful statistics.

Especially helpful was tcptrace’s ability to gather RTT statistics.  This helped to identify
periods in the capture files during which congestion was higher than usual.  It was
necessary to find these periods in order to study the effects of non-responsive traffic on
TCP.

3.1 Custom Tools
In addition to pre-existing programs, we also found it necessary to develop custom
programs.  These scripts interfaced with the libpcap library in order to read and
manipulate the capture files.  Because they use libpcap, all of the programs can take
advantage of the same filter syntax used by tcpdump.  Our programs were developed for
two purposes: to filter capture files or to gather statistics about the connections in a
capture file.

To better collect information about SACK and ECN using connections, we wrote a
program that adds the ability to filter capture files by TCP options.  Libpcap’s filtering
syntax does not allow for this.  We also wrote custom programs to perform simple
statistical analyses on the capture files such as counting the number of hosts and
connections.

4 Results
In this section we present and explain the results of the various analyses conducted on the
packet trace files.  These analyses fall into four major categories: the characterization of
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traffic found in the files, the prevalence and performance of TCP-SACK, the prevalence
of ECN, and the effects of non-responsive traffic on TCP performance.

4.1.1 Characterization of Traffic
Before proceeding with more specific analysis, we first found it necessary and beneficial
to gather aggregate statistics from the capture files to determine the make-up of the
traffic.  To obtain a broad image of the traffic, we found which transport- and
application- layer protocols were most prevalent and gathered statistics on the packets
themselves.

4.1.1.1 Transport Protocols
We first developed a simple tool to total the number of bytes transmitted by each
transport protocol encountered.  This program extracts the transport protocol number
found in the IP header and adds the number of bytes in the packet to that protocol’s total.
Figure 1 shows a chart of this program’s output when run over the entire capture file.  As
expected, TCP dominates among transport protocols, accounting for 98.14% of all the
bytes transferred.  UDP, the next most popular protocol, accounts for another 1.74%,
while ICMP, GRE, ESP, and OSPFIGP combine for 0.12% of the total bytes transmitted.

Of the final four transport protocols listed ICMP is the most well-known.  The Internet
Control Message Protocol is used for troubleshooting and error messages.  General
Routing Encapsulation (GRE), also called IP tunneling, details how to encapsulate an IP
packet inside another one.  IP tunnels are frequently used to access private LANs from
remote locations.  Encapsulate Security Payload (ESP) is a security used by IPv6 and
Open Shortest Path First Internal Gateway Protocol (OSPFIGP) is a routing protocol
designed specifically for use on the Internets.
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4.1.1.2 Application Protocols
Prior studies [2] have shown that peer-to-peer file sharing applications such as Kazaa are
now the primary consumers of capacity on some parts of the Internet.  To measure peer-
to-peer traffic for a broadband ISP, we wrote a tool to total the number of bytes sent to
and received by each port number.  A table showing the top 50 capacity-using ports,
sorted by total bytes transmitted, is shown in Figure 2, with peer-to-peer applications
bolded.  Much of this data was taken from [11].  It should be noted that it is difficult to
say for certain which applications are using these ports without examining the payload
data.  Nonetheless, the presence of five ports that are used by well-known file sharing
applications lends credible evidence to the claim that peer-to-peer programs are
responsible for a significant portion of Internet traffic.

Interestingly, port 80, most frequently used by WWW servers, still accounts for more
traffic than any other port despite its relatively small document size.  This is due mainly
to the sheer number of connections it services.  It can still be said that the WWW is the
most popular use of the Internet, but file-sharing applications are not far behind.

Figure 1: The graph on the left compares the number of bytes transmitted using TCP to the
number of bytes transmitted by all other transport protocols. The graph on the right shows
which protocols are contained in OTHER and in what portions.
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Rank Port Application Bytes Bytes To Bytes From
Number
of Flows

1 80 WWW 2,373,960,752 207,631,342 2,166,329,410 107,035

2 1214 Kazaa 2,298,749,546 1,537,815,918 760,933,628 34,636

3 6882 BitTorrent 1,737,493,411 695,768,909 1041,724,502 3,991

4 6699 WinMX 1,048,744,327 677,183,431 371,560,896 3,301

5 4662 Emule 922,462,874 551,699,262 370,763,612 40,360

6 3776 Device Provisioning Protocol 840,727,100 816,550,900 24,176,200 429

7 20 FTP data 684,783,212 20,381,119 664,402,093 895

8 3110 sim-control 664,033,874 23,126,686 640,907,188 925

9 9230 Unknown 652,797,894 18,348,852 634,449,042 183

10 3967 Unknown 651,679,984 19,613,854 632,066,130 696

11 2330 TSCCHAT 648,052,112 20,772,763 627,279,349 717

12 6881 BitTorrent 627,016,039 122,190,825 504,825,214 5,811

13 6883 BitTorrent 620,646,812 127,427,494 493,219,318 1,471

14 6884 BitTorrent 552,405,478 100,987,050 451,418,428 528

15 2615 Firepower 536,476,266 18,314,407 518,161,859 1,399

16 2201 Advanced Training System 461,714,688 45,192,767 416,521,921 2,  741

17 2025 Xribs 460,941,444 255,796,906 205,144,538 296

18 411
Direct Connect /
Remote MT Protocol

411,559,535 386,305,490 25,254,045 1176

19 3623 Unknown 381,333,901 59,681,285 321,652,616 4040

20 1800 ANSYS License Manager 362,159,594 317,387,346 44,772,248 1539

Figure 2: This table shows the top 50 capacity-using ports. Bolded labels in the Application
field indicate a file-sharing application.  Unidentifiable applications are italicized.  The top 50
ports are found in Appendix A [11]
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4.1.1.3 Packet Size
We next graphed the cumulative distribution function (CDF) of packet sizes (shown in
Figure 3) using all of the packets in the capture files.  This data was gathered by another
custom program that recorded the size of each packet in the capture files.  The purpose of
this experiment was to determine if the rise broadband deployment and the corresponding
increase in large-file transfers had led to an increase in packet sizes as well.  We found
the average packet size to be approximately 619.89 bytes.  The most common packet size
was 54 bytes, which corresponds to an empty ACK with TCP, IP, and Ethernet headers.
The next most common size was 1514 bytes, which corresponds to Ethernet’s maximum
transfer unit plus the Ethernet header.  The largest packet size encountered was 2062
bytes.  There were 80 such packets, accounting for less than 0.0002% of all packets.

The results we obtained by measuring packet sizes was compared to those obtained at
NASA’s Ames Internet Exchange (AIX).  The CDF of their results is shown in Figure 4.
Interestingly, AIX actually saw larger packets with significant spikes at approximately
600 and 1500 bytes.  There are similarities nonetheless.  Two of the three most common
packet sizes seen at AIX are 40 and 1500 bytes.  Once the 14-byte Ethernet header is

Figure 3: This graph shows the cumulative distribution function of packet sizes.
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stripped, these equal the two most common packet sizes in the capture files (54 bytes and
1514 bytes, respectively).

There is one significant difference between our results and those obtained at AIX.  The
average size of the packets encountered at AIX was 413 bytes [15], which is more than
200 bytes smaller than the 619.89 we found in the capture files.

4.2 TCP-SACK
Selective acknowledgement (SACK) is an extension to the TCP protocol that allows a
host to acknowledge received segments without acknowledging the segments that arrived
before it.  This is beneficial on congested networks where multiple segments may be lost
from a single data window. The presence of SACK can be determined from the initial
TCP handshake.  A host that supports SACK will put the two-byte “SACK-permitted”
option in the header of its SYN segment [14].

TCP implementations without SACK can only retransmit one segment for each round-
trip time or they risk retransmitting data that has already been received.  TCP

Figure 4: The CDF of packet sizes seen at NASA AIX on Wednesday May 19, 1999 [15].
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implementations with SACK know which segments have been received and thus are able
to retransmit only the segments that were dropped [14].  SACK implementations were
shown to provide significant performance gains over non-SACK implementations in
simulations [12].  However, there has been little research on its real-world benefits.  For
this reason, we chose to examine both the prevalence of TCP-SACK implementations
and the performance of the hosts that implement it.

The Windows operating system has shipped with a SACK implementation since
Windows 98; the Linux kernel has since version 2.1.90.  Likewise, most server operating
systems including the BSDs, Solaris, Digital Unix, and the aforementioned Linux kernel
also ship with or can be configured to use TCP SACK [13].

To gather data on the prevalence of SACK, we wrote a tool that iterates over the entire
trace file.  This tool looks for one of two things: the SACK-permitted option in a SYN
packet or the SACK-block option in any other packet. If either of these is found, the host
is marked as a SACK-enabled host.  This information is reflected in the results, which
show that a large portion of Internet hosts transmit the SACK-permitted bit in their SYN
segments (Figure 5 and Figure 6).  As expected, the majority of the hosts are SACK-
enabled.  TCP-SACK is less common on upstream hosts, perhaps because server
administrators are reluctant to deploy non-standard TCP implementations.

With its prevalence established, we next looked at the advantages of TCP-SACK.  As
previously mentioned, simulation-based tests have shown that the use of selective
acknowledgments is quite beneficial.  To measure its real-world benefit, we decided to
compare the fraction of packets retransmitted by SACK-enabled flows and non-SACK-
enabled flows during a thirty-minute period selected at random.  This period represents
minutes 50 through 80 in the trace file.  All TCP flows that sent a packet during this
period, whether the complete or incomplete, were taken into account when gathering this
data.  A graph of the CDF of these retransmission rates can be found in Figure 7.  The
graph shows that flows that are not SACK-enabled suffer from higher retransmission
rates.  This data corroborates the conclusions of previous studies [12].

Trace File SACK-enabled Hosts Not SACK-enabled Hosts
Upstream 29432 3138
Downstream 945 27
Total 30377 3165

Figure 5: This table shows the number of hosts that are SACK-enabled and the number
that are non SACK-enabled. This data was gathered from the upstream and downstream
trace files. The total row is the sum of the first two.
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4.3 ECN
In the IP header, there are two bits that correlate to ECN – the CE and the ECT bits.  If
either one of these bits is set, (but not the other – an XOR), then that host is capable of
recognizing and using ECN.  If both bits are set, then that particular host is encountering
congestion, and would like to use ECN.  Hosts on both sides must support ECN in order
for the protocol to have any effects.  The use of ECN is nearly non-existent in the data we
were given.  Only 7 of the 38,572 unique hosts in the trace files, or 0.018%, set the ECN
capable bit. Since the number of ECN capable hosts is so close to 0%, it is safe to say that
ECN simply isn’t being used.

Figure 6: Prevalence of TCP-SACK by host. Only SYN-sending hosts were counted. The
graph on the left shows SACK prevalence for all hosts in the trace files. Upstream hosts
are on the top right and downstream hosts are on the bottom right.
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4.4 Effects of non-responsive traffic on TCP
Non-responsive traffic refers to traffic that does not have any sort of congestion control
mechanism built in.  For our purposes we assume that all UDP traffic is non-responsive.
This traffic could pose a threat to responsive traffic (i.e., traffic that does make use of
some congestion control mechanism) on heavily congested network links.  We identified
several brief periods in which non-responsive traffic capacity spiked and attempted to
determine what effect this had on responsive traffic.

On average, TCP traffic made up 98.14% of the total bandwidth usage.  This left 1.87%
for non-TCP traffic, which consists mostly of UDP packets.  We identified three thirty-
second periods during which non-TCP traffic accounted for less than 1.00% of all traffic
and three thirty-second periods during which non-TCP traffic made up 5.00% or more of
the total traffic.  We then compared these two groups using average round-trip-time
(RTT) per flow and packet retransmissions per flow as performance metrics.  Tcptrace

Figure 7: The CDF of packet retransmissions per TCP flow. This chart shows that TCP-SACK provides a
significant advantage to flows the implement it.
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was used to gather both RTT data and packet retransmission data.  The results of our
analysis can be seen in Figure 8 and Figure 9.

From the data we have analyzed, it appears as though non-responsive traffic does have a
detrimental effect on TCP traffic.  Both the average RTT and the retransmission rate per
TCP flow suffer when non-responsive traffic peaks.  However, due to the small sample
size of just three minutes, it is difficult to draw any firm conclusions.  Increasing the
sample size was not possible due to the limited amount of non-responsive traffic in the
trace files.  If we were to increase the sample size, the percent of non-TCP traffic would
drop well below the 5.00% mark we set as “high”.

Figure 8: This graph shows the CDF of the average RTT per TCP flow.  The average RTT was found for
each flow using the tcptrace utility.
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5 Sampling Issues
When measuring connection-based statistics, we found that it was difficult to extract data
from each of the 915,026 flows in the capture files given our resources.  To expedite our
analyses we determined exactly what portion of the trace files would need to be examined
in order to obtain accurate results.  The authors of [4] performed a similar procedure and
determined that 90 seconds worth of traces would yield accurate results provided there
were enough sample values.  Unfortunately, their traces were captured on a more
congested network at various times from 1995 to 2003.  Though we could not use their
results, we were able to implement their methods to obtain our own.

To determine the proper sample size for our SACK performance analysis, we split the
traces into 3 files containing approximately 1 hour each.  The second of these files was
chosen and split into 2 files each with 30 minutes of data.  These were then split into 4
files with 15 minutes in each.  We performed our SACK analysis on 2 of the 15-minute

Figure 9: The CDF for packet retransmission rate per TCP flow.  This graph shows little difference
between periods in which non-responsive traffic is at its highest and periods in which it is at its lowest.
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files taking 1 from each of the 30 minute traces and averaged the results.  The analysis
was also performed on each of the 30-minute traces and, again, the results were averaged.
Finally, the analysis was performed on the 1-hour long trace file.  The results of these
tests (Figure 10) show a significant difference between the retransmission rates of the 15-
minute samples and the 30-minute samples, but a much smaller difference between the
30-minute samples and the 1-hour sample. From these tests, we were able to determine
that a single, 30-minute trace file was sufficient to gather statistics regarding the
performance benefits of SACK.

Figure 10: The results of our sampling procedure for SACK. On the left is the average of the 15-minute traces. In
the middle is the average of the 30-minute traces. On the right is the 1-hour trace. Note that the difference
between the curves of the 30-minute and 1-hour trace is minimal.

6 Conclusions
Based on our results, we conclude that Internet traffic is indeed changing.  Though we
found the WWW to be the most popular application on the Internet, in terms of both
flows and bytes transmitted, peer-to-peer file-sharing utilities have made significant
gains.  In fact, when totaled, peer-to-peer applications use far more bandwidth than does
the web and they use fewer connections to do it.  In addition, peer-to-peer applications
send nearly as much data as they receive.

Unfortunately, we don’t have trace files taken from different times and congestion
periods to compare to, so it is difficult to say whether or not file-sharing utilities overtax
the upstream bandwidth of their users.  Nonetheless, we consider this a likely scenario.
One possible solution to this problem is to increase the amount of upstream bandwidth
available to the users of cable modems.  There are several ways to do this, the simplest of
which is to increase the number of upstream carriers.

We were able to detect a slight detrimental effect that non-responsive traffic had on TCP
in the trace files we examined.  It is likely that this effect will increase during times of
greater congestion.  Thus, it may be beneficial to limit the rate at which non-responsive
traffic is transmitted by the cable modem during periods of high congestion.  This would
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increase the performance of TCP at the expense of applications that use UDP, which
makes up the majority of non-responsive traffic.

Improvements can be made to TCP as well.  Our statistics show a wide adoption rate for
SACK, however the same cannot be said of ECN, an extension to TCP with similar
performance implications [16].  Unfortunately, ECN can cause problems when used with
older routers.  Still, we encourage the deployment of ECN as well as the continued
deployment of SACK as both are capable of increasing TCP performance on congested
networks.

7 Future Work
The original proposal for this project mentioned several areas of interest that we were not
able to investigate during the course of our project.  We planned to study the effects of
ACK compression on TCP flows, however we were unable to positively identify any
occurrences of ACK compression.  Likewise, we could not detect any uses of TCP
performance enhancing proxies (PEPs).  PEPs are often used to help relieve the effects of
ACK compression but they are difficult to detect because they do not alter the packets
they encounter in any way.  Both of these topics warrant further study, perhaps with the
aid of a simulator to eliminate the need to identify them in capture files.

The analyses mentioned above would provide more insight into the behavior of TCP
traffic on the Internet.  Further study on these subjects as well as the subjects we
investigated would be beneficial both to Motorola and to the Internet itself.
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Appendix A

Rank
Port

Number
Application Bytes Bytes To Bytes From

Number of
Flows

1 80 WWW 2,373,960,752 207,631,342 2,166,329,410 107,035

2 1214 Kazaa 2,298,749,546 1,537,815,918 760,933,628 34,636

3 6882 BitTorrent 1,737,493,411 695,768,909 1,041,724,502 3,991

4 6699 WinMX 1,048,744,327 677,183,431 371,560,896 3,301

5 4662 EMule 922,462,874 551,699,262 370,763,612 40,360

6 3776 Device Provisioning Protocol 840,727,100 816,550,900 24,176,200 429

7 20 FTP data 684,783,212 20,381,119 664,402,093 895

8 3110 sim-control 664,033,874 23,126,686 640,907,188 925

9 9230Unknown 652,797,894 18,348,852 634,449,042 183

10 3967Unknown 651,679,984 19,613,854 632,066,130 696

11 2330 TSCCHAT 648,052,112 20,772,763 627,279,349 717

12 6881 BitTorrent 627,016,039 122,190,825 504,825,214 5,811

13 6883 BitTorrent 620,646,812 127,427,494 493,219,318 1,471

14 6884 BitTorrent 552,405,478 100,987,050 451,418,428 528

15 2615 Firepower 536,476,266 18,314,407 518,161,859 1,399

16 2201 Advanced Training System 461,714,688 45,192,767 416,521,921 2,741

17 2025 Xribs 460,941,444 255,796,906 205,144,538 296

18 411
Direct Connect /
Remote MT Protocol

411,559,535 386,305,490 25,254,045 1,176

19 3623Unknown 381,333,901 59,681,285 321,652,616 4,040

20 1800 ANSYS License Manager 362,159,594 317,387,346 44,772,248 1,539

21 63332Unknown 343,945,830 9,166,364 334,779,466 108

22 1657 netview-aix-7 302,290,053 13,993,439 288,296,614 461

23 2315 Precise Sft. 301,267,240 12,828,333 288,438,907 498

24 2198Unknown 285,869,661 279,129,806 6,739,855 149

25 3166Unknown 275,420,915 7,711,526 267,709,389 260

26 3269 Microsoft Global Catalog 261,477,098 11,166,659 250,310,439 1,441

27 27960Unknown 254,116,988 126,426,719 127,690,269 1,345

28 3133Unknown 229,120,192 6,304,441 222,815,751 193

29 2174Unknown 227,093,857 90,084,047 137,009,810 226

30 6885 BitTorrent 226,482,541 68,540,748 157,941,793 604

31 2002 Globe 219,491,029 46,489,228 173,001,801 1,092

32 1414 IBM MQSeries 211,684,952 205,066,829 6,618,123 203

33 1618 Skytelnet 208,991,174 203,993,682 4,997,492 213

34 3403Unknown 207,168,543 8,382,910 198,785,633 256

35 3847Unknown 206,996,509 8,734,282 198,262,227 792

36 29908Unknown 206,994,495 128,373,296 78,621,199 48

37 3276 Maxim ASICs 197,546,116 14,423,559 183,122,557 10,170
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38 6886 BitTorrent 181,533,049 19,064,339 162,468,710 1,555

39 1255Unknown 173,921,001 36,718,160 137,202,841 2,022

40 1191Unknown 170,718,513 166,969,904 3,748,609 240

41 3187Unknown 152,385,086 5,118,352 147,266,734 1,073

42 29907Unknown 147,740,372 69,227,417 78,512,955 42

43 3020 CIFS 144,878,323 137,639,078 7,239,245 308

44 65325Unknown 143,383,066 139,572,937 3,810,129 40

45 1150Unknown 142,306,785 8,887,570 133,419,215 385

46 2310 SD Client 140,420,571 53,916,414 86,504,157 3,911

47 2493 Talarian MQS 138,745,900 3,948,870 134,797,030 148

48 4366Unknown 136,583,928 132,128,553 4,455,375 158

49 2604 NSC CCS 136,427,460 4,436,001 131,991,459 147

50 29128Unknown 136,344,617 132,174,841 4,169,776 20

Figure 11: This table shows the top 50 capacity-using ports. Bolded labels in the Application
field indicate a file-sharing application.  Unidentifiable applications are italicized [11]


