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Abstract 
 

The Internet was not designed with multimedia in mind.  TCP is not well suited 

for multimedia and UDP is un-responsive in the face of congestion.  MM-Flow, a rate-

based protocol that responds to congestion, has not been thoroughly tested.  We improve 

MM-Flow, perform an extensive analysis, and explore what it means to be a TCP-

Friendly protocol. We find the new MM-Flow performs better over a wide range of 

network conditions. 
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1 Introduction 
 
 The Internet is quickly becoming a way of life.  Originally designed for text-based 

traffic, the Internet is increasingly serving as a medium for multimedia applications 

streaming video and audio, creating vast opportunities for communication and exchange 

of information.  Radio and television broadcast, video-conferencing, and virtual 

classrooms are just a few of the benefits of multimedia over the Internet.  Unfortunately, 

the underlying network structure allowing for these applications is faced with some 

inherent problems.  Broadband technology is becoming increasingly available to 

consumers, but overall demand on the Internet is growing faster than the network can 

support, which leads to congestion and poor performance. 

Text-based traffic, such as e-mail and HTML web pages, uses a protocol known 

as TCP, which recognizes congestion and reduces its sending rate appropriately.  

Multimedia traffic, on the other hand, has different performance requirements that make 

TCP, for reasons that will be discussed, a poor choice for multimedia.  Instead, 

multimedia typically uses a protocol known as UDP.  Unfortunately, UDP ignores 

congestion and has the potential for receiving more than its fair share of bandwidth while 

TCP is prevented from receiving its fair share. 

 An area that needs considerable research is the issue of congestion control.  

Congestion is typically measured in the form of packet loss.  When a packet travels from 

the sender to the receiver it must go through a number of routers.  The job of the router is 

to send packets along one of its outgoing lines such that it is directed toward the receiver.  

Routing tables are used to determine the best path.  The problem is that routers have a set 
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queue size, which means they can only hold a certain number of packets at any point in 

time, and the outgoing lines have a limited bandwidth.  Congestion occurs at the router 

when the rate of incoming packets is faster than the rate of outgoing packets and the 

queue fills up.  Once the queue is full the router can no longer handle the incoming 

packets, which are then dropped.  

If the end hosts always sent packets at the fastest rate possible, routers would 

constantly be overloaded, packets would continually be dropped, and nothing would get 

done.  TCP recognizes congestion in the form of packet loss and reduces its sending rate 

through a process known as Additive Increase Multiplicative Decrease (AIMD), which 

means that the sending rate is cut in half when a packet loss is detected and then slowly 

climbs again. This has proven extremely effective for text-based traffic.  As stated, UDP 

ignores congestion and continues sending at its specified rate.  The end result is that 

competing TCP and UDP flows will eventually cause congestion.  TCP will reduce its 

sending rate, allowing UDP to take all of the available bandwidth.  This situation is 

described as “starving” the TCP flow.  While this situation may be desirable for the 

multimedia user, it is considered unacceptable because much of the traffic on the Internet 

travels across TCP.  

If UDP causes so many problems with congestion, then one may wonder why 

multimedia does not use TCP.  First, multimedia applications do not need to be 

“reliable”, meaning that they can tolerate some data loss.  This is due to fact that human 

beings can tolerate some loss without becoming annoyed.  TCP is a reliable flow, 

meaning it guarantees that all packets are delivered through retransmission.  This is 

unnecessary in a multimedia application, and therefore would be wasting valuable 
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bandwidth.  Furthermore, multimedia is extremely sensitive to jitter, or variation in inter-

packet arrival time.  In other words, if frames do not arrive at a consistent rate the user 

will notice choppiness, which is then perceived as poor quality.  TCP only makes this 

situation worse through retransmission.  If a packet is retransmitted it arrives at the 

receiver considerably later than when it is needed, thus contributing to jitter.  Similarly, 

TCP’s aggressive approach to AIMD causes significant fluctuations in transmission rate, 

which also leads to jitter.  As a result, UDP is simply a better choice for multimedia. 

 If TCP is too responsive and UDP is not responsive enough, a possible solution 

would be to compromise in the form of a “TCP-friendly” protocol, meaning that it will 

not starve the TCP flow. While the notion of TCP-friendliness is easy to grasp, the 

difficulty lies in measuring it and determining whether a particular protocol is really 

TCP-friendly. In later sections of this paper, we will examine the nature of TCP-

friendliness, but first we must discuss some existing protocols that claim to be TCP-

friendly. 

The creators of TCP-Friendly Rate Control (TFRC) [FHPW2000] introduced one 

approach to bridging the gap between TCP and UDP.  The idea behind this protocol is to 

react to congestion but not as quickly and as drastically as TCP, thereby providing a 

smoother sending rate.  For example, instead of tracking packet loss TFRC tracks “loss 

events,” meaning that multiple consecutive packet drops are considered as a single 

packet.  The receiver calculates the loss event rate using the “average loss interval” 

method to compute a weighted average of the loss rate over the last n loss intervals, with 

equal weights on each of the most recent n/2 intervals.  The receiver then reports this 

information back to the sender via an ACK (acknowledge) packet at least once per round-



 1-4

trip time, assuming it has received packets within that interval.  The sender uses this loss 

event rate to determine the sending rate.  If the sender does not receive any ACKS within 

several round trip times it assumes congestion and reduces the sending rate.  

The creators of TCP Emulation At Receivers (TEAR) [OY2000], a rival to TFRC, 

have proposed another solution.  TEAR has the same goal as TFRC—respond to 

congestion while providing a smoother sending rate—but uses a slightly different 

approach. TEAR determines that the sender’s role is simply to send a packet.  Therefore, 

all calculations, including loss rate and sending rate, are calculated at the receiver.  

Whenever the sending rate should be changed the receiver sends an ACK packet back to 

the sender with the new sending rate.  Since the receiver only sends packets back to the 

sender when it requests to either speed up or slow down the sending rate, it lessens the 

amount of data being sent back to the sender, thus using less bandwidth.  The creators of 

this protocol argue that they have an advantage over TFRC in a multicast environment, in 

that the sender will no t be constantly bombarded with ACKS from multiple receivers, but 

rather only when a receiver indicates a need to change the sending rate.  In addition, the 

computational burden of rate calculation is spread among the receivers instead of 

concentrated at the sender. 

 A third approach is known as MM-Flow and suggests that TCP-friendly 

applications can be built on top of UDP [CC2000].  There are a few major differences 

between MM-Flow and TFRC or TEAR that are worth mentioning.  First, since 

congestion control is found in the application layer, congestion is determined by frame 

loss rather than packet loss.  Second, the receiver determines the sending rate in the form 

of a scale value and ACKs this value back to the sender.  The scale value is important 
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because, unlike TFRC and TEAR, MM-Flow was designed to support different types of 

multimedia applications.  The scale value provides a generic reference that can then be 

mapped to the desired encoding scheme.  For example, TFRC and TEAR seem to assume 

the application layer is sending with a fixed frame size and variable rate.  MM-Flow, on 

the other hand, has been designed with two different applications in mind—MM-App, 

which sends frames of fixed size at variable rates, and MPEG-App, which follows the 

MPEG encoding standard of variable frame size with constant rate.  

 MM-Flow serves as the foundation of our project.  While initial tests suggested 

that MM-Flow is more TCP-friendly than UDP, it had not undergone exhaustive testing.  

As described in the next section, we first re-engineered MM-Flow somewhat to separate 

the protocol decisions into an actual transport layer, which measures congestion at the 

packet level rather than the frame level.  The application layer now sits directly on top of 

our transport layer, no longer needing UDP.  We hypothesize that this transition yields an 

increase in performance.  We also designed the application layer such that it is easier to 

add new types of encoding schemes.  Next we thoroughly tested the MM-Flow protocol 

to look for improvements, such as including some of the strengths of TFRC and TEAR. 

In this paper we examine some of the issues involved with multimedia 

applications over the Internet and some of the proposed solutions.  Through inspection of 

existing solutions we develop and test an improved protocol for multimedia applications 

that is considered TCP-friendly while still providing acceptable multimedia quality to the 

user. 

The chapters to follow go into depth regarding how we changed the MM-Flow 

protocol, including the specific modifications we made to both the application and 
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transport layers.  Upon making these changes, we continually tested MM-App against 

other protocols using simulations using a variety of network scenarios, as will be shown.  

These simulations provided us with the results that form the bulk of this paper, and will 

be discussed near the end.  We discovered a number of new topics that need exploration; 

these ideas will be discussed in the future work chapter.   
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2 Approach 

2.1 Re-Engineering of MM-Flow 
 

Before analyzing and testing protocols, we first re-organized MM-Flow.  

Originally, the MM-Flow project integrated a networking protocol with a multimedia 

application and so had to be considered as a unit.  We felt that breaking down MM-Flow 

into a transport layer and an application layer was beneficial, as it made each layer 

independent and MM-Flow became easier to compare with other protocols.  After 

making these changes to MM-Flow, we ran tests on it and the older version of MM-Flow 

to make sure that the functionality had not been changed.  Next, changes to how MM-

Flow worked were considered. 

The initial version of the MM-Flow system contained most of the logic at the 

application layer, with the transport layer's function only to separate the frames into 

packets and send them across the network.  In order to make the MM-Flow protocol more 

universal, it was necessary to move flow control and scale adjustment algorithms to the 

transport layer.  Applications that make use of MM-Flow no longer have to re- implement  

this functionality.  Instead, the application specifies a range and number of transmission 

scale values.  The transport layer then constantly assesses network conditions to decide 

which scale is most appropriate.  Periodically the application layer will query the 

transport layer to discover which scale it should use, and acts accordingly.  One example 

application, MM-App, gets the current scale value after each time a frame is sent, and 

uses it to calculate when the next frame should be sent.  Another application, MPEG-

App, gets the scale value before a frame is sent, and uses it to determine how many 

frames it can send, according to the MPEG specification. 
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When the transport layer became responsible for determining the scale value, we 

needed a new system for adjusting that value.  For the receiver to determine the proper 

scale value, as before, it would need to know which scale values were appropriate.  The 

sender at the application layer uses the scale values, so rather than specifying a means for 

communicating scale values to the receiver, it was simpler to make scale adjustments 

occur at the sender.  The receiver's role then became simply signaling, via ACK or 

NACK (negative acknowledge) packets, whether the sender should increase or decrease 

sending rate, respectively.  Upon receiving an ACK/NACK message, the sender adjusts 

its scale according to AIMD. 

The default number of rates was changed as well.  The original protocol was fixed 

at five scale values, for rates ranging from 300 Kbps to 1.5 Mbps.  We observed that the 

rate fluctuated a good deal and reasoned that increasing the number of rates would enable 

the protocol to respond more precisely; the "fair share" of bandwidth taken up by MM-

Flow can be more closely approximated when there are more choices available for rates.  

The simulation designer may now set how many rates to use, and how much bandwidth 

to occupy at the highest rate. 

In addition, we implemented two algorithms for determining what the current 

scale value should be at a given time.  The first method returns the standard scale as 

determined by the AIMD configuration. Since one of the goals of MM-Flow is to have 

less variation than TCP, the protocol also calculates a weighted average of recent scale 

values by using a history window.  The hope is that a single dropped packet (which 

normally causes the rate to be cut in half) will not cause so drastic a change in rate so 

quickly, while at the same time MM-Flow will still respond to more serious problems 



 2-9

quickly.  Simulation designers can choose whether to use the weighted scale or the 

standard AIMD-based scales through the MM-Flow interface. 

In addition, we implemented two algorithms for determining what the current 

scale value should be at a given time.  The first method returns the standard scale as 

determined by the AIMD configuration. Since one of the goals of MM-Flow is to have 

less variation than TCP, the protocol also calculates a weighted average of recent scale 

values.  The hope is that a single dropped packet (which normally causes the rate to be 

cut in half) will not cause so drastic a change in rate, while at the same time MM-Flow 

will still respond to more serious problems quickly.  Simulation designers can choose 

whether to use the weighted scale or the standard AIMD-based scales through the MM-

Flow interface. 

The weighted scale is implemented by means of an 8-slot history window.  Each 

time the new scale is calculated by AIMD, its value is placed at the head of this window 

with the oldest value being removed, ensuring that the array always contains the 8 most 

recent scales.  The weighted scale is then equal to the nearest integer to the result of this 

formula:  

Weighted scale = (20% * most recent) + (15% * 2nd most recent) + (15% * 3rd 

most recent) + (15% * 4th most recent) + (15% * 5th most recent) + (10% * 6th most 

recent) + (10% * 7th most recent) + (10% * 8th most recent)           

Equation 2-1: Weighted Scale Calculation 

 

2.2 Exploring TCP-Friendliness 
 

In addition to re-engineering MM-Flow, our project explored the nature of TCP-

Friendliness. First, we tried to determine the meaning of a “TCP-friendly” protocol. This 
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task proved more difficult than one would expect. Many protocols claim to be TCP-

friendly, without supporting their claim with an explanation or measurements. For 

example, it might be acceptable to say a flow is TCP-friendly if it uses a fair share of the 

bandwidth, meaning the total bandwidth divided by the number of flows. Another 

solution might be to say a flow is TCP-friendly if it uses the same bandwidth as TCP 

under the same network conditions. Perhaps a flow is TCP-friendly if it at least responds 

to congestion, unlike UDP. Eventually, our search for an answer lead us to the equation 

pR

B
T

*

*3/25.1≤  

Equation 2-2: TCP-Friendly Transmission Rate 

 
where T  is the maximum sending rate of a conformant TCP flow in Bps, B  is the packet 

size in bytes, R  is the round trip time in seconds, and p  is the per-flow packet loss rate 

[FF1999]. 

This equation calculates the maximum arrival rate at the router for a TCP flow 

when given the packet size, round trip time, and drop rate. The authors claim that a flow 

is TCP-friendly if it arrives at a rate less than or equal to the value specified by the 

equation.  We then used this equation to compute TCP-friendly measurements for each of 

our simulations. These results, as well as an in depth discussion of the formula, are 

presented in chapter 4, Results. 



 3-11

3 Evaluation Techniques 
 
 In order to accurately measure how a protocol acts within a networking 

environment we needed to use a simulator.  The simulator we used is NS version 2.1b7.  

NS is an object-oriented, discrete event driven network simulator developed at UC 

Berkeley written in C++ and OTcl. NS is primarily useful for simulating local and wide 

area networks [perform].  It allows us to run our protocols against other protocols such as 

TCP, UDP, and TFRC, by writing OTcl scripts.  By configuring the OTcl scripts we are 

able to test these protocols under different conditions that may provide insight into their 

behavior.  With the simulator we are able to track the data of all running protocols.  We 

then run our data collection scripts against the results provided by NS in order to obtain 

useful data that can be analyzed. 

3.1 Simulation Scenarios 
 
 Our simulation scenarios include the standard bottleneck layout, standard delay 

layout, standard fragile flow layout, and the multi-protocol layout.  In the first three, we 

used one protocol as our base for comparison with our protocols and others.  This base 

protocol is TCP, as one of our main goals is to create a protocol that is TCP-friendly. 

Each layout can be used in numerous tests simply by changing values within the protocol 

or switching the roles of the protocols we are looking at.   

The standard bottleneck layout, as shown in Figure 3-1, contains four nodes in a 

system.  Nodes numbered zero and one correspond to the senders of the two protocols to 

be tested.  Both of these are configured to send information across the link to node 

number three, the receiver in both protocols.  Node two contains our router.  Since both 
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protocols must send via node two, a bottleneck is created there.  Most of our 

measurements are taken from the packets traveling between node two to node three.  The 

length of the line connecting two nodes represents the delay between them. As shown in 

the figure, all of the delays are equal in this scenario.  This allows us to observe the 

interactions of the two protocols as they operate under the same conditions. 

 

               Figure 3-1: Standard Bottleneck Layout 

 The second major layout that we use is shown in Figure 3-2, the standard delay 

layout.  This is similar to the bottleneck layout in that nodes zero and one still correspond 

to the senders of the two protocols and have the same delay as node two, as shown by the 

length of the lines connecting them in the diagram.  The difference is that the bottleneck 

delay is greater.  The purpose of such a layout is to determine how a protocol reacts to 

longer round trip times. This is worth looking at since the time required to receive an 

ACK or NACK is increased, which might decrease responsiveness under congestion.  
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Figure 3-2: Standard Delay Layout 

 

 The third major layout that we use throughout our testing procedures is shown in 

Figure 3-3, the standard fragile layout.  In this layout the two protocols are on nodes zero 

and one, as before, but they have different delays to the router.  As one can see in the 

picture, the delay between node zero and two is significantly shorter than between node 

one and node two.  This allows us to test how the protocols react when another protocol 

is at an advantage with regards to round trip time.  The delay between node two and three 

is the same as in the standard bottleneck layout. 

 

Figure 3-3: Standard Fragile Layout 
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The fourth scenario, the multi-protocol layout, is used to get a more "real-world" 

perspective.  This layout, as shown in Figure 3-4, has a total of eight sending nodes, with 

eight receiving nodes.  Nodes zero through seven have the sending protocols.  Each 

sender node has only one receiver node.  For example, node zero sends to node eight, 

node one sends to node nine, etc. The simulation has a total of four TCP flows, two MM-

App-New flows, and two TFRC flows all running at once.  Nodes zero through three run 

TCP, four and five run MM-App-New, and six and seven run TFRC. 

This simulation provides us with a more realistic simulation than the rest because 

in the "real-world" there will not be just two flows running against each other over a 

network link, but rather there will be numerous flows all running at once going to 

different places.  All the links in the simulation are 4 Mbps, and the delays for all links 

are 5ms, except for the bottleneck link between nodes 16 and 17, which is 20ms. 

 The picture of the layout for this simulation is somewhat distorted due to the fact 

that there is such a large number of nodes and that the delays are all small.  Also, nodes 

11 and 15 appear in the same place, between nodes 10 and 12, but are in fact two 

different nodes. 

 

Figure 3-4: Multi-Protocol Layout 
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3.2 Data Collection Scripts 
 

After creating simulation scenarios, the next step in simulating network traffic is 

obtaining and formatting the data that the simulation provides.  The NS simulator 

monitors all events that occur throughout the simulation and produces a trace file.  An 

event may be classified as an enqueue, dequeue, drop, or receive.  The trace file contains 

one line per event and identifies the event type, time, from-node, to-node, packet type, 

packet ID, and many other useful values. 

While the trace file contains most of the information one needs to know, a 

significant effort must be given to formatting the results in a useful manner.  Many times 

people generate their own data collection scripts from scratch or borrow and modify 

someone else’s scripts to fit their simulation.  As a part of our project, we decided to 

make a sincere effort at creating a library of generic data extraction tools that are readily 

available and could be used on any simulation.  The scripts we developed are written in C 

and include get_thruput_data, get_delay_data, and get_tcpfriendly_data. 

Before discussing these new tools, we would like to mention that MM-Flow is 

capable of recording delay files by using the “record-mm-packet-arrival” variable.  

Similarly, our application layer protocols, MM-App and MPEG-App, are capable of 

recording scale values using the “record-mm-scale-values” variable.  Scale values needed 

to be printed from our protocols directly; not all protocols have the notion of scale values, 

so creating a generic script is difficult.  The delay values printed by MM-Flow, however, 

are purely a convenience.  These values could have been obtained using the 

get_delay_data script. 
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3.2.1 get_thruput_data 
 
 The get_thruput_data script is based upon scripts collected from fellow NS users 

and is probably the most useful of our scripts.  This script collects data about events 

along a given link in the simulated network.  The input values used to run 

get_thruput_data include the following: 

• The trace file containing the raw data created by the simulation. 
• The “from” node of the link being monitored. 
• The “to” node of the link being monitored. 
• The maximum outgoing queue size for the link. 
• The maximum bandwidth along the link. 
• The id of the flows to be monitored (-1 for all). 
• The measurement interval in seconds. 
• An optional label to be added to the output file names. 

 
The resulting output includes the following: 
 

• A “.utl” file containing percent bandwidth utilization (based on receive 
events) for each flow and the total utilization. 

• A “.drp” file containing the percent of bandwidth dropped for each flow and 
the total percent bandwidth dropped. 

• A “.enq” file containing the percent bandwidth enqueued for each flow and 
the total percent bandwidth enqueued. 

• A “.deq” file containing the percent bandwidth dequeued for each flow and 
the total percent bandwidth dequeued. 

• A “.que” file containing the actual and average queue size for the outgoing 
queue on the link.  Average queue size is a weighted average similar to that 
used by RED routers. 

 

3.2.2 get_delay_data 
 
 The get_delay_data script calculates delay for each packet traveling along a given 

link in the simulated network for a given flow.  The input values used to run 

get_delay_data include the following: 

• The trace file containing the raw data created by the simulation. 
• The name of the output “.dly” file to be created. 
• The flow ID to monitor. 



 3-17

• The node where the sender is located. 
• The node where the receiver is located. 

 
The resulting output includes the following: 
 

• A file containing the arrival time, packet ID, and delay in seconds. 

3.2.3 get_tcpfriendly_data 
 
 The get_tcpfriendly_data script calculates the TCP-Friendly bandwidth, as 

determined by the formula presented in section 2.2, as well as the actual bandwidth for a 

given flow along a given link in the simulated network.  The input values used to run 

get_tcpfriendly_data include the following: 

• The name of the output “.tfd” file to be created. 
• The trace file containing the raw data created by the simulation. 
• The delay file containing packet delay values for the flow. 
• The flow ID to monitor. 
• The “from” node of the link being monitored. 
• The “to” node of the link being monitored. 
• The measurement interval in seconds. 
• The maximum packet size in bytes. 
• The maximum bandwidth along the link. 

 
The resulting output includes the following: 
 

• A file containing the TCP-Friendly bandwidth and actual bandwidth used by 
the flow. 
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4 Results 
 

This chapter will discuss how the re-engineering of MM-Flow affected both MM-

App and MPEG-App, with the main focus on the changes to MM-App.  Then, TCP-

Friendliness is defined and discussed in regards as to what we took its definition to mean.  

We then measured how TCP, MM-App-New, and TFRC performed according to the 

TCP-Friendliness measurements. 

4.1 Effects of Re-Engineering MM-Flow 
 

Re-engineering MM-Flow was a big undertaking.  Changing the way the protocol 

layer worked creates significant changes in the application layer.  The specific changes 

that were made, as discussed earlier, had some interesting effects.  First we wanted to 

examine how the performance had changed between the old and new versions of MM-

App.  Once discovering how our changes to the protocol layer affected MM-App, we 

took an in depth look as to how different factors regarding the protocol would affect it’s 

performance.  Along with looking at how MM-App was affecting by the protocol layer 

changes, we felt it necessary to examine how the new protocol layer affected MPEG-

App’s performance. 

4.1.1 MM-App-Old vs. MM-App-New 
 

We first wish to compare the original MM-App (from this point forward called 

MM-App-Old) to the new MM-App (referred to as MM-App-New). To do so, we ran 

each of these protocols against TCP using our standard bottleneck layout. The bandwidth 

of the bottleneck link was 2 Mbps and MM-App-Old used the default values of 1.5 Mbps 

and its highest scale value (scale 4). 
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Figure 4-1 shows percent utilization of the bandwidth for MM-App-Old and TCP. 

As indicated, MM-App-Old totally dominated the system by occupying approximately 

two-thirds of the available bandwidth on average and 75% of the bandwidth at most 

(which makes sense since 1.5 Mbps is 75% of 2 Mbps). In MM-App-New there is 

relatively equal sharing of the bandwidth, as shown in Figure 4-2. MM-App-New 

received about 52% of the bandwidth and TCP received about 45%. This is a tremendous 

improvement in TCP-Friendliness and fairness over MM-App-Old. One thing that is 

apparent in Figure 4-2 is that utilization is not very smooth, possibly leading to poor 

perceptual quality. We will discuss this issue later, but for the time being we will 

concentrate on smoothness rather than fairness. 

Another issue we had hoped to resolve with our re-engineering effort was the 

coarseness of MM-App-Old’s scale values. Since MM-App-Old had only five scale 

values, the difference in sending rate between scale values is very large. As shown in 

Figure 4-3, the scale values typically cut in half from 4 to 2, but reach maximum 

transmission rate again rather quickly, thus never giving TCP a fair chance at obtaining 

bandwidth. MM-App-New has dynamic scale creation, with a default of 50 scales but the 

ability to be configured by the Tcl script to allow for as many scales as desired.  Figure 4-

4 shows how the 50 scales are less coarse and allow for a smooth transition between 

sending rates.  Also, this figure shows how as the scale values get higher, the amount of 

time before the next increase is longer.  This tells us that the delay in the system is getting 

longer and as a result we receive less ACKS indicating to increase the scale values.  The 

increased number of scale values does not lead to smooth transmission, due to the fact 
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that MM-Flow is constantly probing fo r bandwidth, but does provide a wider range of 

transmission rates to explore.   

It is also worth pointing out that utilization was not 100% all the time with MM-

App-New.  While full utilization is optimal, the occasional drop in utilization is a direct 

result of the queue being allowed to drain, as shown in Figure 4-5. The queue drains 

when MM-App-New encounters a drop and backs off on its sending rate in order to be 

fair to competing flows, namely TCP. Thus, we do not consider this to be of major 

concern. 
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Figure 4-1: Percent Utilization with MM-App-Old vs. TCP 

 

 

Figure 4-2: Percent Utilization with MM-App-New (Un-weighted) vs. TCP 
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Figure 4-3: Scale Values with MM-App-Old vs. TCP 
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Figure 4-4: Scale Values with MM-App-New (Un-weighted) vs. TCP 
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Figure 4-5: Queue Size with MM-App-New (Un-weighted) vs. TCP 

4.1.2 Further Evaluation of MM-App-New 
 

In order to gain a better understanding of how MM-App-New performs, we 

decided to look at a series of simulations with varying conditions.  The first thing we 

wanted to look at was the change in packet and frame size.  This is significant since the 

new protocol decisions are at the transport layer, whereas the old were in the application 

layer.  Second, we wanted to examine how the number of scale values affects the system.  

Third, we decided to evaluate the responsiveness of MM-Flow when it is affected by 

different delays in the bottleneck link or when it, or its competing flow, is fragile.  

Finally, we examined the use of weighted scale values versus un-weighted values. 

4.1.2.1 Effect of Packet Size 

 
Unless indicated, both the frame and packet size in our simulations are 1000 

bytes, which is typical in the real world [FF1999].  Thus, utilization and scale values for 

MM-App-New under these conditions is shown in the previous Figures 4-2 and 4-4 

respectively.  
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To examine new conditions, we first decided to triple the size of both the frame 

and packet to 3000 bytes. This applies to both MM-App-New and TCP. As shown in 

Figure 4-6, there is less variation in utilization and MM-App-New occupies a much lower 

percent of the utilization. We concluded that both observations are the result of an 

increase in RTT, thus leading to a less aggressive MM-App-New.  The reason that RTT 

is longer is that it physically takes longer to send the packets because the queue size is 

packet based but drain rate is byte based.  This increase in RTT can be observed by 

comparing the time between scale value increases in Figure 4-4 and Figure 4-7.  

We also chose to examine what happens when the frame size is larger than the 

packet size, such that frames need to be broken up into multiple packets. For MM-App-

New, we set the frame size to 3000 bytes and the packet size to 1000 bytes. For TCP, the 

packet size was 1000 bytes as well. Upon observation of Figure 4-8 versus Figure 4-2, we 

found that there was little difference in the general appearance of the graph and a 

negligible difference in the average utilizations. Thus, splitting frames apart into multiple 

packets has little effect on the performance of the system.  
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Figure 4-6: Percent Utilization with MM-App-New vs. TCP where Frame Size = 3KB and Packet 

Size = 3KB 
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Figure 4-7: Scale Values with MM-App-New vs. TCP where Frame Size = 3KB and Packet Size = 

3KB 
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Figure 4-8: Percent Utilization with MM-App-New vs. TCP where Frame Size = 3KB and Packet size 
= 1KB 

4.1.2.2 Effect of Number of Scale Values 
 

Our original assumption was that varying the number of scales would have an 

effect on performance due to the varying degree of granularity.  In order to examine this 

further, we conducted tests using 25 (Figure 4-9), 50 (Figure 4-10), 150 (Figure 4-11), 

and 250 (Figure 4-12) scale values for MM-App-New. (Note that 50 scales is the default 

value used in most of our scripts and that Figure 4-10 is identical to Figure 4-2 presented 

earlier.) 

As shown in the figures, moving from 25 towards 250 scale values results in less 

variation in utilization. This behavior has to do with the fact that we are increasing by one 

scale value per ACK and we ACK/NACK once per RTT, so it simply takes a longer time 

to move across the entire range of scales.  For example, with 25 scale values it would 

take 25 RTTs (assuming no NACKs) to reach 100% utilization. With 50 scale values it 

would take 50 RTTs, and so on. Figure 4-14 visually illustrates this point.  
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We also observed that as we increased the number of scale values the average 

utilization for MM-App-New decreased and the average utilization for TCP increased. 

This behavior is illustrated in Figure 4-14. As shown, the lines intersect, meaning MM-

App-New and TCP each receive 50% utilization on average, when there were 150 scales. 

This suggests that a possible optimal configuration would have 150 scales, rather than the 

50 scales that we used. We will revisit this point in the “Future Work” section of this 

paper. 

Figure 4-9: Percent Utilization with MM-App-New vs. TCP and 25 Scale Values  
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Figure 4-10: Percent Utilization with MM-App-New vs. TCP with 50 Scale Values 

 

Figure 4-11: Percent Utilization with MM-App-New vs. TCP with 150 Scale Values  
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Figure 4-12: Percent Utilization with MM-App-New vs. TCP with 250 Scale Values 

 
 

 

Figure 4-13: Aggressiveness of Reaching Maximum Bandwidth Using Different Numbers of Scale 
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Figure 4-14: Average Percent Utilization vs. Number of MM-App-New Scale Values Used 

 

4.1.2.3 Effect of Delay 

 
Due to the fact that MM-App-New is a rate-based protocol, we had reason to 

believe that MM-App-New would take up more bandwidth when there is longer delay. 

This behavior is typical for situations in which rate-based protocols like MM-Flow are up 

against window-based protocols like TCP. A window-based protocol sends a series of 

packets and waits until it receives an ACK for them before sending again. As the delay 

increases, it has to wait longer for the ACK and effectively loses some of the bandwidth 

it could have used if it had received an ACK faster. A rate-based protocol, however, 

keeps sending data at a given rate regardless of how long it takes to receive an ACK. 

Thus, a rate-based protocol is able to steal some of the bandwidth not used by an idle 

window-based protocol. 
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As shown in Figure 4-15, the overall behavior of the system with longer delay is 

roughly the same as our original results in Figure 4-2, but MM-App-New does in fact 

consume more bandwidth, 55%, while TCP is only able to grab 33%. It is also important 

to notice that overall utilization in poorer in the system with longer delay. There are many 

more instances in which utilization falls below 100%, which can be explained by 

examining the queue. By comparing Figure 4-16 with Figure 4-4, one will notice that the 

queue size reaches zero more often when there is a longer delay. This is caused by the 

fact that it takes longer for ACK/NACK packets to be sent back to the sender. MM-App-

New and TCP are, therefore, slow to respond to the congestion. By the time they respond, 

the congestion may be over and the queue is allowed to drain, which causes total 

utilization to fall. 
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Figure 4-15: Percent Utilization with MM-App-New vs. TCP with Longer Delay (40ms) 
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Figure 4-16: Queue Size with MM-App-New vs. TCP with Longer Delay (40ms) 

 

4.1.2.4 Effect of Fragile Flows 
 

Now that we've seen how MM-App-New fairs against TCP when they both have a 

long delay over the bottleneck link, it is important to see how they will act when each is 

fragile.  The fragile flows in the following simulation are five times further away from 

the router than the competing flow, meaning 100ms rather than 20ms.     

 For the first simulation TCP is the fragile flow.  As shown in Figure 4-17, MM-

App-New dominates the system while TCP averages only 10.5% utilization.  While this 

situation might be undesirable for the TCP user, it is typical of systems involving fragile 

flows.  In the second simulation we examined what happens when MM-App-New is 

fragile. The results, shown in Figure 4-18, indicate that MM-App-New and TCP share the 

overall bandwidth relatively fairly.  We believe this occurs due to the fact that in all of 

our simulations TCP is really just filling in the gaps left behind by MM-App-New. Thus, 

when MM-App-New is fragile he is still able to claim half of the bandwidth. Luckily in 



 4-33

most situations MM-App-New is responsive enough to allow TCP to gain a fair share as 

well. 
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Figure 4-17: Percent Utilization with MM-App-New vs. TCP when TCP is Fragile 
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Figure 4-18: Percent Utilization with MM-App-New vs. TCP when MM-App-New is Fragile 
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4.1.2.5 Effect of Weighted Scale Values 
 

While MM-App-New has given us some improvements over MM-App-Old, it is 

apparent that the protocol does not quite provide smooth transmission rates. We have 

already shown that increasing the number of scale values leads to less variation, but it is 

also common for protocols to use weighted averages in order to smooth sending rates. 

This includes MM-Flow, and therefore we must examine what effect weighted scale 

values have upon the performance of MM-App-New. 

Figure 4-19 shows the results of when we ran MM-App-New with weighted scale 

values against TCP. The figure shows that there was approximately 10 cycles in 

utilization, whereas our original data (shown in Figure 4-2) contained 11 cycles. 

Therefore, applying weighted scale values did not produce dramatic differences but still 

reduced the amount of variation in the system, as expected. It is also important to point 

out, however, that MM-App-New takes a little more bandwidth than it used to. This was 

expected as well, since weighted scale values mean the protocol is less responsive to 

congestion. 

Since weighted values produced subtle results, we will continue using un-

weighted values in each simulation throughout this paper. We will also revisit scale 

values, weighting schemes, and efforts at achieving smoother data in the “Future Work” 

section of this paper. 
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Figure 4-19: Percent Utilization with MM-App-New vs. TCP with Weighted Scale Values 

 

4.1.3 MPEG-App-Old vs. MPEG-App-New 
 

When MM-App-Old was constructed, another application was created called 

MPEG-App.  MPEG-App works by breaking up and sending specific parts of the MPEG 

media file.  Each mpeg file can be broken down into three different types of frames, all of 

different sizes and known as I, B, and P frames. MPEG-App has five scale values. Each 

scale value corresponds to sending various combinations of I, B, and P frames such that 

the relationship between transmission rate and scale value increases linearly.  

Since we have shown that more scale values typically leads to better performance, 

it would have been desirable to create more scale values for MPEG-App. This would 

have taken a considerable amount of time relative to the length of our project, so we 

decided to focus our project on just the MM-Flow transport layer and manipulating MM-

App. Therefore, the only difference between MPEG-App-Old and MPEG-App-New is 

that the new version is designed to run on top of MM-Flow, just like MM-App-New. 
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Though we didn’t change the application layer functionality, we felt it was still 

necessary to examine how MPEG-App-Old performs and compare it to MPEG-App-New 

now that it runs on top of MM-Flow. We only performed a simulation for the standard 

bottleneck layout with MPEG-App running against TCP.   

Figure 4-20 shows the percent utilization for MPEG-App-Old vs. TCP.  As shown,  

MPEG-App-Old uses about 58% of the bandwidth and TCP, for some reason, is 

restricted to only 32%. Also, utilization is very erratic which will result in poor quality. 

Figure 4-21 shows the results of MPEG-App-New versus TCP and shows that the new 

version totally overpowers TCP. This behavior is expected since five scale values is too 

coarse a granularity to be effective, so the protocol aggressively seeks bandwidth and has 

a hard time reacting to congestion. 
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Figure 4-20: Percent Utilization with MPEG-App-Old vs. TCP 
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Figure 4-21: Percent Utilization with MPEG-App-New vs. TCP 

 

4.2 TCP-Friendliness 
 

While looking at graphs of utilization, scale value, and queue size allows us to 

understand the overall behavior of the system, it is also possible to obtain specific 

measurements concerning the TCP-friendliness of a flow. As stated previously, a TCP-

friendly flow is considered to be one that transmits at a rate less than or equal to a TCP 

flow under the same conditions. The TCP-friendly bandwidth can be calculated by using 

Equation 2-2 (shown again below for reference). 

pR

B
T

*

*3/25.1≤  

Equation 2-1: TCP-Friendly Transmission Rate 
 

Our data collection script get_tcpfriendly_data implements this formula and allows 

us to compare actual bandwidth used by a flow against its calculated TCP-friendly 

bandwidth. Before we examine the results obtained from this script, we need to gain an 

understanding of its implications and the circumstances in which this formula applies. 
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First, we’ll go through a brief dimensional analysis. As the formula indicates, the 

TCP-friendly bandwidth T  is dependent upon the packet size B , the round trip time R , 

and the packet drop rate p . As the transmitted packet size increases, so does the TCP-

friendly bandwidth. Conversely, as the round trip time or packet drop rate increases the 

TCP-friendly bandwidth decreases.  

It is also important to recognize the implications of the variables in this equation. 

Packet size and round trip time are almost always strictly positive, so they usually do not 

have any severe implications. Problems begin to arise when the packet drop rate is zero, 

which happens frequently in simple simulations. Since it is in the denominator, a packet 

drop of rate of zero causes the TCP-friendly bandwidth to approach infinity. When 

creating our get_tcpfriendly_data script we wanted to produce data that was accurate, but 

easy to graph, so we made the assumption that a packet drop rate of zero (or a round trip 

time of zero, just to be safe) will cause the value for TCP-friendly bandwidth to equal the 

maximum bandwidth of the link. 

One way to solve the problem of a packet drop rate of zero and obtain more 

informative TCP-friendly data is to increase the measurement interval size. Figures 4-22, 

4-23, and 4-24 show a TCP-Friendly graph with measurement intervals of 1 second, 3 

seconds, and 5 seconds respectively. These figures illustrate that a small interval size will 

end up having few drops per interval, and therefore lots of places where the TCP-friendly 

bandwidth equals the maximum bandwidth of 4.0 Mbps. As the interval size increases the 

TCP-friendly bandwidth begins to take on useful values. The drawback of this process is 

that increasing measurement intervals also smoothes the actual bandwidth, possibly to the 

point that important data points are missing and its usefulness is lost. Therefore, the 
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interval size one chooses to use will depend on the simulation and the degree of 

granularity desired. 

Figure 4-22: TCP-Friendly and Actual Bandwidth Measurements with a 1 Second Interval 

 

Figure 4-23: TCP-Friendly and Actual Bandwidth Measurements with a 3 Second Interval 
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Figure 4-24: TCP-Friendly and Actual Bandwidth Measurements with a 5 Second Interval 
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calculated TCP-friendly bandwidth. In most of our simulations we had a difficult time 

getting accurate TCP-friendly data due to extremely low drop rates. Therefore, we have 

added the concept of a “Fair Bandwidth” to aid our discussion. Fair bandwidth is 

calculated by dividing the total bandwidth of the bottleneck link by the total number of 

flows in the simulation. 

4.3.1 TCP vs. TCP 
 

Since we are examining the notion of TCP-friendliness, we felt it was necessary 

to see how two TCP flows reacted among themselves. This simulation is useful since we 

have yet to look at two TCP flows competing. Also, it may be interesting to see if even 

TCP is TCP-friendly according to the current definition. 

4.3.1.1 Basic Simulation 
 

This simulation was run with two TCP flows running against each other.  With 

two identical TCP flows we felt it was only necessary to graph the data for one TCP flow 

and it’s TCP-Friendliness values.  Figure 4-25 shows the results of this basic test.  As can 

be seen from the figure, the value of TCP-Friendliness is constantly at the maximum 

bandwidth of 2 Mbps.  This is due to the fact that there are no drops occurring within the 

simulation.  Since TCP is always under the TCP-friendly line we must conclude that 

under standard bottleneck conditions it is TCP-friendly. Similarly, while TCP’s actual 

bandwidth may fluctuate it is relatively close to the Fair Bandwidth value, so we also 

conclude that it is fair. 
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Figure 4-25: TCP Friendly & Fair Bandwidth Overlay for TCP in TCP vs. TCP 

4.3.1.2 Effect of Fragile Flows 

 
Even though two TCP flows running equal to each other may seem fine, we want 

to know how TCP reacts when one flow is far away from the destination while the other 

is close.  We use the standard fragile layout for this simulation.  Figure 4-26 shows the 

TCP-friendly and Fair overlays for the fragile TCP flow, while Figure 4-27 shows the 

data for the TCP flow that is close to the router. As shown, both flows fall under the 

TCP-friendly line so they are considered to be TCP-friendly. Fairness is another question 

entirely. The fragile flow is well below the Fair line, while the non-fragile flow is well 

above it. Thus, we must conclude that in a simulation with one fragile flow, the fragile 

will not receive its fair share. As in previous simulations, this outcome is expected since 

the fragile flow is at a disadvantage. 
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Figure 4-26: TCP Friendly & Fair Bandwidth Overlay for TCP1 in 

TCP vs. TCP where TCP1 is Fragile 

Figure 4-27: TCP-Friendly & Fair Bandwidth Overlay for TCP2 in 

TCP vs. TCP where TCP1 is Fragile 
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the two TCP’s are acting completely fair with one another.  Each flow is using exactly 

half of the total bandwidth for the simulation.  This is expected, because since both flows 

are experiencing the long delay, it will act similar to that in the basic simulation that we 

looked at above.  Again we must conclude that both flows are TCP-friendly and fair. 

Figure 4-28: TCP Friendly & Fair Bandwidth Overlay for TCP in TCP vs. TCP with Longer Delay 
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MM-App-New are above the fairness level, while other times they are below, but on 

average they are relatively fair with perhaps MM-App-New having a slight advantage 

over TCP.  In terms of TCP-Friendly measurements, we are beginning to see an increase 

in the drop rate, but we would still need an interval of about ten seconds to start seeing 

this data form something concrete.  A ten second interval was larger than we were willing 

to accept due to the fact that it is a long time in the world of networks.  Using the results 

obtained from the formula, says that both are TCP-Friendly, except for when MM-App-

New reaches its threshold at which it then starts dropping packets. 

Figure 4-29: TCP Friendly & Fair Bandwidth Overlay for TCP in TCP vs. MM-App-New 
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Figure 4-30: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in TCP vs. MM-App-New 
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Figure 4-31: TCP Friendly & Fair Bandwidth Overlay for TCP in MM-App-New Vs. TCP where 
TCP is Fragile 

 

 

Figure 4-32: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in MM-App-New vs. TCP 
where TCP is Fragile 
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Figure 4-33: TCP Friendly & Fair Bandwidth Overlay for TCP in MM-App-New Vs. TCP where 
MM-App-New is Fragile 

 

 

Figure 4-34: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in MM-App-New Vs. TCP 
where MM-App-New is Fragile 
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4.3.2.3 Effect of Delay 
 

This simulation shows us that, under greater delay, it takes longer for TCP to get 

its ACKS/NACKS, such that MM-App-New tends to become greedier in terms of 

bandwidth usage.  Figures 4-35 and 4-36 shows that in terms of fairness, TCP averages 

below the fair line, where as MM-App-New has an average above the fair line.  In terms 

of TCP-Friendliness, both are friendly, except when MM-App-New experiences a drop. 

 

Figure 4-35: TCP Friendly & Fair Bandwidth Overlay for TCP in MM-App-New vs. TCP with Delay 
40 
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Figure 4-36: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in MM-App-New vs. TCP 
with Delay 40 
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Now, let’s take a look at the values for TFRC.  Figure 4-38 shows that TFRC 

starts and immediately climbs as high as possible.  After adjusting in accordance to the 

drop it experiences, TFRC begins to climb again, however it never falls below 1.3 Mbps 

again until the end of the simulation. Due to the low drop rate, both flows are considered 

to be TCP-friendly. By inspection, however, we can easily see that TFRC is not being fair 

by consuming much more bandwidth than it should. Based on the information gathered in 

this simulation, we conclude that TFRC is not as fair as MM-App-New when running 

against TCP in the standard bottleneck layout. 

Figure 4-37: TCP Friendly & Fair Bandwidth Overlay for TCP in TFRC vs. TCP 
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Figure 4-38: TCP Friendly & Fair Bandwidth Overlay for TFRC in TFRC vs. TCP 

4.3.3.2 Effect of Fragile Flows 
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Figure 4-39: TCP Friendly & Fair Bandwidth Overlay for TCP in 

TFRC vs. TCP when TCP is Fragile 
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Figure 4-40: TCP Friendly & Fair Bandwidth Overlay for TFRC in 

TFRC vs. TCP when TCP is Fragile 
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Figure 4-41: TCP Friendly & Fair Bandwidth Overlay for TCP in 

TFRC vs. TCP when TFRC is Fragile 
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Figure 4-42: TCP Friendly & Fair Bandwidth Overlay for TFRC in 

TFRC vs. TCP when TFRC is Fragile 

4.3.3.3 Effect of Delay 
 

Finally, we tested TFRC vs. TCP with the standard delay layout. The TCP-

friendly and Fair Bandwidth measurements for TCP and TFRC are shown in Figures 4-43 
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and 4-44 respectively. Again, we see that both are within the limits of TCP-friendliness, 

but TFRC forces TCP to receive an unfair share of the bandwidth. 
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Figure 4-43: TCP Friendly & Fair Bandwidth Overlay for TCP in TFRC vs. TCP with Longer Delay 
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Figure 4-44: TCP Friendly & Fair Bandwidth Overlay for TFRC in 

TFRC vs. TCP with Longer Delay 
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4.3.4 MM-App-New vs. TFRC 
 
The simulations so far have showed us that for the most part TFRC is generally 

over the fair bandwidth line and MM-App-New is generally on average at the fair 

bandwidth line.  These tests are performed against TCP, however, so we decided to test 

MM-Flow against TFRC in order to gain a better understanding of how they act together.  

We only ran the basic test for this simulation, as we did not have time to go as in depth 

on the two.  This is partly due to the fact that we are still unsure as to the settings required 

for TFRC, and therefore do not wish to observe poor performance, only then to find out 

we had it set up incorrectly. 

4.3.4.1 Basic Simulation 
 
Running MM-App-New against TFRC we first examined the TCP-Friendly and 

Fair bandwidths for TFRC.  As can be seen in Figure 4-45, the interval is still too small to 

gain any useful TCP-Friendly measurements, however we are able to see that on average 

TFRC seems to be fair once in a stable state.  The downside to TFRC is that it takes a 

good 25 seconds before it reaches this equilibrium, which is a long time, in terms of 

network traffic. 

We next examine MM-App-New in this simulation in terms of TCP-Friendly and 

fair bandwidths.  We expect that, similar to TFRC, our TCP-Friendly values will be 

inflated due to few drops in the simulation.  The actual bandwidth for MM-App-New, as 

seen in Figure 4-46, shows us upon first inspection that it seems to be relatively close to 

where TFRC’s bandwidth was.  The TCP-Friendly values, however, are still relatively 

inconclusive.  The average values for bandwidth and TCP-Friendliness are 1.09 and 1.59 

Mbps, respectively.   
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As shown, MM-App-New quickly gets up to speed in the simulation, taking all 

the available bandwidth, as it is the only one running for the first two seconds.  Then as 

TFRC starts running, MM-App-New compensates and comes down accordingly in order 

to be fair.  We feel that because the max bandwidth is 2 Mbps, that MM-App-New is 

running at perfect fairness, due to the fact that its average utilization is 1.09 Mbps.   

Figure 4-45: TCP Friendly & Fair Bandwidth Overlay for TFRC in TFRC vs. MM-App-New 
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Figure 4-46: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in TFRC vs. MM-App-
New 
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TFRC perform very similarly. They are both above the TCP-Friendly bandwidth, but well 

within the Fair bandwidth, and each provides relatively smooth transmission rates. 

 Perhaps this simulation raises more questions than it answers, such as why TCP is 

not TCP-Friendly and why the TCP flows occupy so much bandwidth. Nevertheless, we 

felt this simulation shows that TFRC and MM-App-New on top of MM-Flow perform 

rather well in situations that are close to real-world scenarios. As for some of the 

anomalies in data, we believe they require further examination in future work. 

Figure 4-47: TCP Friendly & Fair Bandwidth Overlay for TCP in a Multi -Protocol Environment 
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Figure 4-48: TCP Friendly & Fair Bandwidth Overlay for TFRC in a Multi-Protocol Environment 

Figure 4-49: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in a Multi-Protocol 
Environment 
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5 Conclusion 
 

Before our project there were two application layer multimedia protocols known 

as MM-App and MPEG-App.  Each of these protocols implemented the same set of rules 

for responding to congestion, but varied in how they mapped scale values to transmission 

rates. Each used an enhanced version of UDP as its transport agent.  The interaction of all 

of these components and the rules for responding to congestion became known as MM-

Flow. 

To improve this system, we first sought to split its functionality into an 

application layer and a new transport layer.  This allows for greater extensibility, in that 

the application layer now runs independent of the decisions that determine what scale 

value to send at.  Applications with new encoding schemes can built on top of the 

transport layer without having to reproduce its functionality.  For clarity, we redefined 

the term MM-Flow to explicitly refer to the transport layer protocol, while the application 

layers remained as MM-App and MPEG-App.  Another improvement is the option to 

weight scale values to obtain smoother transmission rates.  Also, simulation designers are 

able to alter the AIMD configuration and number of scale values without recompiling the 

source code. 

 After our re-engineering effort, we thoroughly tested our new code under varying 

circumstances.  To aid in our analysis, as well as benefit fellow NS users, we developed a 

series of generic scripts that transform standard NS trace files into usable data.  Our basic 

simulation scenarios involved a standard bottleneck layout, a standard delay layout, and a 

standard fragile layout. 
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We first compared MM-App-Old versus MM-App-New.  MM-App-Old occupied 

more than its fair share of the bandwidth and was limited only by the fact that it had 

reached it highest transmission rate.  MM-App-New, on the other hand, responded to 

congestion quite well and shared available bandwidth with TCP fairly.  We concluded 

that MM-App-New is an improvement over MM-App-Old, with regards to fairness. 

We then continued our analysis of MM-App-New.  We have shown that larger 

packet sizes result in smoother data because it takes longer to send large packets.  

Changing the frame size had no effect.  Increasing the number of scale values created 

smoother data and caused MM-App-New to use less of the available bandwidth, with 

MM-App-New and TCP sharing the best when 150 scales was used.  When the network 

involved longer delays, MM-App-New tended to accumulate more of the bandwidth, 

which was expected since TCP is window-based and MM-Flow is rate based.  Fragile 

flow tests have shown that a fragile TCP flow will lose to a competing MM-App-New, 

but a fragile MM-App-New is able to fight its way to relatively equal bandwidth against a 

TCP flow.  We have also shown that weighted scale values for MM-Flow can be used to 

smooth transmission rates, with only a small increase in bandwidth taken. 

Similarly, we tested MPEG-App-Old against MPEG-App-New.  Results indicated 

that neither provided smooth data and MPEG-App-New dominated the system.  These 

results were expected, as we believe that MPEG current restriction to five scale values is 

far too coarse to achieve the desired performance. 

We then examined what it means to be a TCP-friendly protocol and found that a 

widely accepted definition claims that a TCP-friendly flow is one that transmits at a rate 

less than or equal to a TCP flow under the same conditions.  The TCP-friendly bandwidth 
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for a given flow can be calculated by using Equation 2-2.  We also have shown that there 

are some considerations that must be taken into account when using this formula. First, 

when a flow experiences a drop rate of zero the resulting TCP-friendly bandwidth 

approaches infinity.  For our purposes, we assumed this value to be the same as the 

maximum bandwidth of the link.  We also discussed how increasing the interval size can 

help us obtain useful measurements, but at the expense of smoothing the actual 

bandwidth and losing potentially valuable data points. 

We conducted a series of tests involving TCP, MM-App-New, and TFRC to 

examine how the TCP-friendly measurement applies to each.  In most of our tests there 

were extremely low drop rates.  Rather than continually increase our interval size, we 

chose to introduce a measurement of “fair” bandwidth.  In general, we found that TCP-

friendly measurements obtained from simple simulations did not provide us with much 

insight. 

MM-App-New seemed to compete fairly, but TCP-friendly measurements still 

were not very helpful due to few drops.  In general, measurements of fair bandwidth were 

consistent with results discussed earlier.  TFRC seemed to take on a very odd behavior in 

simple simulations, such as taking more bandwidth than it should when going against a 

single TCP flow, regardless of the network layout.  When MM-App-New and TFRC 

competed in a simple simulation, we found that it took a long time for TFRC to reach a 

stable state with MM-App-New.  Once that state was reached, however, they competed 

rather fairly. 

Finally, we placed 4 TCP flows, 2 MM-App-New flows, and 2 TFRC flows in a 

simulation at the same time.  This situation created enough drops to obtain actual lines for 
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TCP-friendly bandwidth.  These values raised more questions than they answered 

because all flows, including TCP, were ind icated as not being TCP-friendly.  Also 

somewhat mysterious is the fact that both MM-App-New and TFRC transmitted below 

the fair bandwidth, yet TCP was well above it.  These results suggest that the TCP-

friendly measurement requires more analysis. 

 In the end, the question remains whether MM-Flow is at the level necessary for 

today’s demands on multimedia protocols.  The answer is “not yet.”  We have given 

MM-Flow some much-needed improvements, particularly in the realm of fairness and 

extensibility, but still lacks the smoothness of TFRC.  In the next chapter, Future Work, 

we discuss a vast number of extensions to this project that could help bring MM-Flow up 

to the desired level of performance. 
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6 Future Work 
 

MM-Flow is envisioned as an enabling protocol for a multitude of multimedia-

based application layer protocols.  It is an ongoing project; we would like to finish by 

presenting a list of ideas for future work, in the hope that it will prove useful to those who 

wish to study and extend our work.  We dealt primarily with the simulated application 

MM-App, and did not make many changes to MPEG-App, as meaningful changes would 

require a more in-depth knowledge of MPEG video standards.  As a result, the number of 

scales in MM-App increased from five to a user-specifiable number (defaulting to 50) but 

MPEG-App remained at only five.  It would be interesting to see if MPEG-App could 

benefit from more scale values in the same way that MM-App has. 

It is generally true that increasing the number of scales allows MM-Flow to be 

more responsive, and at the same time causes it to take up less bandwidth.  Ideally, we 

would want it to share equally with TCP, which pointed us toward the idea of an optimal 

number of scales.  In our preliminary testing, we found that less than 150 scale values 

caused MM-Flow to take up too much bandwidth, and more than 150 scale values caused 

MM-Flow to take up too little bandwidth (see Figure 4-14).  If 150 scales is indeed an 

optimal number, perhaps applying our tests to MM-Flow while using 150 scale values 

would yield better performance.          

 Much of the success of the TCP protocol is due to its application of the principles 

of AIMD; one additional packet is sent per round trip time on success and half as many 

packets are sent per round trip on failure.  MM-Flow follows the lead in this regard, using 

the same parameters to determine how many scales to increase or decrease.  This is not 

quite the same as TCP, in that the scale values are mapped to rates rather than packets.  
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An increase could signify several additional packets, making MM-Flow potentially more 

aggressive.  As MM-Flow differs from TCP, perhaps different values could be used in the 

AIMD process; one alternative could be to increase by half of a scale value and decrease 

to 75% of its former scale value.  We decided not to explore this ourselves, as there are 

many different combinations of these choices available, but we have provided the 

functionality in MM-Flow to change these values; both the additive increase and 

multiplicative decrease values may be changed while designing an OTcl simulation 

scenario. 

 Since the scale values of MM-Flow are known to increase slowly the first time, 

another parameter that could be worth changing is the initial scale value.  For maximum 

fairness, we start the protocol at the minimum scale value, but it is possible that another 

value would prove more optimal.  While starting at the maximum would unfairly crowd 

out other flows, starting in the middle may be reasonable.  Further experimentation could  

determine if starting at a point such as the arithmetic or geometric mean between the two 

extremes would be better. 

 Other potential adjustments to MM-Flow’s scale system are the advent of a slow-

start phase and non- linear scales.  While viewing graphs in which MM-Flow and TCP 

compete for bandwidth, we noticed that TCP quickly takes up all of the free bandwidth, 

given the chance, whereas MM-Flow’s utilization only increases at an approximately 

linear pace.  This appears to be due to TCP’s “slow start” algorithm, which contrary to its 

name allows TCP to achieve substantial bandwidth quickly at the beginning of its run.  It 

does this by increasing its rate after each receipt of an ACK caused by a successful packet 

arrival, instead of once per round trip time.  Adding a slow start phase could be beneficial 
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to MM-Flow in the short-term, as it consistently uses less bandwidth than it can at the 

beginning of its run.  Non- linear scales could achieve the same effect by a different 

process.  If the bandwidth gaps between lower scale values were greater than between 

higher scale values, MM-Flow could quickly increase in bandwidth before leveling off.  

However, in a low-bandwidth environment, MM-Flow may be hurt by this scheme by 

rapidly fluctuating between scale values that are too far apart.  Perhaps using a dynamic 

number of scale values is the key; using a small number of values would allow MM-Flow 

to increase in bandwidth quickly to start, but switching to a greater number after reaching 

a predetermined threshold would allow MM-Flow to become smooth after getting 

established.  It could also increase the number of rates used when it is approaching 

capacity, as determined by longer round trip times.  This will cause the protocol to 

increase its utilization more slowly, in an attempt to avoid congestion.  The receiver 

could effect this change as well, by not sending an ACK when an ACK would normally 

be sent, or even by sending a NACK.  This would be similar to what the RED router 

does, in that it would force MM-Flow to slow down before it became truly necessary. 

 For the sake of simplicity, all of our simulations were done using DropTail 

routers.  These routers drop packets only when the queue is full, taking a passive role in 

congestion situations.  RED routers, on the other hand, start dropping packets 

probabilistically when the queue nears capacity, in order to stave off future congestion.  It 

is possible that the performance of MM-Flow could be affected by using RED instead of 

DropTail routers.  Perhaps with this knowledge, routers could be configured specifically 

to take advantage of MM-Flow.  We decided not to investigate further, as protocols do 

not typically get to choose which type of routers to use. 
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 One observation made, which we could never satisfactorily explain, is that MM-

App and MPEG-App tend to dominate scenarios involving other protocols.  We refer to 

the fact that viewing graphs gives the impression that the applications operate mostly 

independently of the other protocol (typically TCP), and the other protocol takes the 

bandwidth that the MM application is not using.  We expected to see utilization much 

lower than full as the two protocols constantly competed over the resource, whereas 

utilization was at or near full in most circumstances.  Our desire is for MM-Flow to 

compete fairly against other protocols, so we would like to see if this behavior is working 

against that goal.  

 MM-Flow’s behavior against several protocols was tested, mostly in the situation 

that the protocols attempted to run continuously for a period of time.  On the Internet, 

much traffic such as web browsing behaves in a way that produces utilization bursts 

rather than continuous streams of data.  Running a web traffic simulator would be useful 

to see how MM-Flow would compete in real-world situations.  Even better would be to 

adapt MM-Flow for use outside of the NS simulator and test how it fares competing 

against whatever flows might also be present on the Internet.  Unfortunately, the testing 

situation would be difficult, as the experiments could not be controlled. 

Testing MM-Flow against the TEAR protocol would be useful.  Created as a 

response to TFRC, it is suggested that TEAR solves some of the problems we discovered 

with it.  Our intention was originally to test TEAR as we tested TFRC, but we were 

forced to abandon this goal when we were unable to get the TEAR simulation code to run 

properly.  As this is merely an issue of technical difficulties, we are sure that interesting 

research can be done once this is working. 
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 Testing MM-Flow’s multicast performance by comparison to TEAR could be 

especially informative.  TEAR’s system of making decisions at the receiver helps a 

multicast system by not forcing them to be concentrated in a single host, the sender, but 

instead distributing the burden to multiple receivers.  MM-Flow should be tested using 

multicast streams, against TEAR and other protocols.  One idea from TEAR that could be 

utilized in a multicast-enabled version of MM-Flow is that of ACKing less often.  The 

current frequency of ACKs sent by the receivers may prove to take too much bandwidth 

at the sender, as many receivers may be ACKing at the same time. 

We considered the implications of losing ACKs due to congestion and drops on 

the return path.  This would cause the sender to lose information on the condition of the 

path to the receiver, and possibly behave inappropriately.  Detecting this situation could 

be implemented in the form of a timer on the sender; if an ACK or NACK weren’t 

received in the specified time period, the timer would go off, initiating a response on the 

sender.  However, since a NACK could be lost as well as an ACK, there is no easy way 

to tell what the appropriate response of the sender would be in this circumstance.  Our 

decision was to simply ignore it and continue sending at the rate the sender was currently 

using.  If further study shows that the percentage of lost response packets leans toward 

ACK or NACK, an “ACK expected” timer could be employed to perform the correct 

action.  

Measuring TCP-Friendly values was problematic for us in some respects.  The 

TCP-Friendly equation relies heavily on the number of dropped packets in a scenario and 

works best when there are a substantial number of drops.  A considerable amount of the 

time our simulations yielded few drops, and so we could not obtain good TCP-Friendly 
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data.  It would have been beneficial to our analysis to have access to a tool for measuring 

this value independent of the number of drops; perhaps a tool based solely on round trip 

time. Developing this tool (and investigating if it could be done) would prove a useful 

avenue for future research.  

 Finally, another interesting extension to MM-Flow would be writing applications 

to take advantage of existing multimedia formats and to port existing applications.  For 

example, an application could be developed for streaming audio, based on principles 

similar to MM-App or MPEG-App, depending on the file format specification.  Also, 

applications that currently use another protocol such as TCP or UDP for multimedia 

streaming could be adapted to use MM-Flow instead.  User experience testing of these 

applications would be a good real-world measure of the value of MM-Flow.  MPEG-App 

could benefit from user testing as well, in regard to the amount of jitter experienced.  

While MM-Flow is intended to reduce jitter by avoiding retransmissions and behaving 

more smoothly than TCP, this was not specifically tested. 
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Appendix A: MM-Flow.h 
// 
// Modified:  Joel Thibault 
//            Jason Ingalsbe 
//            Keith Barber 
// Date:      02/27/2001 
// File Name: mm-flow.h 
// 
// 
// Author:    Jae Chung  
// Date:      7/17/99 
// File Name: udp-mm.h 
// 
 
#ifndef ns_mm_flow_h 
#define ns_mm_flow_h 
 
#include "timer-handler.h" 
#include "packet.h" 
#include "udp.h" 
#include "ip.h" 
 
#define PTYPE_UNKNOWN 0 
#define PTYPE_MM 1 
#define PTYPE_ACK 2 
#define PTYPE_NACK 3 
 
#define SCALE_WINDOW_SIZE 8 
 
class MmFlowAgent; 
 
// Reciver uses this timer to schedule 
// next ack/nack packet transmission time 
class MmFlowRespTimer : public TimerHandler { 
 public: 
  MmFlowRespTimer(MmFlowAgent* t) : TimerHandler(), t_(t) {} 
  inline virtual void expire(Event*); 
 protected: 
  MmFlowAgent* t_; 
}; 
 
 
// Header for MM-App frames and MM-Flow packets 
struct hdr_mm_flow { 
  int frm_seq;        // frame sequence number 
  int frm_tot_bytes;  // total bytes for frame 
  char frm_type;      // frame type 
  int frm_num;        // frame number 
 
  int pkt_seq;       // packet sequence number 
  int pkt_type;      // packet type 
  double pkt_time;   // time packet sent 
  int pkt_tot_bytes; // size of message 
 
  double max_interval; // maximum length of time to wait for a packet 
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  static int offset_; 
  inline static int& offset() { return offset_; } 
  inline static hdr_mm_flow* access(const Packet* p) { 
    return (hdr_mm_flow*) p->access(offset_); 
  } 
}; 
 
 
 
// Used to re-assemble segmented (by UDP) frames 
struct asm_mm {  
  int fseq;       // frame sequence number 
  int recv_bytes; // currently received bytes 
  int tot_bytes;  // total bytes to receive for frame 
}; 
 
 
// This is used for receiver's packet accounting 
struct pkt_accounting { 
        int last_pseq;      // sequence number of last received pkt 
        double last_time;   // local time of last received pkt 
        int lost_pkts;      // number of lost pkts since last ack 
        int recv_pkts;      // number of pkts received since last ack 
        int tot_recv_pkts;  // number of total pkts received 
        double rtt;         // round trip time 
}; 
 
 
// MmFlowAgent Class definition 
class MmFlowAgent : public UdpAgent { 
 public: 
  MmFlowAgent(); 
  MmFlowAgent(packet_t); 
  virtual int supportMM() { return 1; } 
  virtual void sendmsg(int nbytes, const char *flags = 0); 
  void recv(Packet*, Handler*); 
  void send_response(); 
  pkt_accounting p_accnt; 
  int get_scale(); 
  void set_max_interval(double max_interval); 
  void set_max_min_scale(int max, int min); 
 protected: 
  int command(int argc, const char*const* argv); 
  int mm_bit_;      // user supplied response (use mm bit?) 
 private: 
  void init(); 
  void init_recv_pkt_accounting();  
  void account_recv_pkt(const hdr_mm_flow *mh_buf); 
  void send_ack(); 
  void send_nack(); 
  void set_scale(const hdr_mm_flow *mm_pkt); 
 
  asm_mm asm_info; // packet re-assembly information 
 
  int nack_flag_;    // should a NACK packet be sent 
  int scale_;        // scale value for sending rate 
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  double max_interval_; // maximum frame transmission interval 
  int add_inc_;      // amount to increase the scale upon ACK 
  double mult_dec_;  // amount to decrease the scale upon NACK 
  int max_scale_;    // maximum scale value 
  int min_scale_;    // minimum scale value 
  int flow_control_; // should flow control be on 
  int weighted_;     // if scale values are weighted over time 
  int first_pkt_;    // 1 if this is the first packet received 
  int last_pseq_;    // seq number of last packet (sender) 
 
  int scale_window_[SCALE_WINDOW_SIZE]; // holds values for updating 
scale  
 
  int weighted_scale_; // value of scale value to use 
  int scale_weight_counter_; // keeps order of scale values 
 
  FILE* fd_delay_; 
 
  MmFlowRespTimer  resp_timer_;  // Ack/Nack Timer 
}; 
 
#endif 
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Appendix B: mm-flow.cc 
 
// 
// Modified:  Joel Thibault 
//            Jason Ingalsbe 
//            Keith Barber 
// Date:      02/27/2001 
// File Name: mm-flow.cc 
// 
// 
// Author:    Jae Chung 
// Date:      7/17/99 
// File Name: udp-mm.cc 
// 
 
#include "mm-flow.h" 
#include "rtp.h" 
#include "random.h" 
#include <string.h> 
 
int hdr_mm_flow::offset_; 
 
// Multimedia Header Class  
static class MmFlowPacketHeaderClass : public PacketHeaderClass { 
public: 
  MmFlowPacketHeaderClass() : PacketHeaderClass("PacketHeader/MmFlow", 
           sizeof(hdr_mm_flow)) { 
    bind_offset(&hdr_mm_flow::offset_); 
  } 
} class_mm_flow_hdr; 
 
 
// MmFlowAgent OTcl linkage class 
static class MmFlowAgentClass : public TclClass { 
public: 
  MmFlowAgentClass() : TclClass("Agent/UDP/MmFlow") {} 
  TclObject* create(int, const char*const*) { 
    return (new MmFlowAgent()); 
  } 
} class_udpmm_agent; 
 
 
// Constructor (with no arg) 
MmFlowAgent::MmFlowAgent() : UdpAgent(), resp_timer_(this) 
{ 
  init(); 
} 
 
 
// Constructor (with one arg) 
MmFlowAgent::MmFlowAgent(packet_t type) : UdpAgent(type), 
resp_timer_(this) 
{ 
  init(); 
} 
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void MmFlowAgent::init() { 
 
  bind("mm_bit_", &mm_bit_);                      // (default 1 = true) 
set the priority in the IP packet  
  bind_bool("weighted_", &weighted_);             // (default) false: 
AIMD scales    true: use weighted scales 
  bind_bool("flow_control_", &flow_control_);     // (default) true: 
adjust scales to fit conditions    false: stay at max_scale_  
  bind("add_inc_", &add_inc_);                    // (default 1) number 
to increase scale by in AIMD  
  bind("mult_dec_", &mult_dec_);                  // (default 0.5) 
newscale = mult_dec_ * oldscale, in AIMD  
 
  last_pseq_ = 0;                                 // sender: last 
packet sent (= next) is 0 
  first_pkt_ = 1;                                 // set to 1 until 
first packet is sent 
  scale_weight_counter_ = 0;                      // start at scale 
number 0 
  fd_delay_ = NULL;                               // file has not been 
selected yet 
  nack_flag_ = 0;                                 // no need to send a 
nack yet 
  max_interval_ = 0.0;                            // initialize to 
dummy value 0 
 
  asm_info.fseq = -1;                             // expected received 
packet = 0.  So the previous was -1  
 
  init_recv_pkt_accounting(); 
 
} 
 
// When resp_timer_ expires call MmFlowAgent::send_response() 
void MmFlowRespTimer::expire(Event*) 
{ 
  t_->send_response(); 
} 
 
// OTcl command interpreter 
int MmFlowAgent::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  // Record mm-packet-arrival to a file 
  if(strcmp(argv[1], "record-mm-packet-arrival") == 0) { 
    if((fd_delay_ = fopen(argv[2], "w")) == NULL) { 
      tcl.resultf("cannot create mm-packet-arrival file \"%s\"", 
argv[2]); 
      return(TCL_ERROR); 
    } 
    return(TCL_OK); 
  } 
 
  return (Agent::command(argc, argv)); 
} 
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// Add Support of Multimedia Application to UdpAgent::sendmsg 
void MmFlowAgent::sendmsg(int nbytes, const char* flags) 
{ 
  Packet *p; 
  int n, remain; 
 
  if (size_) { 
    n = (nbytes/size_ + (nbytes%size_ ? 1 : 0)); 
    remain = nbytes%size_; 
  } 
  else 
    printf("Error: UDPmm size = 0\n"); 
 
  if (nbytes == -1) { 
    printf("Error:  sendmsg() for UDPmm should not be -1\n"); 
    return; 
  } 
 
  double local_time = Scheduler::instance().clock(); 
 
  while (n-- > 0) { 
    p = allocpkt(); 
    if(n==0 && remain>0)  
      hdr_cmn::access(p)->size() = remain; 
 
    hdr_rtp* rh = hdr_rtp::access(p); 
    rh->flags() = 0; 
    rh->seqno() = ++seqno_; 
    hdr_cmn::access(p)->timestamp() = 
(u_int32_t)(SAMPLERATE*local_time); 
     
    // create outgoing header 
    hdr_mm_flow* mm = hdr_mm_flow::access(p); 
    // cast header coming from app to the appropriate type 
    hdr_mm_flow* msg = (hdr_mm_flow*)flags; 
 
    // set frame header values to the values coming in from application 
level 
    mm->frm_seq       = msg->frm_seq; 
    mm->frm_tot_bytes = msg->frm_tot_bytes; 
    mm->frm_type      = msg->frm_type; 
    mm->frm_num       = msg->frm_num; 
     
 
    // MM-Flow packets are distinguished by setting the ip 
    // priority bit to 15 (Max Priority). 
    if(mm_bit_) {  // if user want to set it as mm packet 
      hdr_ip* ih = hdr_ip::access(p); 
      ih->prio_ = 15; // used by CBT routers 
    } 
 
    // set packet header values 
    mm->pkt_seq = last_pseq_++; 
    mm->pkt_type = PTYPE_MM; 
    mm->pkt_time = local_time; 
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    // give the sender's max interval to the receiver 
    mm->max_interval = max_interval_;  
 
    // add "beginning of talkspurt" labels (tcl/ex/test-rcvr.tcl) 
    if (flags && (0 ==strcmp(flags, "NEW_BURST"))) 
      rh->flags() |= RTP_M; 
 
    target_->recv(p); 
  } 
  idle(); 
 
} 
 
 
// Support Packet Re-Assembly and Multimedia Application 
void MmFlowAgent::recv(Packet* p, Handler*) 
{ 
  int bytes_to_deliver = hdr_cmn::access(p)->size(); 
  hdr_mm_flow *mm = hdr_mm_flow::access(p);  
 
  // check packet type - ACK, NACK, MM, or other 
  if (mm->pkt_type == PTYPE_ACK || mm->pkt_type == PTYPE_NACK) 
    set_scale(mm); 
  else if (mm->pkt_type == PTYPE_MM) { 
    account_recv_pkt(mm); 
     
    // sets the appropriate maximum interval on the receiver's side 
    max_interval_ = mm->max_interval; 
   
    // if this is the first packet received, start the ACK/NACK timer 
    if (first_pkt_) { 
      send_response(); 
      first_pkt_ = 0; 
    } 
 
    if(app_) {  // if MM Application exists 
 
      // re-assemble MM Application frame if segmented 
      if(mm->frm_seq == asm_info.fseq) 
 asm_info.recv_bytes += hdr_cmn::access(p)->size(); 
      else { 
 asm_info.fseq = mm->frm_seq; 
 asm_info.tot_bytes = mm->frm_tot_bytes; 
 asm_info.recv_bytes = hdr_cmn::access(p)->size(); 
      } 
      // if fully reassembled, pass the frame to application 
      if(asm_info.tot_bytes == asm_info.recv_bytes) { 
 hdr_mm_flow mh_buf; 
 memcpy(&mh_buf, mm, sizeof(hdr_mm_flow)); 
 app_->recv_msg(mh_buf.frm_tot_bytes, (char*) &mh_buf); 
      } 
    } 
  } 
 
  Packet::free(p); 
 
} 
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void MmFlowAgent::init_recv_pkt_accounting() 
{ 
  // initialize packet accounting values 
  p_accnt.last_pseq = -1; 
  p_accnt.last_time = 0; 
  p_accnt.lost_pkts = 0; 
  p_accnt.recv_pkts = 0; 
  p_accnt.tot_recv_pkts = 0; 
} 
 
 
void MmFlowAgent::account_recv_pkt(const hdr_mm_flow *mh_buf) 
{  
  double local_time = Scheduler::instance().clock(); 
 
  // Count Received packets and Calculate Packet Loss 
  p_accnt.tot_recv_pkts ++; 
  p_accnt.recv_pkts ++; 
  p_accnt.lost_pkts += (mh_buf->pkt_seq - p_accnt.last_pseq - 1); 
  p_accnt.last_pseq = mh_buf->pkt_seq; 
  p_accnt.last_time = local_time; 
 
  // Calculate RTT 
  if(p_accnt.tot_recv_pkts == 1) 
    p_accnt.rtt = 2*(local_time - mh_buf->pkt_time); 
  else 
    p_accnt.rtt = 0.95 * p_accnt.rtt + 0.05 * 2*(local_time - mh_buf-
>pkt_time);  
   
  // Record mm-packet-arrival 
  if(fd_delay_ != NULL) { 
    fprintf(fd_delay_, "%lf\t%d\t%lf\n",  
     local_time, mh_buf->pkt_seq, local_time - mh_buf->pkt_time); 
  } 
     
} 
 
// when timer expires, send ACK or NACK depending on circumstances 
void MmFlowAgent::send_response() { 
 
  if (p_accnt.recv_pkts > 0 && p_accnt.lost_pkts == 0) { 
    send_ack(); 
  } 
  else if (p_accnt.recv_pkts == 0) { 
    if (nack_flag_ == 0 && max_interval_ - p_accnt.rtt > 0) { 
      nack_flag_ = 1; 
      resp_timer_.resched(max_interval_ - p_accnt.rtt); 
    } 
    else             
      send_nack(); 
  } 
  else                     // p_accnt.recv_pkts > 0 && 
p_accnt.lost_pkts > 0  
    send_nack(); 
   



 80

} 
 
void MmFlowAgent::send_ack() { 
  Packet *p; 
  double local_time = Scheduler::instance().clock(); 
 
  nack_flag_ = 0; 
 
  p = allocpkt(); 
 
  // send ack packet 
  hdr_mm_flow* ack_buf = hdr_mm_flow::access(p); 
  ack_buf->pkt_seq = 0; 
  ack_buf->pkt_type = PTYPE_ACK;  // this packet is ack packet 
  ack_buf->pkt_time = local_time; 
  ack_buf->pkt_tot_bytes = 40;  // Ack packet size is 40 Bytes 
  target_->recv(p); 
 
  resp_timer_.resched(p_accnt.rtt); 
 
  p_accnt.recv_pkts = 0; 
  p_accnt.lost_pkts = 0; 
} 
 
void MmFlowAgent::send_nack() { 
  Packet *p; 
  double local_time = Scheduler::instance().clock(); 
 
  nack_flag_ = 0; 
 
  p = allocpkt(); 
 
  // send nack packet 
  hdr_mm_flow* nack_buf = hdr_mm_flow::access(p); 
  nack_buf->pkt_seq = 0; 
  nack_buf->pkt_type = PTYPE_NACK;  // this packet is nack packet 
  nack_buf->pkt_time = local_time; 
  nack_buf->pkt_tot_bytes = 40;  // Nack packet size is 40 Bytes 
  target_->recv(p); 
 
  resp_timer_.resched(p_accnt.rtt); 
 
  p_accnt.recv_pkts = 0; 
  p_accnt.lost_pkts = 0; 
} 
 
 
void MmFlowAgent::set_scale(const hdr_mm_flow *mm_pkt) { 
  float newscale; 
 
  //printf("set_scale %d\n", scale_); 
  fflush(stdout); 
 
  if (flow_control_) 
    { 
      // calculate unweighted scale value 
      if (mm_pkt->pkt_type == PTYPE_ACK) 
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 scale_ += add_inc_; 
      else if (mm_pkt->pkt_type == PTYPE_NACK) 
 scale_ = static_cast<int>(scale_ * mult_dec_); 
 
      // constrain scale to max/min values 
      if (scale_ > max_scale_) 
 scale_ = max_scale_; 
      else if (scale_ < min_scale_)  
 scale_ = min_scale_; 
 
      // weight scale values 
      scale_window_[scale_weight_counter_] = scale_; 
       
      newscale  = .20 * scale_window_[scale_weight_counter_]; 
      newscale += .15 * scale_window_[(scale_weight_counter_ + 7) % 
SCALE_WINDOW_SIZE]; 
      newscale += .15 * scale_window_[(scale_weight_counter_ + 6) % 
SCALE_WINDOW_SIZE]; 
      newscale += .10 * scale_window_[(scale_weight_counter_ + 5) % 
SCALE_WINDOW_SIZE]; 
      newscale += .10 * scale_window_[(scale_weight_counter_ + 4) % 
SCALE_WINDOW_SIZE]; 
      newscale += .10 * scale_window_[(scale_weight_counter_ + 3) % 
SCALE_WINDOW_SIZE]; 
      newscale += .10 * scale_window_[(scale_weight_counter_ + 2) % 
SCALE_WINDOW_SIZE]; 
      newscale += .10 * scale_window_[(scale_weight_counter_ + 1) % 
SCALE_WINDOW_SIZE]; 
 
      scale_weight_counter_ = (scale_weight_counter_ + 1) % 
SCALE_WINDOW_SIZE; 
 
      weighted_scale_ = static_cast<int>(newscale + 0.5); 
    } 
 
 
  //printf("set_scale out scale = %d weighted = %d\n", scale_, 
weighted_scale_); 
  fflush(stdout); 
 
 
} 
 
int MmFlowAgent::get_scale() { 
 
  //printf("get_scale scale_ = %d w_scale_ = %d\n", scale_, 
weighted_scale_); 
  fflush(stdout); 
 
  // both scales are calculated just in case 
  if (weighted_) { 
    return weighted_scale_; 
  } 
  else { 
    return scale_; 
  } 
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} 
 
// called by application layer to set the max interval so that mm-flow 
doesn't time out inappropriately 
void MmFlowAgent::set_max_interval(double max_interval) { 
 
  max_interval_ = max_interval; 
} 
 
 
void MmFlowAgent::set_max_min_scale(int max, int min) { 
 
  //printf("set max min max_in = %d min_in = %d\n", max, min); 
  fflush(stdout); 
 
  max_scale_ = max; 
  min_scale_ = min; 
 
  if (flow_control_) { 
    scale_ = min_scale_; 
    weighted_scale_ = min_scale_; 
 
    // initialize window to minimum values 
    for (int loop = 0; loop < SCALE_WINDOW_SIZE; loop++) 
      scale_window_[loop] = min_scale_; 
  } 
  else { 
    scale_ = max_scale_; 
    weighted_scale_ = max_scale_; 
  } 
 
  //printf("set max min max_out = %d min_out = %d scale = %d w_scale = 
%d\n",  
  // max_scale_, min_scale_, scale_, weighted_scale_); 
  fflush(stdout); 
 
} 
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Appendix C: MM-Flow Parameters 
 
 

• flow_control_ (default = true) 
This value determines if MM-Flow uses flow control algorithms to avoid 

congestion.  If false, MM-Flow will send constantly at the maximum rate. 

• weighted_ (default = false) 
This value determines if MM-Flow uses weighted scale values or AIMD 

scale values in calculating the current scale.  

• mm_bit_ (default = 1) 
A value of 1 indicates that packets will have the “mm” priority bit set at 

the IP level.  Other values will cause this bit to not be set. 

• add_inc_ (default = 1) 
This value sets the number of scale values to increase by on receipt of an 

ACK packet, in AIMD. 

• mult_dec_ (default = 0.5) 
This value sets the percentage of scale values to decrease by on receipt of 

a NACK packet, in AIMD. 

 
Additionally, an output file can be specified to record frame arrival times, in the 

format “<flow> record-mm-packet-arrival <tracefile>.” 
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Appendix D: mm-app-new.h 
 
// 
// Modified:  Joel Thibault 
//            Jason Ingalsbe 
//            Keith Barber 
// Date:      02/27/2001 
// File Name: mm-app-new.h 
//  
// 
// Author:    Jae Chung 
// Date:      10/05/99 
// File Name: mm-app.h 
// 
 
#ifndef ns_mm_app_new_h 
#define ns_mm_app_new_h 
 
#include "timer-handler.h" 
#include "app.h" 
#include "mm-flow.h" 
 
 
class MmAppNew; 
 
 
// Sender uses this timer to  
// schedule next frame transmission time 
class MmAppNewSendTimer : public TimerHandler { 
 public: 
  MmAppNewSendTimer(MmAppNew* t) : TimerHandler(), t_(t) {} 
  inline virtual void expire(Event*); 
 protected: 
  MmAppNew* t_; 
}; 
 
 
// Multimedia Application Class Definition 
class MmAppNew : public Application { 
 public: 
  MmAppNew(); 
  void send_frame();  // called by SendTimer:expire (Sender) 
 protected: 
  int command(int argc, const char*const* argv); 
  void start();       // Start sending frames (Sender) 
  void stop();        // Stop sending frames (Sender) 
 private: 
  inline double next_snd_time();                          // (Sender) 
  virtual void recv_msg(int nbytes, const char *msg = 0); // 
(Sender/Receiver) 
  void calc_rates();     // Binds TCL rates to internal rates  
 
  double *rate;          // Transmission rates associated to scale 
values 
  double interval_;      // Application frame transmission interval 
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  double max_bandwidth_; // Maximum possible bandwidth 
  int min_scale_;        // Minimum scale allowed for the application 
  int max_scale_;        // Maximum scale allowed for the application 
  int frmsize_;          // Application frame size 
  int random_;           // If 1 add randomness to the interval 
  int running_;          // If 1 application is running 
  int fseq_;             // Application frame sequence number 
  int scale_;            // Media scale parameter 
 
  FILE* fd_scale_;       // file to write scale values to 
  int file_closed_;      // input file closed flag 
 
  pkt_accounting p_accnt; 
  MmAppNewSendTimer snd_timer_;  // SendTimer 
}; 
 
#endif 
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Appendix E: mm-app-new.cc 
 
// 
// Modified:  Joel Thibault 
//            Jason Ingalsbe 
//            Keith Barber 
// Date:      02/27/2001 
// File Name: mm-app-new.cc 
//  
// 
// Author:    Jae Chung 
// Date:      10/05/99 
// File Name: mm-app.cc 
//  
 
#include "random.h" 
#include "mm-app-new.h" 
 
// MmApp OTcl linkage class 
static class MmAppNewClass : public TclClass { 
 public: 
  MmAppNewClass() : TclClass("Application/MmAppNew") {} 
  TclObject* create(int, const char*const*) { 
    return (new MmAppNew); 
  } 
} class_app_mm_new; 
 
 
// When snd_timer_ expires call MmAppNew:send_frame() 
void MmAppNewSendTimer::expire(Event*) 
{ 
  t_->send_frame(); 
} 
 
 
// Constructor (also initialize instances of timers) 
MmAppNew::MmAppNew() : running_(0), snd_timer_(this) 
{ 
  bind("min_scale_", &min_scale_);                               // 
minimum scale for the application 
  bind("max_scale_", &max_scale_);                               // 
maximum scale for the application 
  bind_bw("max_bandwidth_", &max_bandwidth_);                    // 
bandwidth used at max_scale_  
  bind("frmsize_", &frmsize_);                                   // 
size of one frame 
  bind_bool("random_", &random_);                                // use 
randomness in intervals 
 
  fd_scale_ = NULL;                                              // no 
file has been opened ... 
  file_closed_ = 0;                                              // ... 
or closed 
} 
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// Linearly interpolates what the scale rates should be 
// 
// rate[min_scale_ - 1] would be 0 if it were set 
// rate[max_scale_] is equal to max_bandwidth_ 
// 
void MmAppNew::calc_rates() { 
 
  int num_rates = max_scale_ - min_scale_ + 1;   // the number of valid 
rates 
  double stepsize = max_bandwidth_ / num_rates;   // the difference 
between one rate and the next 
 
  // allocates space in the array from 0 to max_scale 
  rate = (double *)calloc(max_scale_ + 1, sizeof(double)); 
   
  for(int looper = min_scale_; looper <= max_scale_; looper++) { 
    rate[looper] = stepsize * (looper - min_scale_ + 1); 
  } 
   
} 
 
// OTcl command interpreter 
int MmAppNew::command(int argc, const char*const* argv) 
{ 
 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    // Attach Agent 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
 
      // Make sure the underlying agent support MM 
      if(!agent_->supportMM()) { 
 tcl.resultf("agent \"%s\" does not support MM Application", 
argv[2]); 
 return(TCL_ERROR); 
      } 
       
      agent_->attachApp(this); 
      return(TCL_OK); 
    } 
 
    // Record MM Scale Value to A File 
    if(strcmp(argv[1], "record-mm-scale-value") == 0) { 
      if((fd_scale_ = fopen(argv[2], "w")) == NULL) { 
 tcl.resultf("cannot create mm-scale-value file \"%s\"", argv[2]); 
 return(TCL_ERROR); 
      } 
      return(TCL_OK); 
    } 
 
  } 
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  return (Application::command(argc, argv)); 
} 
 
 
void MmAppNew::start() 
{ 
  //printf("start 1\n"); 
  fflush(stdout); 
 
  calc_rates(); 
 
  //printf("start 2\n"); 
  fflush(stdout); 
 
  agent_->set_max_interval((double)(frmsize_ << 
3)/(double)rate[min_scale_]); 
 
  //printf("start 3 max = %d min = %d\n", max_scale_, min_scale_); 
  fflush(stdout); 
 
  agent_->set_max_min_scale(max_scale_, min_scale_); 
 
  //printf("start 4 scale_ = %d \n", scale_); 
  fflush(stdout); 
 
  interval_ = (double)(frmsize_ << 3)/(double)rate[min_scale_]; 
 
  //printf("start 5\n"); 
  fflush(stdout); 
 
  running_ = 1; 
 
  //printf("start 6\n"); 
  fflush(stdout); 
 
  fseq_ = 0;              
 
  //printf("start 7\n"); 
  fflush(stdout); 
 
  send_frame(); 
 
  //printf("start 8\n"); 
  fflush(stdout); 
} 
 
 
void MmAppNew::stop() 
{ 
  running_ = 0; 
 
  if (file_closed_ == 0) { 
    fclose(fd_scale_); 
    file_closed_ = 1; 
  } 
} 
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// Send application frame 
void MmAppNew::send_frame() 
{ 
  double local_time = Scheduler::instance().clock(); 
 
  hdr_mm_flow mh_buf; 
 
  if (running_) { 
    // the below info is passed to MmFlow agent, which will write it  
    // to MM header after frame creation. 
    mh_buf.frm_seq = fseq_++;         // MM sequence number 
    mh_buf.frm_tot_bytes = frmsize_;  // Size of frame 
    mh_buf.frm_type = 'N';            // Normal Frame 
    mh_buf.frm_num = mh_buf.frm_seq;  // Frame-num is same as seq-num 
 
    agent_->sendmsg(frmsize_, (char*) &mh_buf);  // send to UDP 
 
    // gets scale to determine next send time 
    scale_ = agent_->get_scale(); 
 
    //printf("send frame post getscale scale = %d\n", scale_); 
    fflush(stdout); 
 
    // Reschedule the send_pkt timer 
    double next_time_ = next_snd_time(); 
 
    if(next_time_ > 0)  
      snd_timer_.resched(next_time_); 
   
    // Record mm-scale-value 
    if(fd_scale_ != NULL) 
      { 
 fprintf(fd_scale_, "%lf\t%d\n", local_time, scale_); 
      } 
 
  } 
 
} 
 
 
// Schedule next frame transmission time 
double MmAppNew::next_snd_time() 
{ 
  // Recompute interval in case rate or size chages 
  interval_ = (double)(frmsize_ << 3)/(double)rate[scale_]; 
  double next_time_ = interval_; 
  if(random_)  
    next_time_ += interval_ * Random::uniform(-0.2, 0.2); 
 
  return next_time_; 
} 
 
 
// Receive message from underlying agent 
void MmAppNew::recv_msg(int nbytes, const char *msg = 0) 
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{ 
  // does nothing 
} 
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Appendix F: MM-App-New Parameters 
 

• min_scale_ (default = 0) 
This is the lowest scale value to use. 

• max_scale_ (default = 50) 
This is the largest scale value to use. 

• max_bandwidth_ (default = 1.5mb) 
This value defines the sending rate used by the highest scale value.  

Sending rates will be interpolated between min_scale_ and max_scale_.  

• frmsize_ (default = 2000) 
This value determines the size of frames to send. 

• random_ (default = false) 
When set to true, this value adds randomness to the sending interval time, 

using the formula interval = interval * (1 + random(-0.2, 0.2)) 

 
MM-App scale values can be output to a trace file, by using “<flow> record-mm-scale-
value <tracefile>.” 
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Appendix G: mm-app-mpeg-new.h 
 
// 
// Modified:  Joel Thibault 
//            Jason Ingalsbe 
//            Keith Barber 
// Date:      02/27/2001 
// File Name: mm-app-mpeg-new.h 
// 
// 
// Author:    Jae Chung 
// Date:      10/10/99 
// File Name: mm-app-mpeg.h 
// 
 
#ifndef ns_mm_app_mpeg_new_h 
#define ns_mm_app_mpeg_new_h 
 
#include "timer-handler.h" 
#include "packet.h" 
#include "app.h" 
#include "mm-flow.h" 
 
 
class MmAppMpegNew; 
 
 
// Sender uses this timer to  
// schedule next app data frame transmission time 
class MmAppMpegNewSendTimer : public TimerHandler { 
 public: 
  MmAppMpegNewSendTimer(MmAppMpegNew* t) : TimerHandler(), t_(t) {} 
  inline virtual void expire(Event*); 
 protected: 
  MmAppMpegNew* t_; 
}; 
 
 
// Multimedia Application Class Definition 
class MmAppMpegNew : public Application { 
 public: 
  MmAppMpegNew(); 
  void send_frame();  // called by SendTimer:expire (Sender) 
 protected: 
  int command(int argc, const char*const* argv); 
  void start();       // Start sending frames (Sender) 
  void stop();        // Stop sending frames (Sender) 
 private: 
  void init(); 
  int  get_frame_size(char* ftype);                       // (Sender) 
  void update_recv_frame_type(char frame_type);           // (Sender) 
  virtual void recv_msg(int nbytes, const char *msg = 0); // 
(Sender/Receiver) 
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  double rate[5];        // Transmission rates associated with scale 
values 
  double interval_;      // Application frame transmission interval 
  double max_interval_;  // Maximum possible transmission interval 
  int min_scale_;        // Minimum scale allowed for the application 
  int max_scale_;        // Maximum scale allowed for the application 
  int frame_per_sec_;    // Mpeg Frame Rate 
  int framesize_;        // Application frame size 
  int running_;          // If 1 application is running 
  int fseq_;             // Application frame sequence number (sent 
only) 
  int fnum_;             // Frame number (account for not sent frames 
also) 
  int scale_;            // Media scale parameter 
 
  FILE* fdr_;            // file descriptor for input file 
  FILE* fd_scale_;       // file to write scale values to 
  int file_closed_;      // input file closed flag 
 
  char recv_frame_type[9]; // 9 previously read mpeg frame type 
  int  p_frame_sent_;      // P frame drop flag for IBBPBBI at scale 1 
 
  MmAppMpegNewSendTimer snd_timer_;  // SendTimer 
}; 
 
#endif 
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Appendix H: mm-app-mpeg-new.cc 
 
// 
// Modified:  Joel Thibault 
//            Jason Ingalsbe 
//            Keith Barber 
// Date:      02/27/2001 
// File Name: mm-app-mpeg-new.cc 
// 
// 
// Author:    Jae Chung 
// Date:      10/10/99 
// File Name: mm-app-mpeg.cc 
//  
 
#include "random.h" 
#include "mm-app-mpeg-new.h" 
#include <string.h> 
 
 
// MmAppMpegNew OTcl linkage class 
static class MmAppMpegNewClass : public TclClass { 
 public: 
  MmAppMpegNewClass() : TclClass("Application/MmAppMpegNew") {} 
  TclObject* create(int, const char*const*) { 
    return (new MmAppMpegNew); 
  } 
} class_app_mpeg_new; 
 
 
// When snd_timer_ expires call MmAppMpegNew:send_frame() 
void MmAppMpegNewSendTimer::expire(Event*) 
{ 
  t_->send_frame(); 
} 
 
 
// Constructor (also initialize instances of timers) 
MmAppMpegNew::MmAppMpegNew() : running_(0), snd_timer_(this) 
{ 
  bind("min_scale_", &min_scale_);                    // minimum scale 
to use 
  bind("max_scale_", &max_scale_);                    // maximum scale 
to use 
  bind("frame_per_sec_", &frame_per_sec_);            // number of 
video frames that can be sent per second  
 
  fdr_ = NULL;                                        // no file has 
been opened or closed yet 
  fd_scale_ = NULL; 
  file_closed_ = 0; 
} 
 
 
// OTcl command interpreter 
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int MmAppMpegNew::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    // Attach Agent 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
 
       // Make sure the underlying agent support MM 
      if(!agent_->supportMM()) { 
 tcl.resultf("agent \"%s\" does not support MM Application", 
argv[2]); 
 return(TCL_ERROR); 
      } 
       
     agent_->attachApp(this); 
      return(TCL_OK); 
    } 
    // Get Mpeg Trace Input File Name 
    if (strcmp(argv[1], "mpeg-trace-input") == 0) { 
      if ((fdr_ = fopen(argv[2], "r")) == NULL) { 
 tcl.resultf("cannot open mpeg-trace-input file \"%s\"", argv[2]); 
        return(TCL_ERROR); 
      } 
      return(TCL_OK); 
    } 
 
      // Record MM Scale Value to A File 
    if(strcmp(argv[1], "record-mm-scale-value") == 0) { 
      if((fd_scale_ = fopen(argv[2], "w")) == NULL) { 
 tcl.resultf("cannot create mm-scale-value file \"%s\"", argv[2]); 
 return(TCL_ERROR); 
      } 
      return(TCL_OK); 
    } 
 
  } 
  
  return (Application::command(argc, argv)); 
} 
 
 
void MmAppMpegNew::start() 
{ 
  if(fdr_ == NULL) { 
    printf ("MmAppMpegNew Error: specify mpeg-trace-input file.\n"); 
    exit(1); 
  } 
 
  init(); 
 
  running_ = 1; 
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  send_frame(); 
} 
 
 
void MmAppMpegNew::init() 
{ 
  fseq_ = 0;             // MM sequence number (start from 0) 
  fnum_ = -1;            // MM frame number (start from 0) 
 
  agent_->set_max_min_scale(max_scale_, min_scale_); 
  agent_->set_max_interval((double)1/(double)frame_per_sec_); 
 
  p_frame_sent_ = 0;      // Flag for IBBPBBI format: drop every  
                          // other 'P' frame at scale 1. 
  interval_ = ((double)1/(double)frame_per_sec_); 
 
  recv_frame_type[0] = 'B'; 
  recv_frame_type[1] = 'B'; 
  recv_frame_type[2] = 'P'; 
  recv_frame_type[3] = 'B'; 
  recv_frame_type[4] = 'B'; 
  recv_frame_type[5] = 'P'; 
  recv_frame_type[6] = 'B'; 
  recv_frame_type[7] = 'B'; 
  recv_frame_type[8] = 'I'; 
} 
 
 
void MmAppMpegNew::stop() 
{ 
  running_ = 0; 
 
  if (file_closed_ == 0) { 
    fclose(fdr_); 
    fclose(fd_scale_); 
    file_closed_ = 1; 
  } 
} 
 
 
// Send application frame 
void MmAppMpegNew::send_frame() 
{ 
  double local_time = Scheduler::instance().clock(); 
 
  hdr_mm_flow mh_buf; 
  char ftype; 
 
  if (running_) { 
 
    // gets scale 
    scale_ = agent_->get_scale(); 
 
 
    // Get Size of next frame 
    if ((framesize_ = get_frame_size(&ftype)) == -1) { 
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      stop();       // if EOF then stop 
      return; 
    } 
 
    // Increment frame number  
    // (account for not sent frames also) 
    fnum_++; 
 
    // framesize_ = (positive integer, 0, -1) 
    // where 0 means due to network congestion, sender will not 
    // send the frame 
 
    if (framesize_ > 0) { 
      if(agent_->supportMM()) { 
 // the below info is passed to MM-Flow agent, which will write it  
 // to MM header after frame creation. 
 mh_buf.frm_seq = fseq_++;       // MM sequence number 
 
 mh_buf.frm_tot_bytes = framesize_;  // Size of frame 
 mh_buf.frm_type = ftype;      // Frame-type (I,B,P) 
 mh_buf.frm_num = fnum_; 
 
 agent_->sendmsg(framesize_, (char*) &mh_buf);  // send to UDP 
 
      } 
      else { 
 agent_->sendmsg(framesize_); 
      } 
    } 
 
    // Reschedule the send_frame timer 
    snd_timer_.resched(interval_); 
   
    // Record mm-scale-value 
    if(fd_scale_ != NULL) 
      { 
 fprintf(fd_scale_, "%lf\t%d\n", local_time, scale_); 
      } 
 
  } 
} 
 
 
// Read Next frame type and size from input file and 
// determine whether or not transmit depending on current scale value 
int MmAppMpegNew::get_frame_size(char* ftype) 
{ 
  char frame_type_; 
  int  size_read_; 
  int  frame_size_ = 0; 
 
  // if EOF return -1 to finish 
  if (fscanf(fdr_, "%c\t%d\n", &frame_type_, &size_read_) == EOF) 
return -1; 
 
  // Different transmission policy for each media scale level 
  // Initially, frame_size_ = 0 
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  switch (scale_) { 
  case 0: 
    if (frame_type_ == 'I') frame_size_ = size_read_; 
    break; 
 
  case 1: 
    if (frame_type_ == 'I') frame_size_ = size_read_; 
    if (frame_type_ == 'P') { 
      if (recv_frame_type[2] == 'I') { 
 // for IBBPBBPBBI and IBBPBBPBBPBBI format 
 if (recv_frame_type[8] == 'P') {  
   frame_size_ = size_read_; 
 } 
 // for IBBPBBI format 
 else { 
   if (p_frame_sent_ == 0) { 
     frame_size_ = size_read_; 
     p_frame_sent_ = 1; 
   } 
   else 
     p_frame_sent_ = 0; 
 } 
      } 
    } 
    break; 
 
  case 2: 
    if (frame_type_ == 'I') frame_size_ = size_read_; 
    if (frame_type_ == 'P') frame_size_ = size_read_; 
    break; 
 
  case 3: 
    if (frame_type_ == 'I') frame_size_ = size_read_; 
    if (frame_type_ == 'P') frame_size_ = size_read_; 
    if ((frame_type_ == 'B') && (recv_frame_type[0] == 'B')) 
frame_size_ = size_read_; 
    break; 
 
  case 4: 
    frame_size_ = size_read_; 
    break; 
 
  default: 
    printf("Error: unrecognized frame type\n"); 
    exit(1); 
    break; 
  } 
 
  update_recv_frame_type(frame_type_); 
  *ftype = frame_type_; 
  return frame_size_; 
} 
 
 
// Keep track of 9 previously read frame type. 
void MmAppMpegNew::update_recv_frame_type(char frame_type) 
{ 
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  int i; 
  for (i=8; i>0; i--) { 
    recv_frame_type[i] = recv_frame_type[i-1]; 
  } 
  recv_frame_type[0] = frame_type; 
} 
 
 
 
// Receive message from underlying agent 
void MmAppMpegNew::recv_msg(int nbytes, const char *msg = 0) 
{ 
  // do nothing 
} 
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Appendix I: MM-App-Mpeg-New Parameters 
 

• frame_per_second_ (default = 30) 
This value sets the number of frames to send per second. 

• min_scale_ (default = 0) 
This is the lowest scale value to use. 

• max_scale_ (default = 4) 
This is the largest scale value to use. 

While changing min_scale_ and max_scale_ is permitted, scale values outside of 

0-4 have not yet been implemented.  MPEG-App may also generate a scale values trace 

file, by using “<flow> record-mm-scale-value <tracefile>.”  It also requires an input file, 

specified by using “<flow> mpeg-trace- input <inputfile>.”  This file must follow the 

“IBBPBBPBBI” or “IBBPBBPBBPBBI” formats.  Different sending rates will send 

differing numbers of frames, as follows: 

   rate 0 -  I        I   or  I           I 
   rate 1 -  I  P     I   or  I  P        I 
   rate 2 -  I  P  P  I   or  I  P  P  P  I 
   rate 3 -  I BP BP BI   or  I BP BP BP BI 
   rate 4 -  IBBPBBPBBI   or  IBBPBBPBBPBBI 
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Appendix J: OTcl Example – basic_MMAppNewUW.tcl 
 
# File Name:  basic_MMAppNewUW.tcl 
# Authors:   Keith Barber 
#   Joel Thibault 
#   Jason Ingalsbe 
# Date:  2/28/01 
# Description:   Simulation running MMAppNewUW vs. TCP in a standard 
#   bottleneck link layout. 
 
#Create a simulator object 
set ns [new Simulator] 
 
#Define different colors for data flows 
$ns color 0 Green 
$ns color 1 Red 
 
#Open the nam trace file 
set nf [open basic_MMAppNewUW.nam w] 
set tf [open basic_MMAppNewUW.tr w] 
$ns namtrace-all $nf 
$ns trace-all $tf 
 
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf tf 
        $ns flush-trace 
 #Close the trace file 
        close $nf 
        close $tf 
 #Execute nam on the trace file 
     #   exec nam lostAcks.nam & 
        exit 0 
} 
 
#Create four nodes 
#TCP Node 
set s1 [$ns node]    
#MMApp Node 
set s2 [$ns node]   
#Middle Node 
set m [$ns node]    
#Receiver 
set r [$ns node]  
 
#Create links between the nodes 
$ns duplex-link $s1 $m 4Mb 20ms DropTail 
$ns duplex-link $s2 $m 4Mb 20ms DropTail 
$ns duplex-link $m $r 2Mb 20ms DropTail 
 
#Set outbound queue limit 
$ns queue-limit $m $r 60 
 
#Set up orientation layout for nam 
$ns duplex-link-op $s1 $m orient right-down 
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$ns duplex-link-op $s2 $m orient right-up 
$ns duplex-link-op $m $r orient right 
 
#Monitor the queue for the possibly congested links 
$ns duplex-link-op $m $r queuePos 0.5 
 
 
################### 
# TCP Connections # 
################### 
 
#Setup 1st TCP connection 
set tcp1_s [new Agent/TCP/Reno] 
$tcp1_s set window_ 20 
$tcp1_s set packetSize_ 1000 
$ns attach-agent $s1 $tcp1_s 
set tcp1_r [new Agent/TCPSink] 
$ns attach-agent $r $tcp1_r 
$ns connect $tcp1_s $tcp1_r 
$tcp1_s set fid_ 0 
 
 
###################### 
# MMFlow Connections # 
###################### 
 
#Setup 1st MMF connection 
set mmf1_s [new Agent/UDP/MmFlow] 
$ns attach-agent $s2 $mmf1_s 
set mmf1_r [new Agent/UDP/MmFlow] 
$ns attach-agent $r $mmf1_r 
$ns connect $mmf1_s $mmf1_r 
$mmf1_s set packetSize_ 1000 
$mmf1_s set fid_ 1 
$mmf1_s set weighted_ false 
$mmf1_s set add_inc_ 1 
$mmf1_s set mult_dec_ 0.50 
$mmf1_r set packetSize_ 1000 
$mmf1_r set fid_ 1 
 
 
############# 
# FTP Setup # 
############# 
 
#Setup 1st FTP Application 
set ftp1 [new Application/FTP] 
$ftp1 attach-agent $tcp1_s 
$ftp1 set type_ FTP 
 
 
################ 
# MM_APP Setup # 
################ 
 
#Setup 1st MM_Application 
set mmapp1_s [new Application/MmAppNew] 



 103

$mmapp1_s attach-agent $mmf1_s 
$mmapp1_s set frmsize_ 1000 
$mmapp1_s set random_ true 
$mmapp1_s record-mm-scale-value "basic_MMAppNewUW.mmappnew1.scl" 
$mmapp1_s set max_bandwidth_ 2.0mb 
$mmapp1_s set min_scale_ 0 
$mmapp1_s set max_scale_ 49 
 
set mmapp1_r [new Application/MmAppNew] 
$mmf1_r record-mm-packet-arrival "basic_MMAppNewUW.mmappnew1.dly" 
$mmapp1_r attach-agent $mmf1_r 
 
 
################## 
#Schedule events # 
################## 
 
 
$ns at 0.5 "$ftp1 start" 
  #Let the ftp application get settled before starting MMapp 
$ns at 2.5 "$mmapp1_s start" 
 
$ns at 92.5 "$mmapp1_s stop" 
$ns at 94.5 "$ftp1 stop" 
 
#Call the finish procedure after 5 seconds of simulation time 
$ns at 95.0 "finish" 
 
 
##################### 
#Run the simulation # 
##################### 
 
$ns run 
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Appendix K: OTcl Example – all.tcl 
 
# File Name:  all.tcl 
# Authors:   Keith Barber 
#   Joel Thibault 
#   Jason Ingalsbe 
# Date:  2/28/01 
# Description:   Simulation running MMAppNewUW vs. TCP vs. TFRC 
 
#Create a simulator object 
set ns [new Simulator] 
 
########### Color vs. Protocol vs. FlowID ############# 
# Black  => TCP          => 0 
# Red    => TCP   => 1 
# Blue   => TCP   => 2 
# Green  => TCP   => 3  
# Orange => MM-AppNewUW  => 4 
# White  => MM-AppNewUw  => 5 
# Purple => TFRC   => 6 
# Grey   => TFRC   => 7 
####################################################### 
#Define different colors for data flows 
$ns color 0 Black 
$ns color 1 Red 
$ns color 2 Blue 
$ns color 3 Green 
$ns color 4 Orange 
$ns color 5 White 
$ns color 6 Purple 
$ns color 7 Grey 
 
#Open the nam trace file 
set nf [open all.nam w] 
set tf [open all.tr w] 
$ns namtrace-all $nf 
$ns trace-all $tf 
 
#Define a 'finish' procedure 
proc finish {} { 
        global ns nf tf 
        $ns flush-trace 
 #Close the trace file 
        close $nf 
        close $tf 
 #Execute nam on the trace file 
        #exec nam out.nam & 
        exit 0 
} 
 
#Create all the nodes 
set s0 [$ns node] 
set s1 [$ns node] 
set s2 [$ns node] 
set s3 [$ns node] 
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set s4 [$ns node] 
set s5 [$ns node] 
set s6 [$ns node] 
set s7 [$ns node] 
set r0 [$ns node] 
set r1 [$ns node] 
set r2 [$ns node] 
set r3 [$ns node] 
set r4 [$ns node] 
set r5 [$ns node] 
set r6 [$ns node] 
set r7 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
 
#Create links between the nodes 
$ns duplex-link $s0 $n1 4Mb 5ms DropTail 
$ns duplex-link $s1 $n1 4Mb 5ms DropTail 
$ns duplex-link $s2 $n1 4Mb 5ms DropTail 
$ns duplex-link $s3 $n1 4Mb 5ms DropTail 
$ns duplex-link $s4 $n1 4Mb 5ms DropTail 
$ns duplex-link $s5 $n1 4Mb 5ms DropTail 
$ns duplex-link $s6 $n1 4Mb 5ms DropTail 
$ns duplex-link $s7 $n1 4Mb 5ms DropTail 
 
$ns duplex-link $n1 $n2 4Mb 20ms DropTail 
 
$ns duplex-link $n2 $r0 4Mb 5ms DropTail 
$ns duplex-link $n2 $r1 4Mb 5ms DropTail 
$ns duplex-link $n2 $r2 4Mb 5ms DropTail 
$ns duplex-link $n2 $r3 4Mb 5ms DropTail 
$ns duplex-link $n2 $r4 4Mb 5ms DropTail 
$ns duplex-link $n2 $r5 4Mb 5ms DropTail 
$ns duplex-link $n2 $r6 4Mb 5ms DropTail 
$ns duplex-link $n2 $r7 4Mb 5ms DropTail 
 
$ns queue-limit $n1 $n2 60 
 
$ns duplex-link-op $s0 $n1 orient left-down 
$ns duplex-link-op $s1 $n1 orient down 
$ns duplex-link-op $s2 $n1 orient right-down 
$ns duplex-link-op $s3 $n1 orient right 
$ns duplex-link-op $s4 $n1 orient right-up 
$ns duplex-link-op $s5 $n1 orient up 
$ns duplex-link-op $s6 $n1 orient left-up 
$ns duplex-link-op $s7 $n1 orient left 
 
$ns duplex-link-op $n1 $n2 orient right 
 
$ns duplex-link-op $n2 $r0 orient left-up 
$ns duplex-link-op $n2 $r1 orient up 
$ns duplex-link-op $n2 $r2 orient right-up   
$ns duplex-link-op $n2 $r3 orient right 
$ns duplex-link-op $n2 $r4 orient right-down 
$ns duplex-link-op $n2 $r5 orient down 
$ns duplex-link-op $n2 $r6 orient left-down 
$ns duplex-link-op $n2 $r7 orient right 
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#Monitor the queue for the possibly congested links 
$ns duplex-link-op $s0 $n1 queuePos 0.5 
$ns duplex-link-op $s1 $n1 queuePos 0.5 
$ns duplex-link-op $s2 $n1 queuePos 0.5 
$ns duplex-link-op $s3 $n1 queuePos 0.5 
$ns duplex-link-op $s4 $n1 queuePos 0.5 
$ns duplex-link-op $s5 $n1 queuePos 0.5 
$ns duplex-link-op $s6 $n1 queuePos 0.5 
$ns duplex-link-op $s7 $n1 queuePos 0.5 
$ns duplex-link-op $n1 $n2 queuePos 0.5 
 
 
################### 
# TCP Connections # 
################### 
 
#Setup 1st TCP connection 
set tcp1_s [new Agent/TCP/Reno] 
$tcp1_s set window_ 20 
$tcp1_s set packetSize_ 1000 
$ns attach-agent $s0 $tcp1_s 
set tcp1_r [new Agent/TCPSink] 
$ns attach-agent $r0 $tcp1_r 
$ns connect $tcp1_s $tcp1_r 
$tcp1_s set fid_ 0 
 
#Setup 2nd TCP connection 
set tcp2_s [new Agent/TCP/Reno] 
$tcp2_s set window_ 20 
$tcp2_s set packetSize_ 1000 
$ns attach-agent $s1 $tcp2_s 
set tcp2_r [new Agent/TCPSink] 
$ns attach-agent $r1 $tcp2_r 
$ns connect $tcp2_s $tcp2_r 
$tcp2_s set fid_ 1 
 
#Setup 3rd TCP connection 
set tcp3_s [new Agent/TCP/Reno] 
$tcp3_s set window_ 20 
$tcp3_s set packetSize_ 1000 
$ns attach-agent $s2 $tcp3_s    
set tcp3_r [new Agent/TCPSink] 
$ns attach-agent $r2 $tcp3_r 
$ns connect $tcp3_s $tcp3_r 
$tcp3_s set fid_ 2 
 
#Setup 4th TCP connection 
set tcp4_s [new Agent/TCP/Reno] 
$tcp4_s set window_ 20 
$tcp4_s set packetSize_ 1000 
$ns attach-agent $s3 $tcp4_s    
set tcp4_r [new Agent/TCPSink] 
$ns attach-agent $r3 $tcp4_r 
$ns connect $tcp4_s $tcp4_r 
$tcp4_s set fid_ 3 
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################### 
# MMF Connections # 
################### 
 
#Setup 1st MMApp New connection 
set mmf3_s [new Agent/UDP/MmFlow] 
$ns attach-agent $s4 $mmf3_s 
set mmf3_r [new Agent/UDP/MmFlow] 
$ns attach-agent $r4 $mmf3_r 
$ns connect $mmf3_s $mmf3_r 
$mmf3_s set packetSize_ 1000 
$mmf3_s set fid_ 4 
$mmf3_s set weighted_ false 
$mmf3_r set packetSize_ 1000 
$mmf3_r set fid_ 4 
 
set mmf4_s [new Agent/UDP/MmFlow] 
$ns attach-agent $s5 $mmf4_s 
set mmf4_r [new Agent/UDP/MmFlow] 
$ns attach-agent $r5 $mmf4_r 
$ns connect $mmf4_s $mmf4_r 
$mmf4_s set packetSize_ 1000 
$mmf4_s set weighted_ false  
$mmf4_s set fid_ 5 
$mmf4_r set packetSize_ 1000 
$mmf4_r set fid_ 5 
 
 
#Setup 1st TFRC  
set tfrc1 [new Agent/TFRC] 
$ns attach-agent $s6 $tfrc1 
set tfrcsink1 [new Agent/TFRCSink] 
$ns attach-agent $r6 $tfrcsink1 
$tfrc1 set fid_ 6 
$tfrc1 set packetSize_ 1000 
$tfrc1 set discount_ 5 
$tfrc1 set printLoss_ 1 
$tfrc1 set smooth_ 1 
$tfrc1 set printStatus_ 0 
$tfrc1 set df_ 0.95 
$tfrc1 set ca_ 1 
$ns connect $tfrc1 $tfrcsink1 
 
#Setup 2nd TFRC Connection 
set tfrc2 [new Agent/TFRC] 
$ns attach-agent $s7 $tfrc2 
set tfrcsink2 [new Agent/TFRCSink] 
$ns attach-agent $r7 $tfrcsink2 
$tfrc2 set fid_ 7 
$tfrc2 set packetSize_ 1000 
$tfrc2 set discount_ 5 
$tfrc2 set printLoss_ 1 
$tfrc2 set smooth_ 1 
$tfrc2 set printStatus_ 0 
$tfrc2 set df_ 0.95 
$tfrc2 set ca_ 1 
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$ns connect $tfrc2 $tfrcsink2 
 
 
############# 
# FTP Setup # 
############# 
 
#Setup 1st FTP Application 
set ftp1 [new Application/FTP] 
$ftp1 attach-agent $tcp1_s 
$ftp1 set type_ FTP 
 
#Setup 2nd FTP Application 
set ftp2 [new Application/FTP] 
$ftp2 attach-agent $tcp2_s 
$ftp2 set type_ FTP 
 
#Setup 3rd FTP Application 
set ftp3 [new Application/FTP] 
$ftp3 attach-agent $tcp3_s 
$ftp3 set type_ FTP 
 
#Setup 4th FTP Application 
set ftp4 [new Application/FTP] 
$ftp4 attach-agent $tcp4_s 
$ftp4 set type_ FTP 
 
################## 
#### MMApp New ### 
################## 
 
#Setup 1st MM_Application 
set mmappnew1_s [new Application/MmAppNew] 
$mmappnew1_s attach-agent $mmf3_s 
$mmappnew1_s set flow_control_ true 
$mmappnew1_s set frmsize_ 1000 
$mmappnew1_s set random_ true 
$mmappnew1_s record-mm-scale-value "all.mmappnew1.scl" 
$mmappnew1_s set max_bandwidth_ 4.0mb 
$mmappnew1_s set min_scale_ 0 
$mmappnew1_s set max_scale_ 49 
 
set mmappnew1_r [new Application/MmAppNew] 
$mmappnew1_r attach-agent $mmf3_r 
$mmf3_r record-mm-packet-arrival "all.mmappnew1.dly" 
 
#Setup 2nd MM_Application 
set mmappnew2_s [new Application/MmAppNew] 
$mmappnew2_s attach-agent $mmf4_s 
$mmappnew2_s set flow_control_ true 
$mmappnew2_s set frmsize_ 1000 
$mmappnew2_s set random_ true 
$mmappnew2_s record-mm-scale-value "all.mmappnew2.scl" 
$mmappnew2_s set max_bandwidth_ 4.0mb 
$mmappnew2_s set min_scale_ 0 
$mmappnew2_s set max_scale_ 49 
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set mmappnew2_r [new Application/MmAppNew] 
$mmappnew2_r attach-agent $mmf4_r 
$mmf4_r record-mm-packet-arrival "all.mmappnew2.dly" 
 
 
################## 
#Schedule events # 
################## 
 
$ns at 0.0 "$ftp1 start" 
$ns at 0.0 "$ftp2 start" 
$ns at 0.0 "$ftp3 start" 
$ns at 0.0 "$ftp4 start" 
 
$ns at 0.0 "$mmappnew1_s start" 
$ns at 0.0 "$mmappnew2_s start" 
 
$ns at 0.00 "$tfrc1 start" 
$ns at 0.00 "$tfrc2 start" 
 
$ns at 90.0 "$ftp1 stop" 
$ns at 90.0 "$ftp2 stop" 
$ns at 90.0 "$ftp3 stop" 
$ns at 90.0 "$ftp4 stop" 
 
$ns at 90.0 "$mmappnew1_s stop" 
$ns at 90.0 "$mmappnew2_s stop" 
 
$ns at 90.0 "$tfrc1 stop" 
$ns at 90.0 "$tfrc2 stop" 
 
#Call the finish procedure after 5 seconds of simulation time 
$ns at 95.0 "finish" 
 
##################### 
#Run the simulation # 
##################### 
 
$ns run 
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Appendix L: get_thruput_data.c 
 
/* 
 * File Name: get_thruput_data.c 
 * Date:      02/28/2001 
 * Author(s): Jason Ingalsbe 
 *            Joel Thibault 
 *            Keith Barber 
 * 
 * Description: 
 *   This script collects data about events along 
 *   a given link in the simulated network. Output 
 *   data includes files for percent utilization, 
 *   enqueues, dequeues, drops, receives, and queue size. 
 */ 
 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
#define MAX_FID_NUM      15 
#define MAX_EVT_NUM      4 
#define MIN_ARGC         8 
#define MAX_ARGC         9 
#define MAX_FILENAME_LEN 50 
 
#define EVT_ENQ 0  /* Array index for enqueue event */ 
#define EVT_DEQ 1  /* Array index for dequeue event */ 
#define EVT_DRP 2  /* Array index for drop event */ 
#define EVT_RCV 3  /* Array index for receive event */ 
 
#define ARGV_FINNAME 1 
#define ARGV_FNODE   2 
#define ARGV_TNODE   3 
#define ARGV_MAX_QUE 4 
#define ARGV_MAX_BND 5 
#define ARGV_FID     6 
#define ARGV_INTERV  7 
#define ARGV_LABEL   8 
 
#define AVGQUE_WEIGHT 0.002 
 
main(int argc, char *argv[]) { 
 
  char fEnqName[MAX_FILENAME_LEN]; 
  char fDeqName[MAX_FILENAME_LEN]; 
  char fDrpName[MAX_FILENAME_LEN]; 
  char fRcvName[MAX_FILENAME_LEN]; 
  char fQueName[MAX_FILENAME_LEN]; 
  char fUtlName[MAX_FILENAME_LEN]; 
 
  int    fid[MAX_FID_NUM]; 
  int    mBytes[MAX_EVT_NUM][MAX_FID_NUM]; 
  int    queue_size = 0, max_queue_size=0, last_queue_size=0; 
  double avg_queue_size=0.0; 
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  double mThruput[MAX_EVT_NUM][MAX_FID_NUM]; 
  double mThruTotal[MAX_EVT_NUM]; 
   
  double cTime, mTime, mInterval; 
  float time; 
  int cFnode, cTnode, cFid, cBytes, fNode, tNode;  
  int fCount, i, j, evt, allFlow=0, addFid; 
  char *fInName, *pNext, op; 
  FILE *fd1, *fdENQ, *fdDEQ, *fdDRP, *fdRCV, *fdQUE; 
  char LblSpc[] = "_"; 
  char EnqExt[] = ".enq"; 
  char DeqExt[] = ".deq"; 
  char DrpExt[] = ".drp"; 
  char RcvExt[] = ".rcv"; 
  char QueExt[] = ".que"; 
  char UtlExt[] = ".utl"; 
  FILE *fdUTL; 
 
  double max_bandwidth = 0.0; 
 
  /* for dummy data */ 
  char tmp1[10], tmp2[10]; 
  float tmp3, tmp4; 
  int tmp5, tmp6; 
 
  /******************************/ 
  /* Handling Command Line Args */ 
  /******************************/ 
 
  for(i = 0; i < MAX_FILENAME_LEN; i++) { 
    fEnqName[i] = 0; 
    fDeqName[i] = 0; 
    fDrpName[i] = 0; 
    fRcvName[i] = 0; 
    fQueName[i] = 0; 
    fUtlName[i] = 0; 
  } 
 
 
  if(argc < MIN_ARGC || argc > MAX_ARGC) { 
    fprintf(stdout, "Usage: get_thruput_data ifname ofname fnode tnode 
fid event interval\n\n"); 
    fprintf(stdout, "       TrcFileName    = Trace File Name (ex: 
out.tr)\n"); 
    fprintf(stdout, "       fNode          = from node of the link 
(integer)\n"); 
    fprintf(stdout, "       tNode          = to node of the link 
(integer)\n"); 
    fprintf(stdout, "       max_queue_size = max queue size for link 
(as defined tcl script)\n"); 
    fprintf(stdout, "       max_bandwidth  = max bandwidth (in Mbps) 
for link (as defined tcl script)\n"); 
    fprintf(stdout, "       fid            = flow id to monitor 
(integer); \"-1\" for all flows)\n"); 
    fprintf(stdout, "       interval       = measurement interval in 
Sec (ex: 0.1)\n"); 
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    fprintf(stdout, "       [label]        = Optional label to be added 
to output file names\n\n"); 
    exit(1); 
  } 
  else { 
    fInName = argv[ARGV_FINNAME]; 
    fNode = atoi(argv[ARGV_FNODE]); 
    tNode = atoi(argv[ARGV_TNODE]); 
    max_queue_size = atoi(argv[ARGV_MAX_QUE]); 
    max_bandwidth = atof(argv[ARGV_MAX_BND]); 
    
    if(max_bandwidth <= 0.0) { 
      fprintf(stdout, "Error: max_bandwidth must be greater then 
0.0\n"); 
      exit(1); 
    } 
 
    if(argc == MAX_ARGC) { 
      if(!strncpy(fEnqName, fInName, strlen(fInName) - 3)) exit(1); 
      if(!strcat(fEnqName, LblSpc)) exit(1); 
      if(!strcat(fEnqName, argv[ARGV_LABEL])) exit(1); 
    } 
    else { 
      if(!strncpy(fEnqName, fInName, strlen(fInName) - 3)) exit(1); 
    } 
    if(!strcpy(fDeqName, fEnqName)) exit(1); 
    if(!strcpy(fDrpName, fEnqName)) exit(1); 
    if(!strcpy(fRcvName, fEnqName)) exit(1); 
    if(!strcpy(fQueName, fEnqName)) exit(1); 
    if(!strcpy(fUtlName, fEnqName)) exit(1); 
 
    if(!strcat(fEnqName, EnqExt)) exit(1); 
    if(!strcat(fDeqName, DeqExt)) exit(1); 
    if(!strcat(fDrpName, DrpExt)) exit(1); 
    if(!strcat(fRcvName, RcvExt)) exit(1); 
    if(!strcat(fQueName, QueExt)) exit(1); 
    if(!strcat(fUtlName, UtlExt)) exit(1); 
 
    if((strtol(argv[ARGV_FID], &pNext, 10) == -1) && (*pNext == '\0')) 
{ 
      allFlow = 1; 
      fCount = 0; 
    } 
    else { 
      fCount = 0; 
      pNext = argv[ARGV_FID]; 
      while(1) { 
 if((*pNext < 48) || (*pNext >59)) { 
   fprintf(stdout, "Error: Invalid Flow ID\n"); 
   exit(1); 
 } 
 fid[fCount++] = (int)strtol(pNext, &pNext, 10); 
 if(*pNext == '\0') break; 
 if((*pNext == '-') && (*(pNext+1)!= '\0')) pNext = pNext+1; 
 else { 
   fprintf(stdout, "Error: Invalid Flow ID Format\n"); 
   exit(1); 
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 } 
      } 
    } 
    if((mInterval = atof(argv[ARGV_INTERV])) <= 0) { 
      fprintf(stdout, "Error: Measurement Interval <= \"0\"\n"); 
      exit(1); 
    } 
  } 
 
  /******************************/ 
  /* Opening Input Output Files */ 
  /******************************/ 
   
  if((fd1 = fopen(fInName, "r")) == NULL) { 
    fprintf(stdout, "Cannot open \"%s\" for read.\n", fInName); 
    exit(1); 
  } 
  if((fdENQ = fopen(fEnqName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fEnqName); 
    exit(1); 
  } 
  if((fdDEQ = fopen(fDeqName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fDeqName); 
    exit(1); 
  } 
  if((fdDRP = fopen(fDrpName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fDrpName); 
    exit(1); 
  } 
  if((fdRCV = fopen(fRcvName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fRcvName); 
    exit(1); 
  } 
  if((fdQUE = fopen(fQueName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fQueName); 
    exit(1); 
  } 
  if((fdUTL = fopen(fUtlName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fUtlName); 
    exit(1); 
  } 
 
  /***************************/ 
  /* Get all flows from file */ 
  /***************************/ 
 
  if(allFlow == 1){ 
    while(fscanf(fd1, "%c %f %d %d %s %d %s %d %f %f %d %d\n",  
   &op, &time, &cFnode, &cTnode, tmp1, &cBytes,  
   tmp2, &cFid, &tmp3, &tmp4, &tmp5, &tmp6) != EOF){ 
      addFid = 1; 
       
      for(i=0; i<fCount; i++){ 
 if(fid[i]==cFid) 
   addFid = 0; 
      } 
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      if(addFid == 1) { 
 fid[fCount++] = cFid; 
      } 
    } 
    fseek(fd1, 0, 0);   /* Reset file pointer to top */ 
  } 
 
  /******************************************/ 
  /* Print Configuration Info to the screen */ 
  /******************************************/ 
 
  printf("\nInput File Name:       %s\n", fInName); 
  printf("Enqueue File Name:     %s\n", fEnqName); 
  printf("Dequeue File Name:     %s\n", fDeqName); 
  printf("Drop File Name:        %s\n", fDrpName); 
  printf("Receive File Name:     %s\n", fRcvName); 
  printf("Queue Size File Name:  %s\n", fQueName); 
  printf("Band. Util. File Name: %s\n", fUtlName); 
  printf("FID(s) entered:       "); 
  for(i=0; i<fCount; i++) 
    printf("fid(%d) ", fid[i]); 
  printf("\nFrom Node:             %d\n", fNode); 
  printf("To Node:               %d\n", tNode); 
  printf("Max Queue Size:        %d\n", max_queue_size); 
  printf("Max Bandwidth:         %f Mb\n", max_bandwidth); 
  printf("Measurment Interval:   %f\n\n", mInterval); 
 
  /*********************/ 
  /* Calculate Thruput */ 
  /*********************/ 
   
  /* Print Headers and initialize data */ 
 
  fprintf(fdENQ, "#Time\t"); 
  fprintf(fdDEQ, "#Time\t"); 
  fprintf(fdDRP, "#Time\t"); 
  fprintf(fdRCV, "#Time\t"); 
  fprintf(fdUTL, "#Time\t"); 
 
  for(i=0; i<fCount; i++) { 
 
    fprintf(fdENQ, "Flow%d\t", fid[i]); 
    fprintf(fdDEQ, "Flow%d\t", fid[i]); 
    fprintf(fdDRP, "Flow%d\t", fid[i]); 
    fprintf(fdRCV, "Flow%d\t", fid[i]); 
    fprintf(fdUTL, "Flow%d\t", fid[i]); 
 
    for (j=0; j<MAX_EVT_NUM; j++) { 
      mBytes[j][i] = 0; 
    } 
  } 
 
  fprintf(fdENQ, "Total\n"); 
  fprintf(fdDEQ, "Total\n"); 
  fprintf(fdDRP, "Total\n"); 
  fprintf(fdRCV, "Total\n"); 
  fprintf(fdUTL, "Total\n"); 



 115

  
  mTime = 0; 
 
  while(fscanf(fd1, "%c %f %d %d %s %d %s %d %f %f %d %d\n",  
        &op, &time, &cFnode, &cTnode, tmp1, &cBytes,  
        tmp2, &cFid, &tmp3, &tmp4, &tmp5, &tmp6) != EOF) { 
 
    /* We only care about events that occur between the fromNode and 
toNode */ 
 
    if((cFnode==fNode) && (cTnode==tNode)) { 
 
      /* Determine which type of event this is */ 
 
      if     (op=='+') evt = EVT_ENQ; 
      else if(op=='-') evt = EVT_DEQ; 
      else if(op=='d') evt = EVT_DRP; 
      else if(op=='r') evt = EVT_RCV; 
 
      /* If cTime <= mTime we are within the current interval so add 
bytes to correct fid and event */ 
 
      cTime = (double)time; 
      if(cTime <= mTime) { 
 for(i=0; i<fCount; i++) { 
   if(cFid==fid[i]) 
     mBytes[evt][i] += cBytes; 
 } 
      } 
      else { 
 
 /* While cTime > mTime we are beyond the current interval so 
write output */ 
 
 while(cTime > mTime) { 
 
   /* Print time interval to output files */ 
 
   fprintf(fdENQ, "%f\t", mTime); 
   fprintf(fdDEQ, "%f\t", mTime); 
   fprintf(fdDRP, "%f\t", mTime); 
   fprintf(fdRCV, "%f\t", mTime); 
   fprintf(fdUTL, "%f\t", mTime); 
 
   /* Zero out mThruTotal for each event */ 
 
   for(i=0; i<MAX_EVT_NUM; i++) 
     mThruTotal[i] = 0; 
 
   /* Print mThruput for each flow (i) for each event (j) and add 
to mThruTotal */ 
 
   for(i=0; i<fCount; i++) { 
 
     for(j=0; j<MAX_EVT_NUM; j++) { 
       /* Need to convert packet size from Bytes to Mbps */ 
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       mThruput[j][i] = 
(((double)(mBytes[j][i]))*8/mInterval)/1000000; 
       mThruTotal[j] += mThruput[j][i]; 
     } 
 
     fprintf(fdENQ, "%f\t", mThruput[EVT_ENQ][i]); 
     fprintf(fdDEQ, "%f\t", mThruput[EVT_DEQ][i]); 
     fprintf(fdDRP, "%f\t", mThruput[EVT_DRP][i]); 
     fprintf(fdRCV, "%f\t", mThruput[EVT_RCV][i]); 
 
     /* Print Flow Bandwidth Utilization for RCV event */ 
 
     fprintf(fdUTL, "%f\t", (mThruput[EVT_RCV][i])/max_bandwidth); 
   } 
 
   /* Print mThruTotal for each event */ 
 
   fprintf(fdENQ, "%f\n", mThruTotal[EVT_ENQ]); 
   fprintf(fdDEQ, "%f\n", mThruTotal[EVT_DEQ]); 
   fprintf(fdDRP, "%f\n", mThruTotal[EVT_DRP]); 
   fprintf(fdRCV, "%f\n", mThruTotal[EVT_RCV]); 
 
   /* Print Total Bandwidth Utilization for RCV event */ 
 
   fprintf(fdUTL, "%f\n", (mThruTotal[EVT_RCV])/max_bandwidth); 
 
   /* Increment interval and reset mBytes */ 
 
   mTime += mInterval; 
   for(i=0; i<MAX_EVT_NUM; i++) { 
     for(j=0; j<fCount; j++) 
       mBytes[i][j] = 0; 
   } 
 } 
 
 /* We are now within the correct interval so save to the array */ 
 
 for(i=0; i<fCount; i++) 
   if(cFid==fid[i])  
     mBytes[evt][i] = cBytes; 
      } 
    } 
  } 
   
  /* Run through print process one last time to get last interval */ 
 
  fprintf(fdENQ, "%f\t", mTime); 
  fprintf(fdDEQ, "%f\t", mTime); 
  fprintf(fdDRP, "%f\t", mTime); 
  fprintf(fdRCV, "%f\t", mTime); 
  fprintf(fdUTL, "%f\t", mTime); 
 
  for(i=0; i<MAX_EVT_NUM; i++) 
    mThruTotal[i] = 0; 
 
  for(i=0; i<fCount; i++) { 
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    for(j=0; j<MAX_EVT_NUM; j++) { 
      /* Need to convert packet size from Bytes to Mbps */ 
      mThruput[j][i] = (((double)(mBytes[j][i]))*8/mInterval)/1000000; 
      mThruTotal[j] += mThruput[j][i]; 
    } 
     
    fprintf(fdENQ, "%f\t", mThruput[EVT_ENQ][i]); 
    fprintf(fdDEQ, "%f\t", mThruput[EVT_DEQ][i]); 
    fprintf(fdDRP, "%f\t", mThruput[EVT_DRP][i]); 
    fprintf(fdRCV, "%f\t", mThruput[EVT_RCV][i]); 
     
    /* Print Flow Bandwidth Utilization for RCV event */ 
     
    fprintf(fdUTL, "%f\t", (mThruput[EVT_RCV][i])/max_bandwidth); 
  } 
 
  fprintf(fdENQ, "%f\n", mThruTotal[EVT_ENQ]); 
  fprintf(fdDEQ, "%f\n", mThruTotal[EVT_DEQ]); 
  fprintf(fdDRP, "%f\n", mThruTotal[EVT_DRP]); 
  fprintf(fdRCV, "%f\n", mThruTotal[EVT_RCV]); 
 
  /* Print Total Bandwidth Utilization for RCV event */ 
   
  fprintf(fdUTL, "%f\n", (mThruTotal[EVT_RCV])/max_bandwidth); 
 
  /* Close file pointers */ 
 
  fclose(fdENQ); 
  fclose(fdDEQ); 
  fclose(fdDRP); 
  fclose(fdRCV); 
  fclose(fdUTL); 
 
  /************************/ 
  /* Calculate Queue Size */ 
  /************************/   
 
  fprintf(fdQUE, "#Time\tQueueSize\tAvgQueueSize\n"); 
 
  fseek(fd1, 0, 0);   /* Reset file pointer to top */ 
 
  while(fscanf(fd1, "%c %f %d %d %s %d %s %d %f %f %d %d\n",  
        &op, &time, &cFnode, &cTnode, tmp1, &cBytes,  
        tmp2, &cFid, &tmp3, &tmp4, &tmp5, &tmp6) != EOF) { 
 
    /* We only care about events that occur between the fromNode and 
toNode */ 
 
    if((cFnode==fNode) && (cTnode==tNode)) { 
 
      /* Determine which type of event this is */ 
 
      if     (op=='+') evt = EVT_ENQ; 
      else if(op=='-') evt = EVT_DEQ; 
      else if(op=='d') evt = EVT_DRP; 
      else if(op=='r') evt = EVT_RCV; 
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      /* Adjust Queue Size */ 
       
      if (evt == EVT_ENQ) { 
 
 /* print to the file if <= max and is different */ 
 
 if(queue_size <= max_queue_size && queue_size != last_queue_size) 
{ 
   last_queue_size = queue_size; 
   fprintf(fdQUE, "%f\t%d\t%f\n", (double)time, queue_size, 
avg_queue_size); 
 } 
 queue_size++; 
 
 avg_queue_size *= 1.0 - AVGQUE_WEIGHT; 
 avg_queue_size += AVGQUE_WEIGHT * queue_size; 
      } 
      else if(evt == EVT_DEQ || evt == EVT_DRP) { 
 queue_size--; 
      } 
    } 
  } 
 
  fclose(fdQUE); 
 
  fclose(fd1); 
 
} 
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Appendix M: get_delay_data.c 
 
/* 
 * File Name: get_delay_data.c 
 * Date:      02/28/2001 
 * Author(s): Jason Ingalsbe 
 *            Joel Thibault 
 *            Keith Barber 
 * 
 * Description: 
 *    This script calculates delay for each packet traveling 
 *    along a given link in the simulated network. The output 
 *    data includes a file with arrival time, packet id, and  
 *    and delay in seconds. 
 */ 
 
#include <stdio.h> 
 
#define MAX_FID_NUM      15 
#define MAX_EVT_NUM      4 
#define MIN_ARGC         6 
#define MAX_ARGC         6 
#define MAX_FILENAME_LEN 50 
 
#define ARGV_TRCNAME 1 
#define ARGV_DLYNAME 2 
#define ARGV_FLOWID  3 
#define ARGV_SNDNODE 4 
#define ARGV_RCVNODE 5 
 
main(int argc, char *argv[]) { 
 
  double cTime, mTime, mInterval; 
  float time; 
  int cFnode, cTnode, cFid, cBytes, cPkt;  
  int flowID, sndNode, rcvNode, intMaxPkt, evt, i, intRcvIdx; 
  char *fTrcName, *fDlyName, op; 
  FILE *fdTRC, *fdDLY; 
 
  double *arySndTime, *aryRcvTime; 
  int *aryRcvPkt, *aryRcvFlag; 
 
  double dblTime, dblDly; 
  int intPkt; 
 
  /* for dummy data */ 
  char tmp1[10], tmp2[10]; 
  float tmp3, tmp4; 
  int tmp5, tmp7; 
 
  /******************************/ 
  /* Handling Command Line Args */ 
  /******************************/ 
 
  if(argc < MIN_ARGC || argc > MAX_ARGC) { 
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    fprintf(stdout, "Usage: get_delay_data TrcFileName DlyFileName 
flowID startNode endNode\n\n"); 
    fprintf(stdout, "       TrcFileName    = Trace File Name (ex: 
out.tr)\n"); 
    fprintf(stdout, "       DlyFileName    = Delay File Name (ex: 
out.tcp1.dly)\n"); 
    fprintf(stdout, "       flowID         = ID of the Flow to get 
delay data for (integer)\n"); 
    fprintf(stdout, "       sndNode        = Node where the sender is 
located (integer)\n"); 
    fprintf(stdout, "       rcvNode        = Node where the receiver is 
located (integer)\n"); 
    exit(1); 
  } 
  else { 
    fTrcName = argv[ARGV_TRCNAME]; 
    fDlyName = argv[ARGV_DLYNAME]; 
    flowID   = atoi(argv[ARGV_FLOWID]); 
    sndNode  = atoi(argv[ARGV_SNDNODE]); 
    rcvNode  = atoi(argv[ARGV_RCVNODE]); 
  } 
     
  /******************************/ 
  /* Opening Input Output Files */ 
  /******************************/ 
   
  if((fdTRC = fopen(fTrcName, "r")) == NULL) { 
    fprintf(stdout, "Cannot open \"%s\" for read.\n", fTrcName); 
    exit(1); 
  } 
   
  if((fdDLY = fopen(fDlyName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fDlyName); 
    exit(1); 
  } 
   
 
  /******************************************/ 
  /* Print Configuration Info to the screen */ 
  /******************************************/ 
 
  printf("\nTRC File Name:         %s\n", fTrcName); 
  printf("DLY File Name:         %s\n", fDlyName); 
  printf("FlowID:                %d\n", flowID); 
  printf("Sender Node:           %d\n", sndNode); 
  printf("Receiver Node:         %d\n\n", rcvNode); 
 
  /**************************************/ 
  /* Get number of packets sent by flow */ 
  /* and allocate memory for array      */ 
  /**************************************/ 
   
  intMaxPkt = 0; 
 
  while(fscanf(fdTRC, "%c %f %d %d %s %d %s %d %f %f %d %d\n",  
        &op, &time, &cFnode, &cTnode, tmp1, &cBytes,  
        tmp2, &cFid, &tmp3, &tmp4, &cPkt, &tmp5) != EOF){ 
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    if( cFid == flowID && cFnode == sndNode && op == '+' ) { 
      if( cPkt > intMaxPkt ) { 
 intMaxPkt = cPkt; 
      } 
    } 
  } 
  fseek(fdTRC, 0, 0);   /* Reset file pointer to top */ 
   
  arySndTime  = (double *)calloc(intMaxPkt + 1, sizeof(double)); // 
This will be indexed by the Packet Num 
  aryRcvTime  = (double *)calloc(intMaxPkt + 1, sizeof(double)); // 
This will be indexed in order they appear in Trc File 
  aryRcvPkt   = (int *)calloc(intMaxPkt + 1, sizeof(int));       // 
This will be indexed in order they appear in Trc File 
  aryRcvFlag  = (int *)calloc(intMaxPkt + 1, sizeof(int));       // 
This will be indexed by the Packet Num 
 
  for(i = 0; i < intMaxPkt; i++) { 
    arySndTime[i] = 0.0; 
    aryRcvTime[i] = 0.0; 
    aryRcvPkt[i]  = 0; 
  } 
   
  intRcvIdx = 0; 
 
  while(fscanf(fdTRC, "%c %f %d %d %s %d %s %d %f %f %d %d\n",  
        &op, &time, &cFnode, &cTnode, tmp1, &cBytes,  
        tmp2, &cFid, &tmp3, &tmp4, &cPkt, &tmp5) != EOF){ 
     
    if( cFid == flowID && cFnode == sndNode && op == '+' ) { 
      arySndTime[cPkt] = time; 
    }     
 
    if( cFid == flowID && cTnode == rcvNode && op == 'r' ) { 
 
      if( aryRcvFlag[cPkt] == 0 ) { 
 aryRcvTime[intRcvIdx] = time; 
 aryRcvPkt[intRcvIdx] = cPkt; 
 aryRcvFlag[cPkt] = 1; 
 intRcvIdx++; 
      } 
    } 
  } 
 
  dblTime = 0.0; 
  dblDly  = 0.0; 
  intPkt  = 0; 
 
  for(i=0; i < intRcvIdx; i++) { 
    dblTime = aryRcvTime[i]; 
    intPkt  = aryRcvPkt[i]; 
    dblDly  = aryRcvTime[i] - arySndTime[intPkt]; 
 
    fprintf(fdDLY,"%lf\t%d\t%lf\n", dblTime, intPkt, dblDly); 
  } 
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  /* Close file pointers */ 
   
  fclose(fdTRC); 
  fclose(fdDLY); 
} 
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Appendix N: get_tcpfriendly_data.c 
 
/* 
 * File Name: get_tcpfriendly_data.c 
 * Date:      02/28/2001 
 * Author(s): Jason Ingalsbe 
 *            Joel Thibault 
 *            Keith Barber 
 * 
 * Description: 
 *    This script calculates the TCP-Friendly bandwidth, as  
 *    determined by the formula presented in "Promoting the  
 *    Use of End-to-End Congestion Control in the Internet" 
 *    by Sally Floyd and Kevin (1999), as well as the actual  
 *    bandwidth for a given flow along a given link in the  
 *    simulated network. The output data includes a file 
 *    containing the TCP-Friendly bandwidth and actual  
 *    bandwidth used by the flow. 
 */ 
 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define MAX_EVT_NUM      4 
#define MIN_ARGC         10 
#define MAX_ARGC         10 
#define MAX_FILENAME_LEN 50 
 
#define EVT_ENQ 0  /* Array index for enqueue event */ 
#define EVT_DEQ 1  /* Array index for dequeue event */ 
#define EVT_DRP 2  /* Array index for drop event */ 
#define EVT_RCV 3  /* Array index for receive event */ 
 
#define ARGV_TCPNAME 1 
#define ARGV_TRCNAME 2 
#define ARGV_DLYNAME 3 
#define ARGV_FID     4 
#define ARGV_FNODE   5 
#define ARGV_TNODE   6 
#define ARGV_INTERV  7 
#define ARGV_PKTSIZE 8 
#define ARGV_MAXBAND 9 
 
main(int argc, char *argv[]) { 
 
  int    fid; 
  int    mBytes[MAX_EVT_NUM]; 
  double mThruput[MAX_EVT_NUM]; 
   
  double cTime, mTime, mInterval; 
  float time; 
  int cFnode, cTnode, cFid, cBytes, fNode, tNode, i, evt; 
  char *fTCPName, *fTrcName, *fDlyName, op; 
  FILE *fdTCP, *fdTRC, *fdDLY; 
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  int mDlyCnt, mDlyCntSim, intNumIntervals, intIntervalIdx; 
  double dropRate = 0.0, totDrp = 0.0, totOut = 0.0, totDrpSim = 0.0, 
totOutSim = 0.0; 
  double mDlyTotal, mDlyTotalSim, lowerTime, upperTime, avgDly; 
  double cDelay, cTimeDly, dblLastTime, Tfrd; 
  double *aryAvgDelay; 
  double maxPktSize = 0.0, maxBandwidth = 0.0; 
 
  /* for dummy data */ 
  char tmp1[10], tmp2[10]; 
  float tmp3, tmp4; 
  int tmp5, tmp6, tmp7; 
 
  /******************************/ 
  /* Handling Command Line Args */ 
  /******************************/ 
 
  if(argc < MIN_ARGC || argc > MAX_ARGC) { 
    fprintf(stdout, "Usage: get_tcpfriendly_data TCPFileName 
TrcFileName DlyFileName fid fnode tnode interval maxPktSize 
maxBandwidth\n\n"); 
    fprintf(stdout, "       TCPFileName    = TCP Output File Name (ex: 
out.tfd)\n"); 
    fprintf(stdout, "       TrcFileName    = Trace File Name (ex: 
out.tr)\n"); 
    fprintf(stdout, "       DlyFileName    = Delay File Name (ex: 
out.dly)\n"); 
    fprintf(stdout, "       fid            = Flow ID to monitor 
(integer)\n");     
    fprintf(stdout, "       fnode          = from node of the 
bottleneck (integer)\n"); 
    fprintf(stdout, "       tnode          = to node  of the bottleneck 
(integer)\n"); 
    fprintf(stdout, "       interval       = measurement interval in 
Sec (ex: 0.1)\n"); 
    fprintf(stdout, "       maxPktSize     = Maximum packet size in 
bytes (ex: 1000)\n"); 
    fprintf(stdout, "       maxBandwidth   = Maximum bandwidth along 
the bottleneck (ex: 2.0)\n"); 
    exit(1); 
  } 
  else { 
    fTCPName = argv[ARGV_TCPNAME]; 
    fTrcName = argv[ARGV_TRCNAME]; 
    fDlyName = argv[ARGV_DLYNAME]; 
    fid = atoi(argv[ARGV_FID]); 
    fNode = atoi(argv[ARGV_FNODE]); 
    tNode = atoi(argv[ARGV_TNODE]);    
    maxPktSize = atoi(argv[ARGV_PKTSIZE]); 
    maxBandwidth = atof(argv[ARGV_MAXBAND]); 
    if((mInterval = atof(argv[ARGV_INTERV])) <= 0) { 
      fprintf(stdout, "Error: Measurement Interval <= \"0\"\n"); 
      exit(1); 
    } 
  } 
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  /******************************/ 
  /* Opening Input Output Files */ 
  /******************************/ 
 
  if((fdTCP = fopen(fTCPName, "w")) == NULL) { 
    fprintf(stdout, "Cannot create \"%s\" for write.\n", fTCPName); 
    exit(1); 
  } 
  if((fdTRC = fopen(fTrcName, "r")) == NULL) { 
    fprintf(stdout, "Cannot open \"%s\" for read.\n", fTrcName); 
    exit(1); 
  } 
  if((fdDLY = fopen(fDlyName, "r")) == NULL) { 
    fprintf(stdout, "Cannot open \"%s\" for read.\n", fDlyName); 
    exit(1); 
  } 
 
  /******************************************/ 
  /* Print Configuration Info to the screen */ 
  /******************************************/ 
 
  printf("\nTCP File Name:         %s\n", fTCPName); 
  printf("TRC File Name:         %s\n", fTrcName); 
  printf("DLY File Name:         %s\n", fDlyName); 
  printf("FID entered:           %d\n", fid); 
  printf("From Node:             %d\n", fNode); 
  printf("To Node:               %d\n", tNode); 
  printf("Measurment Interval:   %f\n", mInterval); 
  printf("TCP Max Packet Size:   %lf\n\n", maxPktSize); 
 
  
/********************************************************************/ 
  /* Calculate Average Delay Per Interval Based On Specified DLY File 
*/ 
  
/********************************************************************/ 
 
  maxPktSize =  maxPktSize * 8.0 / 1000000; // Convert from Bytes to Mb 
  intNumIntervals = (int)(dblLastTime/mInterval + 1.0); 
 
  aryAvgDelay = (double *)calloc(intNumIntervals, sizeof(double)); 
   
  for(i = 0; i < intNumIntervals; i++) 
    aryAvgDelay[i] = 0.0; 
 
  mDlyTotal = 0.0; 
  mDlyCnt = 0; 
  mDlyTotalSim = 0.0; 
  mDlyCntSim = 0; 
  lowerTime = 0.0; 
  upperTime = 0.0; 
  intIntervalIdx = 0; 
 
  while(fscanf(fdDLY,"%lf %d %lf\n", &cTimeDly, &tmp7, &cDelay) != EOF 
) { 
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    mDlyTotalSim += (double)cDelay; 
    mDlyCntSim++; 
 
           
    if( (double)cTimeDly <= upperTime ) { 
      mDlyTotal += (double)cDelay; 
      mDlyCnt++; 
    } 
    else { 
       
      if( mDlyCnt > 0 ) { 
 avgDly = mDlyTotal / mDlyCnt; 
 aryAvgDelay[intIntervalIdx] = avgDly; 
      } 
 
      while( (double)cTimeDly > upperTime ) { 
 intIntervalIdx++; 
 lowerTime = upperTime; 
 upperTime += mInterval; 
      } 
 
      mDlyTotal = (double)cDelay; 
      mDlyCnt = 1;       
    } 
  } 
 
  if( mDlyCnt > 0 ) { 
    avgDly = mDlyTotal / mDlyCnt; 
    aryAvgDelay[intIntervalIdx] = avgDly; 
  } 
 
  /************************/ 
  /* Calculate Bandwidths */ 
  /************************/ 
 
     
  /* Print Headers and initialize data */ 
 
  fprintf(fdTCP, "#Time\tActual Bandwidth\tTCP-Friendly Bandwidth\n"); 
   
  for (i=0; i<MAX_EVT_NUM; i++) { 
    mBytes[i] = 0; 
  } 
 
  mTime = 0; 
  lowerTime = 3.14; 
  upperTime = 0.0; 
  intIntervalIdx = 0; 
 
   
  while(fscanf(fdTRC, "%c %f %d %d %s %d %s %d %f %f %d %d\n",  
        &op, &time, &cFnode, &cTnode, tmp1, &cBytes,  
        tmp2, &cFid, &tmp3, &tmp4, &tmp5, &tmp6) != EOF) { 
 
    /* We only care about events that occur between the fromNode and 
toNode for this flow */ 
 



 127

    if( (cFid==fid) && (cFnode==fNode) && (cTnode==tNode) ) { 
 
      /* Determine which type of event this is */ 
 
      if     (op=='+') evt = EVT_ENQ; 
      else if(op=='-') evt = EVT_DEQ; 
      else if(op=='d') evt = EVT_DRP; 
      else if(op=='r') evt = EVT_RCV; 
 
      /* If cTime <= mTime we are within the current interval so add 
bytes to event */ 
 
      cTime = (double)time; 
 
      if(cTime <= mTime) { 
  
 /* From TRC File */ 
  
 mBytes[evt] += cBytes; 
      } 
      else { 
 
 /* While cTime > mTime we are beyond the current interval so 
write output */ 
 
 while(cTime > mTime) { 
 
   /* Need to convert packet size from Bytes to Mbps */ 
 
   for(i=0; i<MAX_EVT_NUM; i++) { 
     mThruput[i] = (((double)(mBytes[i]))*8/mInterval)/1000000; 
   } 
    
   /* Print time interval to output files */ 
 
   fprintf(fdTCP, "%f\t", mTime); 
 
   /* Print Actual Bandwidth */ 
    
   fprintf(fdTCP, "%f\t", mThruput[EVT_RCV]); 
    
   /* Print TCP-Friendly Bandwidth */ 
    
   totOut = mThruput[EVT_DRP] + mThruput[EVT_RCV]; 
   totDrp = mThruput[EVT_DRP]; 
    
   totOutSim += totOut; // Keep track of total RCVs throughout the 
simulation 
   totDrpSim += totDrp; // Keep track of total DRPs throughout the 
simulation 
    
   if( totOut > 0.0 ) 
     dropRate = totDrp/totOut; 
   else 
     dropRate = 0.0; 
    
   avgDly = aryAvgDelay[intIntervalIdx]; 
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   if( avgDly > 0.0 && dropRate > 0.0 ) 
     Tfrd = (1.5 * sqrt(2.0/3.0) * maxPktSize) / (2.0 * avgDly * 
sqrt(dropRate)); 
   else 
     Tfrd = maxBandwidth; 
    
   fprintf(fdTCP, "%lf\n", Tfrd); 
     
   /* Increment interval and reset mBytes */ 
    
   lowerTime = mTime; 
   mTime += mInterval; 
   intIntervalIdx++; 
   for(i=0; i<MAX_EVT_NUM; i++) 
     mBytes[i] = 0; 
 } 
  
 /* We are now within the correct interval so save to the array */ 
  
 mBytes[evt] = cBytes; 
 
      }     
    } 
  } 
 
  /****************************************************************/ 
  /* Run through print process one last time to get last interval */ 
  /****************************************************************/ 
 
  /* Need to convert packet size from Bytes to Mbps */ 
   
  for(i=0; i<MAX_EVT_NUM; i++) { 
    mThruput[i] = (((double)(mBytes[i]))*8/mInterval)/1000000; 
  } 
 
  fprintf(fdTCP, "%f\t", mTime); 
         
  /* Print Actual Bandwidth */ 
   
  fprintf(fdTCP, "%f\t", mThruput[EVT_RCV]); 
   
  /* Print TCP-Friendly Bandwidth */ 
      
  totOut = mThruput[EVT_DRP] + mThruput[EVT_RCV]; 
  totDrp = mThruput[EVT_DRP]; 
   
  totOutSim += totOut; // Keep track of total RCVs throughout the 
simulation 
  totDrpSim += totDrp; // Keep track of total DRPs throughout the 
simulation 
     
  if( totOut > 0.0 ) 
    dropRate = totDrp/totOut; 
  else 
    dropRate = 0.0; 
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  avgDly = aryAvgDelay[intIntervalIdx]; 
   
  if( avgDly > 0.0 && dropRate > 0.0 ) 
    Tfrd = (1.5 * sqrt(2.0/3.0) * maxPktSize) / (2.0 * avgDly * 
sqrt(dropRate)); 
  else 
    Tfrd = maxBandwidth; 
   
  fprintf(fdTCP, "%lf\n", Tfrd); 
 
  /***********************************************************/ 
  /* Print Tfrd Average Over Whole Simulation To The Screen */ 
  /***********************************************************/ 
 
  if( totOutSim > 0.0 ) 
    dropRate = totDrpSim/totOutSim; 
  else 
    dropRate = 0.0; 
   
  avgDly = mDlyTotalSim / mDlyCntSim; 
   
  if( avgDly > 0.0 && dropRate > 0.0 ) 
    Tfrd = (1.5 * sqrt(2.0/3.0) * maxPktSize) / (2.0 * avgDly * 
sqrt(dropRate)); 
  else 
    Tfrd = maxBandwidth; 
   
  printf("Tfrd Over Entire Simulation = %lf\n\n", Tfrd);  
 
  /* Close file pointers */ 
 
  fclose(fdTCP); 
  fclose(fdTRC); 
  fclose(fdDLY); 
  } 
 


