Project Number: MLC-MQP-BMO00

BETTER-BEHAVED MULTIMEDIA NETWORKING

A Major Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Jason M. Ingalsbe

Keith R. Barber

Joel M. Thibault
Date: March 1, 2001

Approved:
1. Multimedia
2. Protocol
3. Internet Professor Mark L. Claypool, Major Advisor

Abstract

The Internet was not designed with multimedia in mind. TCP is not well suited
for multimedia and UDP is un-responsive in the face of congestion. MM-Flow, a rate-
based protocol that responds to congestion, has not been thoroughly tested. We improve
MM-Flow, perform an extensive analysis, and explore what it means to be a TCP-

Friendly protocol. We find the new MM-Flow performs better over a wide range of

network conditions.

Acknowledgements

We would like to thank Prof. Mark Claypool and Jae Chung for all their time and
effort put in to helping us. Without their support and expertise this project never would

have materialized.

Table of Contents

ABSTRACT ..ottt st sttt s et et e e e tesbesbesbeebeeseeseeneene e tentenbeseeanenrens [
ACKNOWLEDGEMENTS ..ottt [
LIST OF FIGURES ...ttt sttt Vi
1 INTRODUCTION ..ottt sttt sse st sre e e e sestesaesresnens 1-1
A N o = (@ 7 4 ST 2-7
21 REENGINEERING OF MM-FLOW ...ooiiiiicieciecececetes e 2-7
2.2 EXPLORING TCP-FRIENDLINESSccctiiitestiseseeseeseesiestessesiessesseseeseessesseseessenes 2-9
3 EVALUATION TECHNIQUES.......ccot ittt nneas 311
3.1 SIMULATION SCENARIOS.....cueeitertertestesressesseessessessessessessessessessssssessessessessessesses 311
3.2 DATA COLLECTION SCRIPTScoitirtistestestessessessessessessessessessessessssssessssssssessesses 3-15
321 get_thruput_data..........cooceeeiiiiiieeee e e 3-16
322 get_delay datal........cccoiereriirire e 3-16
323 get_tepfriendly_data.........ccccoceeieeeeseesece e 317
A RESULTS .ttt st bbbttt et et nbenne s 4-18
4.1 EFFECTSOF RE-ENGINEERING MM-FLOW......coiiiiivieiiceceeece e 4-18
41.1 MM-APP-0Old VS. MM-APP-NEW......ccueriiiiiiesiisie e 4-18
4.1.2 Further Evaluation of MM-APP-NEW..........ccccevieieiieeseee e 4-23
4.1.2.1 Effect of PaCket SIZe.......cooiiiiiiiiieeceeeee e 4-23
4.1.2.2 Effect of Number of Scale Valuesccceevvveeveniinienice e 4-26
4.1.2.3 Effect Of DEl@Y.....ccccoiiiiresenere et 4-30
4124 Effect of Fragile FIOWSccooooeiiiiie e 4-32
4.1.25 Effect of Weighted Scale VaUES.........ccocoeviiirenieieccee e 4-34
4.1.3 MPEG-ApPP-Old vs. MPEG-APP-NEW.......cccoiiririeririereeeeee s 4-35
4.2 TCP-FRIENDLINESScoiiitististestestesiessesseeseessessessessessessessessesssssssssessessessessesses 4-37
4.3 TCP-FRIENDLINESS AND PERFORMANCE OF M M-FLOW vS. OTHER PROTOCOLS
4-40
431 TCP VS, TCP... ottt sttt sbenre s 4-41
4.3.1.1 BaSIC SIMUIHTON. ...cceiiiieeriieie e 4-41
4.3.1.2 Effect of Fragil@ FIOWSccccooiiiiiiiiieeeseeeeee e 4-42
4.3.1.3 Effect Of DEl@Y.....ccccoiiiiiineseserie st 4-43
4.3.2 MM-APP-NEW VS. TCP.....viiiiii ittt 4-44
4.32.1 BaSIC SIMUIHTON.eoiiiieieeie et 4-44
4.3.2.2 Effect of Fragile FIOWScc.ocoeieeiececeecece e 4-46
4.3.2.3 Effect Of DEl@Y.....ccocoiiiiiiceceeeeee e 4-49
4.3.3 TFRC VS, TCP ...ttt snesnenne s 4-50
4.3.3.1 BaSiC SIMUIALTON.ccoeeeeeieeie e nae e 4-50
4.3.3.2 Effect of Fragile FIOWSc.ocoiiieiicececeee e 4-52
4.3.3.3 Effect Of DEl@y.....cccooeeiiiiiiiee e 4-54
434 MM-APP-NeW VS. TFRC......cciiececeeeeeeeese e 4-56

4341 BaSiC OMUIBHION. ... e e e e e e e e 4-56

4.3.5 Multiple Protocol Smulation...........ccoeeieeiinienienieseeseeee e 4-58
I O ©] N[O I 1] N S 5-61
6 FUTURE WORK ..ottt sttt 6-65
A o = o = N L O S TR 7-71
APPENDIX A: MM-FLOW.H ...ttt sttt s 72
APPENDIX B: MM-FLOW.CCociiirieieiniesieeee sttt en s 75
APPENDIX C: MM-FLOW PARAMETERS......ccot i 83
APPENDIX D: MM-APP-NEW.H ...ttt 84
APPENDIX E: MM-APP-NEW.CC......ccotieiririeieeste ettt snns 86
APPENDIX F: MM-APP-NEW PARAMETERS.......ccceoitreeeseee e 91
APPENDIX G: MM-APP-MPEG-NEW .H ... 92
APPENDIX H: MM-APP-MPEG-NEW.CC ...t 94
APPENDIX I: MM-APP-M PEG-NEW PARAMETERS......c.cooeiiivieireeeei 100
APPENDIX J: OTCL EXAMPLE —BASIC_MMAPPNEWUW.TCLccveu..e. 101
APPENDIX K: OTCL EXAMPLE —ALL.TCL ottt 104
APPENDIX L: GET_THRUPUT _DATA.C..oovteeeereseeese e 110
APPENDIX M: GET_DELAY _DATA.C..oootiteeseee et 119
APPENDIX N: GET_TCPFRIENDLY _DATA.C...ooree e 123

List of Figures

FIGURE 3-1: STANDARD BOTTLENECK LAYOUT ..ottt 3-12
FIGURE 3-2: STANDARD DELAY LAYOUT ..ottt 3-13
FIGURE 3-3: STANDARD FRAGILE LAY OUT ...ttt 3-13
FIGURE 3-4: MULTI-PROTOCOL LAYOUTcciiitiiicinie e 3-14
FIGURE 4-1: PERCENT UTILIZATION WITH MM-APP-OLD VS. TCP......oriiieiiiirieriee 4-21
FIGURE 4-2: PERCENT UTILIZATION WITH MM-APP-NEW (UN-WEIGHTED) VsS. TCP.....4-21
FIGURE 4-3: SCALE VALUESWITHMM-APP-OLD VS, TCP......cocotiiiiirriieenerieeee s 4-22
FIGURE 4-4: SCALE VALUESWITH MM-APP-NEW (UN-WEIGHTED) VS. TCP................ 4-22
FIGURE 4-5: QUEUE SIZE WITH MM-APP-NEW (UN-WEIGHTED) VS. TCP......ccccvvuenee. 4-23
FIGURE 4-6: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP WHERE FRAME SIZE =
3KB AND PACKET SIZE = 3KB ..ottt 4-25
FIGURE 4-7: SCALE VALUESWITH MM-APP-NEW VS. TCP WHERE FRAME SIzE = 3KB
AND PACKET SIZE = 3K B....oiiiiiiieieieesie sttt sttt 4-25
FIGURE 4-8: PERCENT UTILIZATION WITH MM-APP-NEW vS. TCP WHERE FRAME SIZE =
3KB AND PACKET SIZE = 1TKBh....ciiiiiieiiie e 4-26
FIGURE 4-9: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP AND 25 SCALE VALUES
.. 4-27
FIGURE 4-10: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP WITH 50 SCALE
W ALUES. ...ttt ettt sbe sttt e e bbbt he e e e b e b e eb e b e nb e e bt ea e e e et e b et e neeenenae s 4-28
FIGURE 4-11: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP WITH 150 SCALE
VALUES. ...t taeeutettte sttt se ettt e et e ettt b b e e st b e s et bt s b et e Rt e bt e et b b e e n e renn e 4-28
FIGURE 4-12: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP WITH 250 SCALE
WALUES. ...ttt ettt st b sttt ettt b e bt b st e e b et e nb e b nb e bt e st et e e et et e naeebenre s 4-29
FIGURE 4-13: AGGRESSIVENESS OF REACHING MAXIMUM BANDWIDTH USING DIFFERENT
NUMBERS OF SCALE VALUES......c.ceitiitiitirtiriesieeeeeessesse st s s sss e sn s ssesnesnesnesneas 4-29
FIGURE 4-14: AVERAGE PERCENT UTILIZATION VS. NUMBER OF M M-APP-NEW SCALE
VALUESUSED ..ottt sttt n e nne e 4-30
FIGURE 4-15: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP WITH LONGER DELAY
(BOMS) et et e bRt e e r b nae s 4-31

FIGURE 4-16: QUEUE SIZEWITH MM-APP-NEW VS. TCP WITH LONGER DELAY (40MmS)...4-
32

FIGURE 4-17: PERCENT UTILIZATION WITH MM-APP-NEW vVS. TCP WHEN TCP ISFRAGILE

.. 4-33
FIGURE 4-18: PERCENT UTILIZATION WITH MM-APP-NEW vS. TCP WHEN MM-APP-NEW

I SIFRAGILE ..eiiiittteee ettt e e sttt e e sttt e st e e st e e e st e e e e esb e e e e e naba e e e e e sbae e e e ensee e e e ennnaeee s 4-33
FIGURE 4-19: PERCENT UTILIZATION WITH MM-APP-NEW VS. TCP WITH WEIGHTED

SCALE VALUES ...ttt ittt sttt stee sttt et s bt st e s te e e nsbe e e st e s nsae e sneeesneesnnneeesnnes 4-35
FIGURE 4-20: PERCENT UTILIZATION WITH MPEG-APP-OLD VS, TCP ...cccccveviiieeciies 4-36
FIGURE 4-21: PERCENT UTILIZATION WITH MPEG-APP-NEWVS. TCPccveevieeees 4-37
FIGURE 4-22: TCP-FRIENDLY AND ACTUAL BANDWIDTH MEASUREMENTSWITHA 1

SECOND INTERVAL...tiiutiiisititesitesesitesesstesassaesssssessssassssesssssesssssesssssessnssessnssessnsenssnnes 4-39
FIGURE 4-23: TCP-FRIENDLY AND ACTUAL BANDWIDTH MEASUREMENTSWITHA 3

SECOND INTERVAL...tteitteeeitteeeitteeaiteeesaseeesnsesessessssesssseessssesssssessassessasssesnsesssnsenesns 4-39

vi

FIGURE 4-24: TCP-FRIENDLY AND ACTUAL BANDWIDTH MEASUREMENTSWITHA S
SECOND INTERVAL...tttiutieeittieesteesasseesasseessssessssesssssesssssesssssesssssesssssesssssessnssessnsenesns 4-40

42

FIGURE 4-26: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCPL IN.......ccccveeee 4-43
FIGURE 4-27: TCP-FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP2 INcccuveee. 4-43
FIGURE 4-28: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN TCP vs. TCP
WITH LONGER DELAY ottt esites sttt et e st e s ssne e s nnnessnaessnaeesnnneas 4-44
FIGURE 4-29: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN TCP vs. MM-
APP-INEW ..o s 4-45
FIGURE 4-30: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR MM-APP-NEW IN TCP
VS, MM-=APP-INEW......ctiiiie et 4-46
FIGURE4-31: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN MM-APP-NEW
VS. TCP WHERE TCP ISFRAGILEcoiiiiiiiiinirtis e 4-47
FIGURE 4-32: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR MM-APP-NEW IN MM -
APP-NEWVS. TCP WHERE TCP ISFRAGILEccveiecee e 4-47
FIGURE 4-33: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN MM-APP-NEW
VS. TCP WHERE MM-APP-NEW ISFRAGILEcctiiiiiiiiririe it 4-48
FIGURE 4-34: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR MM-APP-NEW IN MM -
APP-NEW VS. TCP WHERE MM-APP-NEW ISFRAGILE......ccceirieeirieeeiee e 4-48
FIGURE 4-35: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN MM-APP-NEW
VS, TCP WITH DELAY 40 ...coiie et ectee ettt ee st e st e s e s e e e ennaeesnnneas 4-49
FIGURE 4-36: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR MM-APP-NEW IN MM-
APP-NEW VS. TCP WITH DELAY 40.......coiiiiiiiiiiiic s 4-50
FIGURE4-37: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCPIN TFRC vs. TCP
.. 4-51
FIGURE 4-38: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TFRC IN TFRC vs. TCP
.. 4-52
FIGURE 4-39: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCPIN.....cccceevveenns 4-53
FIGURE 4-40: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TFRCIN........c..e.... 4-53
FIGURE 4-41: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN.....ccccevviverns 4-54
FIGURE 4-42: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TFRCIN......cccveee 4-54
FIGURE 4-43: TCPFRIENDLY & FAIR BANDWIDTH OVERLAY FORTCP IN TFRC vs. TCP
WITH LONGER DELAY ittt ettt sttt sttt snae e s 4-55
FIGURE 4-44. TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TFRCIN......cccvee. 4-55
FIGURE 4-45: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TFRC IN TFRC vs.
MM-=APP-NEW. ..o 4-57
FIGURE 4-46. TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR MM-APP-NEW IN TFRC
VS, MM-APP-INEW....c.ciiiiie ittt 4-58
FIGURE 4-47: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TCP IN A MULTI-
PROTOCOL ENVIRONMENT ...uvtiiitiessteessisesssssesssssessseessseesssessssseessssessnssesssnnsssenns 4-59
FIGURE 4-48. TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR TFRC IN A MULTI-
PROTOCOL ENVIRONMENT ...ettiiitieieeeiiteeeeeeitee e s ssasee e e s essseeesesnnneeessnnsseeessnsnesssnnnsnees 4-60
FIGURE 4-49: TCP FRIENDLY & FAIR BANDWIDTH OVERLAY FOR MM-APP-NEW IN A
MULTI-PROTOCOL ENVIRONMENTutttitiiiireessssisieeessiseeessssseessssssseessssseesssnssseees 4-60

vii

1 Introduction

The Internet is quickly becoming away of life. Originally designed for text-based
traffic, the Internet is increasingly serving as a medium for multimedia applications
streaming video and audio, creating vast opportunities for communication and exchange
of information. Radio and televison broadcast, video-conferencing, and virtual
classrooms are just a few of the benefits of multimedia over the Internet. Unfortunately,
the underlying network structure alowing for these applications is faced with some
inherent problems. Broadband technology is becoming increasingly available to
consumers, but overall demand on the Internet is growing faster than the network can
support, which leads to congestion and poor performance.

Text-based traffic, such as e mail and HTML web pages, uses a protocol known
as TCP, which recognizes congestion and reduces its sending rate appropriately.
Multimedia traffic, on the other hand, has different performance requirements that make
TCP, for reasons that will be discussed, a poor choice for multimedia. Instead,
multimedia typically uses a protocol known as UDP. Unfortunately, UDP ignores
congestion and has the potential for receiving more than its fair share of bandwidth while
TCP is prevented from receiving its fair share.

An area that needs considerable research is the issue of congestion control.
Congestion is typically measured in the form of packet loss. When a packet travels from
the sender to the receiver it must go through a number of routers. The job of the router is
to send packets along one of its outgoing lines such that it is directed toward the receiver.

Routing tables are used to determine the best path. The problem is that routers have a set

1-1

gueue size, which means they can only hold a certain number of packets at any point in
time, and the outgoing lines have a limited bandwidth. Congestion occurs at the router
when the rate of incoming packets is faster than the rate of outgoing packets and the
gueue fills up. Once the queue is full the router can no longer handle the incoming
packets, which are then dropped.

If the end hosts always sent packets at the fastest rate possible, routers would
constantly be overloaded, packets would continually be dropped, and nothing would get
done. TCP recognizes congestion in the form of packet loss and reduces its sending rate
through a process known as Additive Increase Multiplicative Decrease (AIMD), which
means that the sending rate is cut in half when a packet loss is detected and then slowly
climbs again. This has proven extremely effective for text-based traffic. As stated, UDP
ignores congestion and continues sending at its specified rate. The end result is that
competing TCP and UDP flows will eventually cause congestion. TCP will reduce its
sending rate, allowing UDP to take all of the available bandwidth. This situation is
described as “starving” the TCP flow. While this situation may be desirable for the
multimedia user, it is considered unacceptable because much of thetraffic on the Internet
travels across TCP.

If UDP causes so many problems with congestion, then one may wonder why
multimedia does not use TCP. First, multimedia applications do not need to be
“reliable”, meaning that they can tolerate some data loss. This is due to fact that human
beings can tolerate some loss without becoming annoyed. TCP is a reliable flow,
meaning it guarantees that all packets are delivered through retransmission. This is

unnecessary in a multimedia application, and therefore would be wasting vauable

1-2

bandwidth. Furthermore, multimedia is extremely sensitive to jitter, or variation in inter-
packet arrival time. In other words, if frames do not arrive at a consistent rate the user
will notice choppiness, which is then percelved a poor quality. TCP only makes this
situation worse through retransmission. If a packet is retransmitted it arrives at the
receiver considerably later than when it is needed, thus contributing to jitter. Similarly,
TCP's aggressive approach to AIMD causes significant fluctuations in transmission rate,
which aso leads to jitter. Asaresult, UDP issimply a better choice for multimedia.

If TCP is too responsive and UDP is not responsive enough, a possible solution
would be to compromise in the form of a“TCP-friendly” protocol, meaning that it will
not starve the TCP flow. While the notion of TCP-friendliness is easy to grasp, the
difficulty lies in measuring it and determining whether a particular protocol is really
TCP-friendly. In later sections of this paper, we will examine the nature of TCP-
friendliness, but first we must discuss some existing protocols that claim to be TCP-
friendly.

The creators of TCP-Friendly Rate Control (TFRC) [FHPW2000] introduced one
approach to bridging the gap between TCP and UDP. The idea behind this protocol isto
react to congestion but not as quickly and as drasticaly as TCP, thereby providing a
smoother sending rate. For example, instead of tracking packet loss TFRC tracks “loss
events,” meaning that multiple consecutive packet drops are considered as a single
packet. The receiver calculates the loss event rate using the “average loss interval”
method to compute a weighted average of the loss rate over the last n loss intervals, with
equal weights on each of the most recent n/2 intervals. The receiver then reports this

information back to the sender viaan ACK (acknowledge) packet at least once per round-

1-3

trip time, assuming it has received packets within that interval. The sender uses this loss
event rate to determine the sending rate. If the sender does not receive any ACKS within
severa round trip times it assumes congestion and reduces the sending rate.

The creators of TCP Emulation At Receivers (TEAR) [OY 2000], arival to TFRC,
have proposed another solution. TEAR has the same goa as TFRC—respond to
congestion while providing a smoother sending rate—but uses a dlightly different
approach. TEAR determines that the sender’s role is simply to send a packet. Therefore,
al calculations, including loss rate and sending rate, are calculated at the receiver.
Whenever the sending rate should be changed the receiver sends an ACK packet back to
the sender with the new sending rate. Since the receiver only sends packets back to the
sender when it requests to either speed up or slow down the sending rate, it lessens the
amount of data being sent back to the sender, thus using less bandwidth. The creators of
this protocol argue that they have an advantage over TFRC in a multicast environment, in
that the sender will not be constantly bombarded with ACK S from multiple receivers, but
rather only when a receiver indicates a need to change the sending rate. In addition, the
computational burden of rate calculation is spread among the receivers instead of
concentrated at the sender.

A third approach is known as MM-Flow and suggests that TCP-friendly
applications can be built on top of UDP [CC2000]. There are a few major differences
between MM-Flow and TFRC or TEAR that are worth mentioning. First, since
congestion control is found in the application layer, congestion is determined by frame
loss rather than packet loss. Second, the receiver determines the sending rate in the form

of a scale value and ACKs this value back to the sender. The scale value is important

1-4

because, unlike TFRC and TEAR, MM-Flow was designed to support different types of
multimedia applications. The scale value provides a generic reference that can then be
mapped to the desired encoding scheme. For example, TFRC and TEAR seem to assume
the application layer is sending with a fixed frame size and variable rate. MM-Flow, on
the other hand, has been designed with two different applications in mind—MM-App,
which sends frames of fixed size at variable rates, and MPEG-App, which follows the
MPEG encoding standard of variable frame size with constant rate.

MM-Flow serves as the foundation of our project. While initia tests suggested
that MM-Flow is more TCP-friendly than UDP, it had not undergone exhaustive testing.
As described in the next section, we first re-engineered MM-Flow somewhat to separate
the protocol decisions into an actual transport layer, which measures congestion at the
packet level rather than the frame level. The application layer now sits directly on top of
our transport layer, no longer needing UDP. We hypothesize that this transition yields an
increase in performance. We also designed the application layer such that it is easier to
add new types of encoding schemes. Next we thoroughly tested the MM-Flow protocol
to look for improvements, such as including some of the strengths of TFRC and TEAR.

In this paper we examine some of the issues involved with multimedia
applications over the Internet and some of the proposed solutions. Through inspection of
existing solutions we develop and test an improved protocol for multimedia applications
that is considered TCP-friendly while still providing acceptable multimedia quality to the
user.

The chapters to follow go into depth regarding how we changed the MM-Flow

protocol, including the specific modifications we made to both the application and

1-5

transport layers. Upon making these changes, we continualy tested MM-App against
other protocols using ssmulations using a variety of network scenarios, as will be shown.
These simulations provided us with the results that form the bulk of this paper, and will
be discussed near the end. We discovered a number of new topics that need exploration;

these ideas will be discussed in the future work chapter.

1-6

2 Approach
2.1 Re-Engineering of MM-Flow

Before analyzing and testing protocols, we first re-organized MM-Flow.
Origindly, the MM-Flow project integrated a networking protocol with a multimedia
application and so had to be considered as a unit. We fet that breaking down MM-Flow
into a transport byer and an application layer was beneficial, as it made each layer
independent and MM-Flow became easier to compare with other protocols. After
making these changes to MM-Flow, we ran tests on it and the older version of MM-Flow
to make sure that the functionality had not been changed. Next, changes to how MM-
Flow worked were considered.

The initia version of the MM-Flow system contained most of the logic at the
application layer, with the transport layer's function only to separate the frames into
packets and send them across the network. 1n order to make the MM-Flow protocol more
universal, it was necessary to move flow control and scale adjustment algorithms to the
transport layer. Applications that make use of MM-Flow no longer have to re-implement
this functionality. Instead, the application specifies a range and number of transmission
scale values. The transport layer then constantly assesses network conditions to decide
which scale is most appropriate. Periodically the application layer will query the
transport layer to discover which scale it should use, and acts accordingly. One example
application, MM-App, gets the current scale value after each time a frame is sent, and
uses it to calculate when the next frame should be sent. Another application, MPEG-
App, gets the scale value before a frame is sent, and uses it to determine how many

frames it can send, according to the MPEG specification.

2-7

When the transport layer became responsible for determining the scale value, we
needed a new system for adjusting that value. For the receiver to determine the proper
scale value, as before, it would need to know which scale values were appropriate. The
sender at the application layer uses the scale values, so rather than specifying a means for
communicating scale values to the receiver, it was smpler to make scale adjustments
occur at the sender. The receiver's role then became simply signaling, via ACK or
NACK (negative acknowledge) packets, whether the sender should increase or decrease
sending rate, respectively. Upon receiving an ACK/NACK message, the sender adjusts
its scale according to AIMD.

The default number of rates was changed aswell. The original protocol was fixed
at five scale values, for rates ranging from 300 Kbps to 1.5 Mbps. We observed that the
rate fluctuated a good deal and reasoned that increasing the number of rates would enable
the protocol to respond more precisely; the "fair share" of bandwidth taken up by MM-
Flow can be more closely approximated when there are more choices available for rates.
The simulation designer may now set how many rates to use, and how much bandwidth
to occupy at the highest rate.

In addition, we implemented two agorithms for determining what the current
scale value should be at a given time. The first method returns the standard scale as
determined by the AIMD configuration. Since one of the goals of MM-Flow is to have
less variation than TCP, the protocol aso calculates a weighted average of recent scale
values by using a history window. The hope is that a single dropped packet (which
normally causes the rate to be cut in half) will not cause so drastic a change in rate so

quickly, while at the same time MM-Flow will still respond to more serious problems

2-8

quickly. Simulation designers can choose whether to use the weighted scale or the
standard AIMD-based scales through the MM-Flow interface.

In addition, we implemented two agorithms for determining what the current
scale value should be at a given time. The first method returns the standard scale as
determined by the AIMD configuration. Since one of the goas of MM-Flow is to have
less variation than TCP, the protocol also calculates a weighted average of recent scale
values. The hope is that a single dropped packet (which normally causes the rate to be
cut in half) will not cause so drastic a change in rate, while a the same time MM-Flow
will still respond to more serious problems quickly. Simulation designers can choose
whether to use the weighted scale or the standard AIMD-based scales through the MM-
Flow interface.

The weighted scale is implemented by means of an 8-dot history window. Each
time the new scale is calculated by AIMD, its value is placed at the head of this window
with the oldest value being removed, ensuring that the array always contains the 8 most
recent scales. The weighted scale is then equa to the nearest integer to the result of this
formula

Weighted scale = (20% * most recent) + (15% * 2" most recent) + (15% * 3¢
most recent) + (15% * 4" most recent) + (15% * 5" most recent) + (10% * 6" most

recent) + (10% * 7" most recent) + (10% * &" most recent)

Equation 2-1: Weighted Scale Calculation

2.2 Exploring TCP-Friendliness

In addition to re-engineering MM-Flow, our project explored the nature of TCP-

Friendliness. First, we tried to determine the meaning of a “TCP-friendly” protocol. This

2-9

task proved more difficult than one would expect. Many protocols claim to be TCP-
friendly, without supporting their claim with an explanation or measurements. For
example, it might be acceptable to say aflow is TCP-friendly if it uses afair share of the
bandwidth, meaning the total bandwidth divided by the number of flows. Another
solution might be to say a flow is TCP-friendly if it uses the same bandwidth as TCP
under the same network conditions. Perhaps a flow is TCP-friendly if it at least responds

to congestion, unlike UDP. Eventually, our search for an answer lead us to the equation

15/2/3* B
TENE 2 —
R*.[p

Equation 2-2: TCP-Friendly Transmission Rate

where T is the maximum sending rate of a conformant TCP flow in Bps, B is the packet
size in bytes, R isthe round trip time in seconds, and p isthe per-flow packet loss rate
[FF1999].

This equation calculates the maximum arrival rate at the router for a TCP flow
when given the packet size, round trip time, and drop rate. The authors claim that a flow
is TCP-friendly if it arrives a a rate less than or equa to the value specified by the
equation. We then used this equation to compute TCP-friendly measurements for each of
our simulations. These results, as well as an in depth discussion of the formula, are

presented in chapter 4, Results.

2-1C

3 Evaluation Techniques

In order to accurately measure how a protocol acts within a networking
environment we needed to use a simulator. The simulator we used is NS version 2.1b7.
NS is an object-oriented, discrete event driven network simulator developed at UC
Berkeley written in C++ and OTcl. NS is primarily useful for simulating local and wide
area networks [perform]. It alows us to run our protocols against other protocols such as
TCP, UDP, and TFRC, by writing OTcl scripts. By configuring the OTcl scripts we are
able to test these protocols under different conditions that may provide insight into their
behavior. With the simulator we are able to track the data of all running protocols. We
then run our data collection scripts against the results provided by NS in order to obtain

useful data that can be analyzed.

3.1 Simulation Scenarios

Our simulation scenarios include the standard bottleneck layout, standard delay
layout, standard fragile flow layout, and the multi-protocol layout. In the first three, we
used one protocol as our base for comparison with our protocols and others. This base
protocol is TCP, as one of our main goals is to create a protocol that is TCP-friendly.
Each layout can be used in numerous tests simply by changing values within the protocol
or switching the roles of the protocols we are looking at.

The standard bottleneck layout, as shown in Figure 3-1, contains four nodes in a
system. Nodes numbered zero and one correspond to the senders of the two protocols to
be tested. Both of these are configured to send information across the link to node

number three, the receiver in both protocols. Node two contains our router. Since both

3-11

protocols must send via node two, a bottleneck is created there. Most of our
measurements are taken from the packets traveling between node two to node three. The
length of the line connecting two nodes represents the delay between them. As shown in
the figure, al of the delays are equal n this scenario. This alows us to observe the

interactions of the two protocols as they operate under the same conditions.

©

©

Figure 3-1: Standard Bottleneck L ayout
The second magjor layout thet we use is shown in Figure 3-2, the standard delay

layout. Thisissimilar to the bottleneck layout in that nodes zero and one still correspond
to the senders of the two protocols and have the same delay as node two, as shown by the
length of the lines connecting them in the diagram. The difference is that the bottleneck
delay is greater. The purpose of such a layout is to determine how a protocol reacts to
longer round trip times. This is worth looking at since the time required to receive an

ACK or NACK isincreased, which might decrease responsiveness under congestion.

3-12

©
® ®
e

Figure 3-2: Standard Delay L ayout

The third mgjor layout that we use throughout our testing procedures is shown in
Figure 3-3, the standard fragile layout. In thislayout the two protocols are on nodes zero
and one, as before, but they have different delays to the router. As one can see in the
picture, the delay between node zero and two is significantly shorter than between node
one and node two. This allows us to test how the protocols react when another protocol

is at an advantage with regards to round trip time. The delay between node two and three

is the same as in the standard bottleneck layout.

Oknl©

®

Figure 3-3: Standard Fragile Layout

3-13

The fourth scenario, the multi-protocol layout, is used to get a more "rea-world"
perspective. This layout, as shown in Figure 3-4, has atotal of eight sending nodes, with
eight receiving nodes. Nodes zero through seven have the sending protocols. Each
sender node has only one receiver node. For example, node zero sends to node eight,
node one sends to node nine, etc. The simulation has a total of four TCP flows, two MM-
App-New flows, and two TFRC flows all running at once. Nodes zero through three run
TCP, four and five run MM-App-New, and six and seven run TFRC.

This simulation provides us with a more realistic smulation than the rest because
in the "real-world" there will not be just two flows running against each other over a
network link, but rather there will be numerous flows al running at once going to
different places. All the links in the simulation are 4 Mbps, and the delays for all links
are 5ms, except for the bottleneck link between nodes 16 and 17, which is 20ms.

The picture of the layout for this smulation is somewhat distorted due to the fact
that there is such a large number of nodes and that the delays are al small. Also, nodes
11 and 15 appear in the same place, between mdes 10 and 12, but are in fact two

different nodes.

@ © O
N

Figure 3-4: Multi-Protocol Layout

3-14

3.2 Data Collection Scripts

After creating ssimulation scenarios, the next step in smulating network traffic is
obtaining and formatting the data that the simulation provides. The NS simulator
monitors all events that occur throughout the simulation and produces a trace file. An
event may be classified as an enqueue, dequeue, drop, or receive. The trace file contains
one line per event and identifies the event type, time, from node, to-node, packet type,
packet ID, and many other useful values.

While the trace file contains most of the information one needs to know, a
significant effort must be given to formatting the results in a useful manner. Many times
people generate their own data collection scripts from scratch or borrow and modify
someone else’s scripts to fit their simulation. As a part of our project, we decided to
make a sincere effort at creating a library of generic data extraction tools that are readily
available and could be used on any simulation. The scripts we developed are written in C
and include get_thruput_data, get_delay data, and get_tcpfriendly_data.

Before discussing these new tools, we would like to mention that MM-Flow is
capable of recording delay files by using the “record-mm-packet-arrival” variable.
Similarly, our application layer protocols, MM-App and MPEG-App, are capable of
recording scale values using the “record-mm-scale-values’ variable. Scale values needed
to be printed from our protocols directly; not all protocols have the notion of scale values,
SO creating a generic script is difficult. The delay values printed by MM-Flow, however,
are purely a convenience. These values could have been obtained using the

get_delay_data script.

3-15

3.2.1 get_thruput_data

The get_thruput_data script is based upon scripts collected from fellow NS users
and is probably the most useful of our scripts. This script collects data about events
aong a given link in the simulated network. The input values used to run
get_thruput_data include the following:

The trace file containing the raw data created by the simulation.
The “from” node of the link being monitored.

The “to” node of the link being monitored.

The maximum outgoing queue size for the link.

The maximum bandwidth along the link.

Theid of the flows to be monitored (-1 for al).

The measurement interval in seconds.

An optional label to be added to the output file names.

The resulting output includes the following:

A “.utl” file containing percent bandwidth utilization (based on receive
events) for each flow and the total utilization.

A “.drp” file containing the percent of bandwidth dropped for each flow and
the total percent bandwidth dropped.

A “.enq” file containing the percent bandwidth enqueued for each flow and
the total percent bandwidth enqueued.

A “.deq’ file containing the percent bandwidth dequeued for each flow and
the total percent bandwidth dequeued.

A “.que” file containing the actual and average queue size for the outgoing
gueue on the link. Average queue size is aweighted average similar to that
used by RED routers.

3.2.2 get_delay_data

The get_delay data script calculates delay for each packet traveling along a given
link in the simulated network for a given flow. The input values used to run
get_delay datainclude the following:

The trace file containing the raw data created by the simulation.

The name of the output “.dly” file to be created.
The flow ID to monitor.

3-16

The node where the sender is located.
The node where the receiver is located.

The resulting output includes the following:

A file containing the arrival time, packet ID, and delay in seconds.

3.2.3 get_tcpfriendly_data

The get_tcpfriendly data script calculates the TCP-Friendly bandwidth, as
determined by the formula presented in section 2.2, as well as the actual bandwidth for a
given flow aong a given link in the smulated network. The input values used to run
get_tcpfriendly_data include the following:

The name of the output “.tfd” file to be created.

The trace file containing the raw data created by the ssimulation.
The delay file containing packet delay values for the flow.

The flow ID to monitor.

The “from” node of the link being monitored.

The “to” node of the link being monitored.

The measurement interval in seconds.

The maximum packet size in bytes.

The maximum bandwidth along the link.

The resulting output includes the following:

A file containing the TCP-Friendly bandwidth and actual bandwidth used by
the flow.

3-17

4 Results

This chapter will discuss how the re-engineering of MM-Flow affected both MM-
App and MPEG-App, with the main focus on the changes to MM-App. Then, TCP-
Friendliness is defined and discussed in regards as to what we took its definition to mean.
We then measured how TCP, MM-App-New, and TFRC performed according to the

TCP-Friendliness measurements.

4.1 Effects of Re-Engineering MM-Flow

Re-engineering MM-Flow was a big undertaking. Changing the way the protocol
layer worked creates significant changes in the application layer. The specific changes
that were made, as discussed earlier, had some interesting effects. First we wanted to
examine how the performance had changed between the old and new versions of MM-
App. Once discovering how our changes to the protocol layer affected MM-App, we
took an in depth look as to how different factors regarding the protocol would affect it's
performance. Along with looking at how MM-App was affecting by the protocol layer
changes, we felt it necessary to examine how the new protocol layer affected MPEG-

App’s performance.

4.1.1 MM-App-0Old vs. MM-App-New

We first wish to compare the original MM-App (from this point forward called
MM-App-Old) to the new MM-App (referred to as MM-App-New). To do so, we ran
each of these protocols against TCP using our standard bottleneck layout. The bandwidth
of the bottleneck link was 2 Mbps and MM-App-Old used the default values of 1.5 Mbps

and its highest scale value (scale 4).

4-18

Figure 4-1 shows percent utilization of the bandwidth for MM-App-Old and TCP.
As indicated, MM-App-Old totally dominated the system by occupying approximately
two-thirds of the available bandwidth on average and 75% of the bandwidth at most
(which makes sense since 1.5 Mbps is 75% of 2 Mbps). In MM-App-New there is
relatively equal sharing of the bandwidth, as shown in Figure 4-2. MM-App-New
received about 52% of the bandwidth and TCP received about 45%. This is a tremendous
improvement in TCP-Friendliness and fairness over MM-App-Old. One thing that is
apparent in Figure 4-2 is that utilization is not very smooth, possibly leading to poor
perceptual quality. We will discuss this issue later, but for the time being we will
concentrate on smoothness rather than fairness.

Another issue we had hoped to resolve with our re-engineering effort was the
coarseness of MM-App-Old's scale values. Since MM-App-Old had only five scale
values, the difference in sending rate between scale values is very large. As shown in
Figure 4-3, the scale values typically cut in haf from 4 to 2, but reach maximum
transmission rate again rather quickly, thus never giving TCP a fair chance at obtaining
bandwidth. MM-App-New has dynamic scale creation, with a default of 50 scales but the
ability to be configured by the Tcl script to allow for as many scales asdesired. Figure 4-
4 shows how the 50 scales are less coarse and allow for a smooth transition between
sending rates. Also, this figure shows how as the scale values get higher, the amount of
time before the next increase is longer. This tells us that the delay in the system is getting
longer and as a result we receive less ACKS indicating to increase the scale values. The

increased number of scale values does not lead to smooth transmission, due to the fact

4-18

that MM-Flow is constantly probing for bandwidth, but does provide a wider range of
transmission rates to explore.

It is also worth pointing out that utilization was not 100% all the time with MM-
App-New. While full utilization is optimal, the occasional drop in utilization is a direct
result of the queue being allowed to drain, as shown in Figure 45. The queue drains
when MM-App-New encounters a drop and backs off on its sending rate in order to be
fair to competing flows, namely TCP. Thus, we do not consider this to be of major

concern.

4-20

MM-App-Old Average Utilization = 66.0%
TCP Average Utilizaton =32.7%

1.2

Per0.8

ce

nt

util

iza —TcP

:1|o 0.6 —— MM-App-Old
Total

0.4

0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-1: Percent Utilization with MM-App-Old vs. TCP

MM-App-New Average Utilization = 51.8%
TCP Average Utilizaton =445%
1.2

Per 0.8
ce
nt
util
iza —TcP
20 0.6 ——MM-App- New
Total
0.4
0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-2: Percent Utilization with MM-App-New (Un-weighted) vs. TCP

4-21

£ 3
]
g
i)
I
P

1

0

250 856 14.35 20.15 25.83 31.53 37.36 43.01 48.68 54.02 60.33 66.12 7171 77.47 82.83 88.46

Time (sec)
Figure4-3: Scale Values with MM-App-0ld vs. TCP
45

40

35

30

25

20

Scale Value (#)

15

10

0
250 785 10.61 15.29 18.30 22.39 25.68 28.68 33.26 35.99 40.45 43.38 47.72 51.04 54.35 57.95 61.47 65.11 67.85 72.70 75.48 79.54 82.30 87.11 90.00
Time (sec)

Figure4-4: Scale Values with MM -App-New (Un-weighted) vs. TCP

4-22

70

60

Y I O
. I
L
AN/AVAWY
AI/ATA, [
vy ryr vyl vy

0.70 771 1225 16.61 21.89 2595 31.17 3553 4024 4504 4950 5524 5959 64.24 69.37 73.98 79.68 84.57 88.62

Time (sec)

Size (#)
-‘-"'_'-
|
——

Figure4-5: Queue Size with MM-App-New (Un-weighted) vs. TCP

4.1.2 Further Evaluation of MM-App-New

In order to gain a better understanding of how MM-App-New performs, we
decided to look at a series of simulations with varying conditions. The first thing we
wanted to look at was the change in packet and frame size. This is significant since the
new protocol decisions are at the transport layer, whereas the old were in the application
layer. Second, we wanted to examine how the number of scale values affects the system.
Third, we decided to evaluate the responsiveness of MM-Flow when it is affected by
different delays in the bottleneck link or when it, or its competing flow, is fragile.

Finally, we examined the use of weighted scale values versus un-weighted values.

4.1.2.1 Effect of Packet Size

Unless indicated, both the frame and packet size in our simulations are 1000
bytes, which is typical in the real world [FF1999]. Thus, utilization and scale values for
MM-App-New under these conditions is shown in the previous Figures 42 and 44

respectively.

4-23

To examine new conditions, we first decided to triple the size of both the frame
and packet to 3000 bytes. This applies to both MM-App-New and TCP. As shown in
Figure 4-6, there is less variation in utilization and MM-App-New occupies a much lower
percent of the utilization. We concluded that both observations are the result of an
increase in RTT, thus leading to a less aggressve MM-App-New. The reason that RTT
is longer is that it physically takes longer to send the packets because the queue size is
packet based but drain rate is byte based. This increase in RTT can be observed by
comparing the time between scale value increases in Figure 4-4 and Figure 4-7.

We aso chose to examine what happens when the frame size is larger than the
packet size, such that frames need to be broken up into multiple packets. For MM-App-
New, we set the frame size to 3000 bytes and the packet size to 1000 bytes. For TCP, the
packet size was 1000 bytes as well. Upon observation of Figure 4-8 versus Figure 4-2, we
found that there was little difference in the general appearance of the graph and a
negligible difference in the average utilizations. Thus, splitting frames apart into multiple

packets has little effect on the performance of the system.

4-24

MM-App-New Average Utilization = 43.8%
TCP Average Utilizaton =55.3%

12

0.8
-
S
®
£ —TCP
506 —— MM-App-New
& Total
©
[
o
0.4
0.2

Time (sec)

Figure 4-6: Percent Utilization with MM-App-New vs. TCP where Frame Size = 3KB and Packet
Size=3KB

40

35

30

25

20

Scale Value (#)

15

10

0
250 1219 16.33 19.65 22.60 2534 27.92 30.70 37.13 41.48 44.90 47.95 50.73 53.34 55.96 62.37 66.78 70.24 73.28 76.05 78.64 81.10 86.88 91.80
Time (sec)

Figure4-7: Scale Values with MM-App-New vs. TCP where Frame Size = 3K B and Packet Size=
3KB

4-25

MM-App-New Average Utilization = 52.1%

12 TCP Average Utilizaton =43.5%

0.8 +

W ——TCP
0.6 + - - . 1 —— MM-App-New

Total

Percent Utilization

044

0.2

Wl irry -t rt

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-8: Percent Utilization with MM-App-New vs. TCP where Frame Size = 3KB and Packet size
=1KB

4.1.2.2 Effect of Number of Scale Values

Our original assumption was that varying the number of scales would have an
effect on performance due to the varying degree of granularity. In order to examine this
further, we conducted tests using 25 (Figure 4-9), 50 (Figure 4-10), 150 (Figure 4-11),
and 250 (Figure 4-12) scale values for MM-App-New. (Note that 50 scales is the default
value used in most of our scripts and that Figure 4-10 isidentical to Figure 4-2 presented
earlier.)

As shown in the figures, moving from 25 towards 250 scale values results in less
variation in utilization. This behavior has to do with the fact that we are increasing by one
scale value per ACK and we ACK/NACK once per RTT, so it simply takes alonger time
to move across the entire range of scales. For example, with 25 scale values it would
take 25 RTTs (assuming no NACKSs) to reach 100% utilization. With 50 scale values it

would take 50 RTTs, and so on. Figure 4-14 visualy illustrates this point.

4-26

We also observed that as we increased the number of scale values the average
utilization for MM-App-New decreased and the average utilization for TCP increased.
This behavior is illustrated in Figure 4-14. As shown, the lines intersect, meaning MM-
App-New and TCP each receive 50% utilization on average, when there were 150 scales.
This suggests that a possible optimal configuration would have 150 scales, rather than the

50 scales that we used. We will revisit this point in the “Future Work” section of this

paper.

MM-App-New Average Utilization = 63.2%
TCP Average Utilizaton =25.5%

ISRV J

Zﬁi (T _—
T % e
I w}w. 4\ i

——TCP

Percent Utilization

Figure4-9: Percent Utilization with MM-App-New vs. TCP and 25 Scale Values

4-27

Percent Utilization

Percent Utilization

12

o
©

o
o

I
IS

0.2

MM-App-New Average Utilization = 54.5%
TCP Average Utilizaton =44.8%

—TCP
—— MM-App-New
Total
Time (sec)
Figure4-10: Percent Utilization with MM-App-New vs. TCP with 50 Scale Values
MM-App-New Average Utilization = 50.5%
TCP Average Utilizaton =50.6%
—TCP
—— MM-App-New
Total

Figure4-11: Percent Utilization with MM-App-New vs. TCP with 150 Scale Values

4-28

MM-App-New Average Utilization = 46.5%
TCP Average Utilizaton =54.3%

12

0.8
£ ——TCP
506 ——MMAppNew
£ Total
0.4
0.2
0
Figure4-12: Percent Utilization with MM-App-New vs. TCP with 250 Scale Values
E —— 25Scale Values
8 —— 50Scale Values
k) 150 Scale Values
g 250 Scale Values

0 25 50 75 100 125 150 175 200 225 250
RTT Interval (#)

Figure4-13: Aggressiveness of Reaching Maximum Bandwidth Using Different Numbers of Scale
Values

4-28

70

60

50

N
o

—— MM-App-New
— TCP

Percent Utilization

w
o

20

10

25 50 150 250
Scale Values (#)

Figure4-14: Average Percent Utilization vs. Number of MM-App-New Scale Values Used

4.1.2.3 Effect of Delay

Due to the fact that MM-App-New is a rate-based protocol, we had reason to
believe that MM-App-New would take up more bandwidth when there is longer delay.
This behavior is typical for situations in which rate-based protocols like MM-Flow are up
against window-based protocols like TCP. A window-based protocol sends a series of
packets and waits until it receives an ACK for them before sending again. As the delay
increases, it has to wait longer for the ACK and effectively loses some of the bandwidth
it could have used if it had recelved an ACK faster. A rate-based protocol, however,
keeps sending data at a given rate regardless of how long it takes to receive an ACK.
Thus, a rate-based protocol is able to steal some of the bandwidth not used by an idle

window-based protocol.

4-3C

As shown in Figure 4-15, the overall behavior of the system with longer delay is
roughly the same as our original results in Figure 42, but MM-App-New does in fact
consume more bandwidth, 55%, while TCP is only able to grab 33%. It is aso important
to notice that overall utilization in poorer in the system with longer delay. There are many
more instances in which utilization falls below 100%, which can be explained by
examining the queue. By comparing Figure 4-16 with Figure 4-4, one will notice that the
gueue size reaches zero more often when there is a longer delay. This is caused by the
fact that it takes longer for ACK/NACK packets to be sent back to the sender. MM-App-
New and TCP are, therefore, slow to respond to the congestion. By the time they respond,

the congestion may be over and the queue is allowed to drain, which causes total

; ‘ —TCP
—— MM-App-New

Total

utilization to fall.

MM-App-New Average Utilization = 54.9%
TCP Average Utilizaton =33.3%

1.2

7 Hfﬂ

Percent Utilization

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-15: Percent Utilization with MM-App-New vs. TCP with Longer Delay (40ms)

4-31

70

60

50

40

Size (#)

30

20

10 // ?/ y/ \/[/ \y T I \/ T/
0.78 942 16.58 22.75 27.66 33.47 40.11 45,57 52.41 60.03 64.90 70.54 77.72 83.36 90.48

Time (sec)

Figure4-16: Queue Size with MM-App-New vs. TCP with Longer Delay (40ms)

4.1.2.4 Effect of Fragile Flows

Now that we've seen how MM-App-New fairs against TCP when they both have a
long delay over the bottleneck link, it is important to see how they will act when each is
fragile. The fragile flows in the following simulation are five times further away from
the router than the competing flow, meaning 100ms rather than 20ms.

For the first smulation TCP is the fragile flow. As shown in Figure 4-17, MM-
App-New dominates the system while TCP averages only 10.5% utilization. While this
situation might be undesirable for the TCP user, it is typica of systems involving fragile
flows. In the second simulation we examined what happens when MM-App-New is
fragile. The results shown in Figure 4-18, indicate that MM-App-New and TCP share the
overall bandwidth relatively fairly. We believe this occurs due to the fact that in all of
our smulations TCP is redly just filling in the gaps left behind by MM-App-New. Thus,

when MM-App-New is fragile he is still able to claim half of the bandwidth. Luckily in

4-32

most situations MM-App-New is responsive enough to allow TCP to gain a fair share as

well.

MM-App-New Average Utilization = 67.6%

12 TCP Average Utilizaton =10.5%
14—- — — — — — — — — — — — — — —
0.8 +——- - Mf #_ MM | 1] - - - - - - —
ER I | \ \ [| r ‘] :I/IillF-,App-New
P [| |
5 Total
0.4 +— —
‘ |
o2 | [N I V‘ MI ' ”IH ‘M1 ']]”'U HM“]W’ l“"l nr—
ﬂl I LY iy ll LV ¥ 1
0 5 10 15 20 25 40 45 55 60 65 70 75 90
Time (sec)
Figure4-17: Percent Utilization with MM-App-New vs. TCP when TCP isFragile
MM-App-New Average Utilization = 53.8%
12 TCP Average Utilizaton =45.6%
14— - - - . J
" |
0.8 | -
§ N ﬂr"l ——TCP
35 0.6 4 — |— MM-App-New
g ;H{: :i: Total
0.4 4

) /i flj' " ll ;_l’
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-18: Percent Utilization with MM-App-New vs. TCP when MM-App-New isFragile

4-33

4.1.2.5 Effect of Weighted Scale Values

While MM-App-New has given us some improvements over MM-App-Old, it is
apparent that the protocol does not quite provide smooth transmission rates. We have
aready shown that increasing the number of scale values leads to less variation, but it is
also common for protocols to use weighted averages in ader to smooth sending rates.
This includes MM-Fow, and therefore we must examine what effect weighted scale
values have upon the performance of MM-App-New.

Figure 4-19 shows the results of when we ran MM-App-New with weighted scale
values against TCP. The figure shows that there was approximately 10 cycles in
utilization, whereas our origina data (shown in Figure 4-2) contained 11 cycles.
Therefore, applying weighted scale values did not produce dramatic differences but till
reduced the amount of variation in the system, as expected. It is also important to point
out, however, that MM-App-New takes a little more bandwidth than it used to. This was
expected as well, since weighted scale values mean the protocol is less responsive to
congestion.

Since weighted values produced subtle results, we will continue using un-
weighted values in each simulation throughout this paper. We will also revisit scale
values, weighting schemes, and efforts at achieving smoother data in the “Future Work”

section of this paper.

MM-App-New Average Utilization = 58.9%

12 TCP Average Utilizaton =40.7%

& A /& f“1 N
v 1k

Total

Percent Utilizaton
o
o
t
1

o
~

TS

0 5 10 15 20 40 45 50 55 75 80 85 90

Time (sec)

Figure4-19: Percent Utilization with MM-App-New vs. TCP with Weighted Scale Values

4.1.3 MPEG-App-0OIld vs. MPEG-App-New

When MM-App-Old was constructed, another application was created called
MPEG-App. MPEG-App works by breaking up and sending specific parts of the MPEG
mediafile. Each mpeg file can be broken down into three different types of frames, all of
different sizes and known as I, B, and P frames. MPEG-App has five scale values. Each
scale value corresponds to sending various combinations of |, B, and P frames such that
the relationship between transmission rate and scale value increases linearly.

Since we have shown that more scale values typically leads to better performance,
it would have been desirable to create more scale values for MPEG-App. This would
have taken a considerable amount of time relative to the length of our project, so we
decided to focus our project on just the MM-Flow transport layer and manipulating MM-
App. Therefore, the only difference between MPEG-App-Old and MPEG-App-New is

that the new version is designed to run on top of MM-Flow, just like MM-App-New.

4-35

Though we didn’'t change the application layer functionality, we felt it was till
necessary to examine how MPEG-App-Old performs and compare it to MPEG-App-New
now that it runs on top of MM-Flow. We only performed a ssimulation for the standard
bottleneck layout with MPEG-App running against TCP.

Figure 4-20 shows the percent utilization for MPEG-App-Old vs. TCP. As shown,
MPEG-App-Old uses about 58% of the bandwidth and TCP, for some reason, is
restricted to only 32%. Also, utilization is very erratic which will result in poor quality.
Figure 421 shows the results of MPEG-App-New versus TCP and shows that the new
version totally overpowers TCP. This behavior is expected since five scale values is too
coarse a granularity to be effective, so the protocol aggressively seeks bandwidth and has
a hard time reacting to congestion.

MPEG.App-0ld Average Uiizaton = 58 2%

TCP Average Utilizaton =32.4%
1.2

—TCP
—— MPEG-App-Old
Total

Percent Utilization

Time (sec)

Figure4-20: Percent Utilization with MPEG-App-0Old vs. TCP

4-36

MPEG-ADP-New Average Uulizaton = 8U.6%
TCP Average Utilizaton =16.4%
1.2

08+ . | ‘ ‘ ‘ W ‘
——TCP

0.6 1 b T 1 | —_— —_ — |——MPEG-App-New
Total

Percent Utilization

02+

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-21: Percent Utilization with MPEG-App-New vs. TCP

4.2 TCP-Friendliness

While looking at graphs of utilization, scale value, and queue size allows us to
understand the overall behavior of the system, it is also possible to obtain specific
measurements concerning the TCP-friendliness of a flow. As stated previoudy, a TCP-
friendly flow is considered to be one that transmits at a rate less than or equal to a TCP
flow under the same conditions. The TCP-friendly bandwidth can be calculated by using

Equation 2-2 (shown again below for reference).

1.52/3* B
TegNel2 &2
R*.[p

Equation 2-1: TCP-Friendly Transmission Rate

Our data collection script get_tcpfriendly_data implements this formula and alows
us to compare actual bandwidth used by a flow against its calculated TCP-friendly
bandwidth. Before we examine the results obtained from this script, we need to gain an

understanding of its implications and the circumstances in which this formula applies.

4-37

First, we'll go through a brief dimensional analysis. As the formula indicates, the
TCP-friendly bandwidth T is dependent upon the packet size B, the round trip time R,
and the packet drop rate p. As the transmitted packet size increases, so does the TCP-
friendly bandwidth. Conversely, as the round trip time or packet drop rate increases the
TCP-friendly bandwidth decreases.

It is also important to recognize the implications of the variables in this equation.
Packet size and round trip time are almost always strictly positive, so they usually do not
have any severe implications. Problems begin to arise when the packet drop rate is zero,
which happens frequently in ssimple simulations. Since it is in the denominator, a packet
drop of rate of zero causes the TCP-friendly bandwidth to approach infinity. When
creating our get_tcpfriendly_data script we wanted to produce data that was accurate, but
easy to graph, so we made the assumption that a packet drop rate of zero (or a round trip
time of zero, just to be safe) will cause the value for TCP-friendly bandwidth to equal the
maximum bandwidth of the link.

One way to solve the problem of a packet drop rate of zero and obtain more
informative TCP-friendly data is to increase the measurement interval size. Figures 4-22,
4-23, and 424 show a TCP-Friendly graph with measurement intervals of 1 second, 3
seconds, and 5 seconds respectively. These figures illustrate that a small interval size will
end up having few drops per interval, and therefore lots of places where the TCP-friendly
bandwidth equals the maximum bandwidth of 4.0 Mbps. Asthe interval size increases the
TCP-friendly bandwidth begins to take on useful values. The drawback of this process is
that increasing measurement intervals also smoothes the actual bandwidth, possibly to the

point that important data points are missing and its usefulness is lost. Therefore, the

4-38

interval size one chooses to use will depend on the simulation and the degree of

granularity desired.
45
4
35
3
1%
Q
e
S 25
g —Actual Bandwidth
3 ——TCP-Friendly Bandwidth
2 2
3
o
15
1
05
0
30 35 40 45 50 80 85 20
Time (sec)

Figure4-22: TCP-Friendly and Actual Bandwidth Measurementswith a 1 Second Interval

45
4
35
3
——TCP-Friendly Bandwidth
15
1
05
0
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

Time (sec)

N
(&)

N

Bandwidth (Mbps’

Figure4-23: TCP-Friendly and Actual Bandwidth Measurementswith a 3 Second Interval

4-36

45

IS
—
—
[—

w
v
| ——
—
| _——
—

w

| /| |
\\ | \\ //
INIAVEY 2N

/\\/ V I~ \'\

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95
Time (sec)

N
o

N

Bandwidth (Mbps

[
3]

[

o
3

Figure4-24: TCP-Friendly and Actual Bandwidth Measurementswith a5 Second Interval

4.3 TCP-Friendliness and Performance of MM-Flow vs. Other
Protocols

Now that we have a better understanding of TCP-Friendliness and how it can be
measured, we are interested to see how the different simulations hold up in regards to the
TCP-Friendly equation. First, we decided to take alook at a TCP vs. TCP simulation so
that we may see how two TCP flows re-act against each other. We will then take alook at
MM-App-New versus TCP, TFRC vs. TCP, and MM-App-New vs. TCP. Finally, we will
wrap up our evauation with a multiple-protocol environment placing 4 TCP, 2 MM-App-
New, and 2 TFRC in the system at the same time.

For all protocol environments except the multi-protocol we performed simulations
using the standard bottleneck, standard fragile, and standard delay layouts. From these
three tests, we want to examine how each competing flow responds. For each simulation

we have provided a figure displaying the actua bandwidth, along with an overlay of the

4-4C

calculated TCP-friendly bandwidth. In most of our simulations we had a difficult time
getting accurate TCP-friendly data due to extremely low drop rates. Therefore, we have
added the concept of a “Fair Bandwidth” to aid our discussion. Fair bandwidth is
calculated by dividing the total bandwidth of the bottleneck link by the total number of

flows in the ssimulation.

4.3.1 TCPvs. TCP

Since we are examining the notion of TCP-friendliness, we felt it was necessary
to see how two TCP flows reacted among themselves. This smulation is useful since we
have yet to look at two TCP flows competing. Also, it may be interesting to see if even

TCP is TCP-friendly according to the current definition.

4.3.1.1 Basic Simulation

This ssimulation was run with two TCP flows running against each other. With
two identical TCP flows we felt it was only necessary to graph the data for one TCP flow
and it's TCP-Friendliness values. Figure 4-25 shows the results of this basic test. Ascan
be seen from the figure, the value of TCP-Friendliness is constantly at the maximum
bandwidth of 2 Mbps. Thisis due to the fact that there are no drops occurring within the
simulation. Since TCP is aways under the TCP-friendly line we must conclude that
under standard bottleneck conditions it is TCP-friendly. Similarly, while TCP's actual
bandwidth may fluctuate it is relatively close to the Fair Bandwidth value, so we also

conclude that it is fair.

4-41

25

N /\

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth
SN/ /N /N /SN /N /N /N /N /N /N /N /N /N /N /N /N /N /N /N

AV A S VA VA VA T A VA VA T A VA VA C A VA VO Y A A VA S S

=
3

Bandwidth (Mbps)

[

0.5

T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (sec)

Figure4-25: TCP Friendly & Fair Bandwidth Overlay for TCP in TCP vs. TCP

4.3.1.2 Effect of Fragile Flows

Even though two TCP flows running equal to each other may seem fine, we want
to know how TCP reacts when one flow is far away from the destination while the other
is close. We use the standard fragile layout for this simulation. Figure 4-26 shows the
TCP-friendly and Fair overlays r the fragile TCP flow, while Figure 427 shows the
data for the TCP flow that is close to the router. As shown, both flows fall under the
TCP-friendly line so they are considered to be TCP-friendly. Fairness is another question
entirely. The fragile flow is well below the Fair line, while the non-fragile flow is well
above it. Thus, we must conclude that in a simulation with one fragile flow, the fragile
will not receive its fair share. As in previous smulations, this outcome is expected since

the fragile flow is at a disadvantage.

4-42

25

e
o

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

-

0.5

Time (sec)

Figure4-26: TCP Friendly & Fair Bandwidth Overlay for TCP1 in
TCPvs. TCP where TCP1 is Fragile

25

s
3

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

[N

0.5

Time (sec)

Figure4-27: TCP-Friendly & Fair Bandwidth Overlay for TCP2in
TCPvs. TCP where TCP1 is Fragile

4.3.1.3 Effect of Delay
Measuring how the TCP flows re-act to having a long bottleneck delay is key,

because in the real world, chances are this is likely to occur. Figure 4-28 shows us that

4-43

the two TCP's are acting completely fair with one another. Each flow is using exactly
half of the total bandwidth for the ssmulation. Thisis expected, because since both flows
are experiencing the long delay, it will act similar to that in the basic smulation that we

looked at above. Again we must conclude that both flows are TCP-friendly and fair.

2.5

=
3

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

[\ J\ Fair Bandwidth
A A A A A A A A A A A A A A A AAA A_A A

\I\/\/\/\/\/\/\/\/\/\/\I\I\/\/\I\I\/\/\/\/\/\

Bandwidth (Mbps)

-

0.5

T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

Time (sec)
Figure4-28: TCP Friendly & Fair Bandwidth Overlay for TCP in TCP vs. TCP with Longer Delay
4.3.2 MM-App-New vs. TCP
We have already examined utilization, scale values for MM-App-New versus
TCP, but now we must take alook at TCP-Friendliness and Fairness in order to be able to

compare it to the other protocols.

4.3.2.1 Basic Simulation

This simulation shows MM-App-New and TCP in a standard bottleneck layout.
The measurements for TCP-Friendliness and Fair Bandwidth for TCP and MM-App-New
are shown in Figures 4-29 and 4-30 respectively. In terms of fairness, these graphs show

just about what we have aready seen from the utilization. That is at times the TCP or

MM-App-New are above the fairness level, while other times they are below, but on
average they are relatively fair with perhaps MM-App-New having a dlight advantage
over TCP. In terms of TCP-Friendly measurements, we are beginning to see an increase
in the drop rate, but we would still need an interval of about ten seconds to start seeing
this data form something concrete. A ten second interval was larger than we were willing
to accept due to the fact that it is a long time in the world of networks. Using the results
obtained from the formula, says that both are TCP-Friendly, except for when MM-App-

New reaches its threshold at which it then starts dropping packets.

25

——

Bandwidth (Mbps)

YRV ==
JVAVAVAVAVRVIAVAVA

\/ J

T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (sec)

[N

Figure4-29: TCP Friendly & Fair Bandwidth Overlay for TCP in TCP vs. MM-App-New

4-45

25

Fair Bandwidth

Bandwidth (Mbps)
-
o
/’)
I
]
=
/
S
—

——

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

[

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-30: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in TCP vs. MM-App-New

4.3.2.2 Effect of Fragile Flows

The results of this set of simulations, shown in Figures 431 through 434, also
correspond with the results previousy discussed. When TCP is the fragile flow it
receives |less bandwidth than MM-App-New, and when MM-App-New is the fragile flow
they tend to share the bandwidth relatively equal. According to the TCP-Friendly
calculations, when TCP is fragile the drop rate is higher, but still warrants a 58 second
interval for gaining any concrete data. When MM-App-New is fragile the drop rate is
less warranting an interval is too large for us to examine without losing valuable data

points.

4-46

25

Bandwidth (Mbps)
-
&

-

0.5

Time (sec)

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

Fair Bandwidth

Figure4-31: TCP Friendly & Fair Bandwidth Overlay for TCP in MM-App-New Vs. TCP where

TCPisFragile

2.5

Bandwidth (Mbps)
-
&

-

0.5

Time (sec)

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Figure4-32: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in MM-App-New vs. TCP

where TCP is Fragile

4-47

25

Bandwidth (Mbps)
-
&

-

0.5

Time (sec)

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

Fair Bandwidth

Figure4-33: TCP Friendly & Fair Bandwidth Overlay for TCP in MM-App-New Vs. TCP where

MM-App-New isFragile

2.5

Bandwidth (Mbps)
-
&

.

0.5

Time (sec)

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Figure4-34: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in MM-App-New Vs. TCP

where MM-App-New is Fragile

4-48

4.3.2.3 Effect of Delay

This smulation shows us that, under greater delay, it takes longer for TCP to get
its ACKSINACKS, such that MM-App-New tends to become greedier in terms of
bandwidth usage. Figures 4-35 and 4-36 shows that in terms of fairness, TCP averages
below the fair line, where as MM-App-New has an average above the fair line. In terms

of TCP-Friendliness, both are friendly, except when MM-App-New experiences a drop.

25

=
3

Bandwidth (Mbps)
-
—

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

n ,\ (\ Fair Bandwidth

JRNVAVAVANANRVNIN
\/ AL AN

T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (sec)

Figure4-35: TCP Friendly & Fair Bandwidth Overlay for TCP in MM-App-New vs. TCP with Delay
40

4-49

25

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth
0.5 / \
0 T T T T T T T T T T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Bandwidth (Mbps)
-
- 5

Figure4-36: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in MM-App-New vs. TCP
with Delay 40

4.3.3 TFRC vs. TCP

In order to be able to compare TFRC with MM-App-New equally, we fed it is

necessary to compare it to a TCP flow as well.

4.3.3.1 Basic Simulation

This particular simulation showed us some surprising results regarding TFRC.
Again, because there were few drops in this scenario, our TCP-Friendly data values are
usually equal to the maximum bandwidth. First, Figure 437 shows the values for the
TCP flow. As can be seen, it starts climbing high at first, but then comes down rapidly.
Thisis due to the fact that TFRC starts running. TCP tries to recover and climbs back up

to where its fair bandwidth usage should be, but is forced down.

4-5C

Now, let’'s take a look at the values for TFRC. Figure 438 shows that TFRC
starts and immediately climbs as high as possible. After adjusting in accordance to the
drop it experiences, TFRC begins to climb again, however it never falls below 1.3 Mbps
again until the end of the simulation. Due to the low drop rate, both flows are considered
to be TCP-friendly. By inspection, however, we can easily see that TFRC is not being fair
by consuming much more bandwidth than it should. Based on the information gathered in
this smulation, we conclude that TFRC is not as fair as MM-App-New when running

against TCP in the standard bottleneck layout.

25

=
o

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

7

\// S~

T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (sec)

0.5

Figure4-37: TCP Friendly & Fair Bandwidth Overlay for TCP in TFRC vs. TCP

4-51

25

E

—— Actual Bandwidth
h —— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

C

0.5

T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-38: TCP Friendly & Fair Bandwidth Overlay for TFRC in TFRC vs. TCP
4.3.3.2 Effect of Fragile Flows

This smulation shows us how both TFRC and TCP react when each one is set to
be a fragile flow. First we made TCP the fragile flow. The TCP-friendly and Fair
Bandwidth overlays for TCP and TFRC under these circumstances are shown in Figures
4-39 and 4-40 respectively. Next we made TFRC the fragile flow. The TCP-friendly and
Fair Bandwidth overlays for TCP and TFRC under these circumstances are shown in
Figures 4-41 and 4-42 respectively.

In both sets of figuresit is apparent that both TCP and TFRC are within the limits
of TCP-friendliness. It is also obvious that TFRC is occupying way more than its fair
share of bandwidth, even when it is the fragile flow. This seems to be a recurring theme

among simple TFRC simulations.

4-52

25

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

Fair Bandwidth

—— Actual Bandwidth
—— TCP-Friendly Bandwidth

Fair Bandwidth

I 15
g
g1
0.5
0
Time (sec)
Figure4-39: TCP Friendly & Fair Bandwidth Owerlay for TCP in
TFRC vs. TCP when TCP is Fragile
25
2
7 15
g
g1
0.5

Time (sec)

Figure4-40: TCP Friendly & Fair Bandwidth Overlay for TFRC in
TFRC vs. TCP when TCP is Fragile

4-53

25

s
3

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

[

0.5

Time (sec)

Figure4-41: TCP Friendly & Fair Bandwidth Overlay for TCPin
TFRC vs. TCP when TFRC is Fragile

2.5

I
5

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

[N

0.5

Time (sec)

Figure4-42: TCP Friendly & Fair Bandwidth Overlay for TFRC in
TFRC vs. TCP when TFRC is Fragile

4.3.3.3 Effect of Delay

Findly, we tested TFRC vs. TCP with the standard delay layout. The TCP-

friendly and Fair Bandwidth measurements for TCP and TFRC are shown in Figures 4-43

4-54

and 4-44 respectively. Again, we see that both are within the limits of TCP-friendliness,

but TFRC forces TCP to receive an unfair share of the bandwidth.

25

[
o

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

.

0.5

] 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Time (sec)
Figure4-43: TCP Friendly & Fair Bandwidth Overlay for TCP in TFRC vs. TCP with Longer Delay

25

~ 15

[

s

=) —— Actual Bandwidth

g —— TCP-Friendly Bandwidth
E Fair Bandwidth

g 1

0.5

Time (sec)

Figure4-44: TCP Friendly & Fair Bandwidth Overlay for TFRC in
TFRC vs. TCP with Longer Delay

4-55

4.3.4 MM-App-New vs. TFRC

The smulations so far have showed us that for the most part TFRC is generally
over the fair bandwidth line and MM-App-New is generally on average at the fair
bandwidth line. These tests are performed against TCP, however, so we decided to test
MM-Flow against TFRC in order to gain a better understanding of how they act together.
We only ran the basic test for this ssmulation, as we did not have time to g as in depth
on thetwo. Thisis partly due to the fact that we are still unsure as to the settings required
for TFRC, and therefore do not wish to observe poor performance, only then to find out

we had it set up incorrectly.

4.3.4.1 Basic Simulation

Running MM-App-New against TFRC we first examined the TCP-Friendly and
Fair bandwidths for TFRC. As can be seen in Figure 4-45, the interval is still too small to
gan any useful TCP-Friendly measurements, however we are able to see that on average
TFRC seems to be fair once in a stable state. The downside to TFRC is that it takes a
good 25 seconds before it reaches this equilibrium, which is a long time, in terms of
network traffic.

We next examine MM-App-New in this smulation in terms of TCP-Friendly and
fair bandwidths. We expect that, similar to TFRC, our TCP-Friendly values will be
inflated due to few drops in the simulation. The actua bandwidth for MM-App-New, as
seen in Figure 4-46, shows us upon first inspection that it seems to be relatively close to
where TFRC's bandwidth was. The TCP-Friendly values, however, are still relatively
inconclusive. The average vaues for bandwidth and TCP-Friendliness are 1.09 and 1.59

Mbps, respectively.

4-56

As shown, MM-App-New quickly gets up to speed in the simulation, taking all
the available bandwidth, as it is the only one running for the first two seconds. Then as
TFRC starts running, MM-App-New compensates and comes down accordingly in order
to be fair. We fedl that because the max bandwidth is 2 Mbps, that MM-App-New is

running at perfect fairness, due to the fact that its average utilization is 1.09 Mbps.

25

g
o

—— Actual Bandwidth
—— TCP-Friendly Bandwidth
Fair Bandwidth

Bandwidth (Mbps)

-

0.5

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (sec)

Figure4-45: TCP Friendly & Fair Bandwidth Overlay for TFRC in TFRC vs. MM-App-New

4-57

25

T
LA R R A A AR AN =
) I

/ IR |)

T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (sec)

=
4

Bandwidth (Mbps)

[

Figure4-46: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in TFRC vs. MM-App-
New

4.3.5 Multiple Protocol Simulation

After running al the above tests separate so that we could find out how each
protocol acted against each other, we felt it necessary to perform a more redlistic test in
which several instances of the protocols ran at the same time. This multiple protocol
simulation includes four TCP flows, two MM-App-New flows, and two TFRC flows.
We then picked one instance of each flow to evaluate the TCP-friendly and Fair
bandwidth values. This ssimulation provided us with accurate TCP-friendly measurements
with only athree second interval since the existence of many protocols insured there were
enough drops in the system.

TCP s the first protocol that we examined from this test. As shown in Figure 4-
47, TCPs actua bandwidth is above both the TCP-friendly and Fair bandwidths
throughout most of the smulation. Figures 448 and 449 show TCP-friendly and Fair

bandwidth measurements for TFRC and MM-App-New respectively. As indicated,

4-58

TFRC perform very similarly. They are both above the TCP-Friendly bandwidth, but well
within the Fair bandwidth, and each provides relatively smooth transmission rates.
Perhaps this simulation raises more questions than it answers, such aswhy TCP is
not TCP-Friendly and why the TCP flows occupy so much bandwidth. Nevertheless, we
felt this simulation shows that TFRC and MM-App-New on top of MM-Flow perform
rather well in situations that are close to real-world scenarios. As for some of the

anomalies in data, we believe they require further examination in future work.

1 /\ /\ I]

|n I |]
. L /| /| I —
N || | N
‘T T [| 1]
IS R 1]
1N N AN L AN

/ N\ = ANV4 R AV “\

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93

Time (sec)

Figure4-47: TCP Friendly & Fair Bandwidth Overlay for TCP in a Multi -Protocol Environment

4-59

4.5

35
3
2
el
= 25 ——Actual Bandwidth
% — TCP-Friendly Bandwidth
2 > Fair Bandwidth
]
o
15
1
0.5
0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93
Time (sec)

Figure4-48: TCP Friendly & Fair Bandwidth Overlay for TFRC in a Multi-Protocol Environment

4.5

3.5

—Actual Bandwidth
— TCP-Friendly Bandwidth
Fair Bandwidth

N
5

IN)

Bandwidth (Mbps)

15

0.5

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93
Time (sec)

Figure4-49: TCP Friendly & Fair Bandwidth Overlay for MM-App-New in a Multi-Protocol
Environment

4-6C

5 Conclusion

Before our project there were two application layer multimedia protocols known
as MM-App and MPEG-App. Each of these protocols implemented the same set of rules
for responding to congestion, but varied in how they mapped scale values to transmission
rates. Each used an enhanced version of UDP as its transport agent. The interaction of all
of these components and the rules for responding to congestion became known as MM-
Flow.

To improve this system, we first sought to split its functionality into an
application layer and a new transport layer. This allows for greater extensibility, in that
the application layer now runs independent of the decisions that determine what scale
value to send at. Applications with new encoding schemes can built on top of the
transport layer without having to reproduce its functionality. For clarity, we redefined
the term MM-Flow to explicitly refer to the transport layer protocol, while the application
layers remained as MM-App and MPEG-App. Another improvement is the option to
weight scale values to obtain smoother transmission rates. Also, simulation designers are
able to ater the AIMD configuration and number of scale values without recompiling the
source code.

After our re-engineering effort, we thoroughly tested our new code under varying
circumstances. To aid in our analysis, as well as benefit fellow NS users, we developed a
series of generic scripts that transform standard NS trace files into usable data. Our basic
simulation scenarios involved a standard bottleneck layout, a standard delay layout, and a

standard fragile layout.

5-61

We first compared MM-App-Old versus MM-App-New. MM-App-Old occupied
more than its fair share of the bandwidth and was limited only by the fact that it had
reached it highest transmission rate. MM-App-New, on the other hand, responded to
congestion quite well and shared available bandwidth with TCP fairly. We concluded
that MM-App-New is an improvement over MM-App-Old, with regards to fair ness.

We then continued our analysis of MM-App-New. We have shown that larger
packet sizes result in smoother data because it takes longer to send large packets.
Changing the frame size had no effect. Increasing the number of scale values created
smoother data and caused MM-App-New to use less of the available bandwidth, with
MM-App-New and TCP sharing the best when 150 scales was used. When the network
involved longer delays, MM-App-New tended to accumulate more of the bandwidth,
which was expected since TCP is windowbased and MM-Flow is rate based. Fragile
flow tests have shown that a fragile TCP flow will lose to a competing MM-App-New,
but a fragile MM-App-New is able to fight its way to relatively equal bandwidth against a
TCP flow. We have adso shown that weighted scale values for MM-Flow can be used to
smooth transmission rates, with only a small increase in bandwidth taken.

Similarly, we tested MPEG-App-Old against MPEG-App-New. Results indicated
that neither provided smooth data and MPEG-App-New dominated the system. These
results were expected, as we believe that MPEG current restriction to five scale values is
far too coarse to achieve the desired performance.

We then examined what it means to be a TCP-friendly protocol and found that a
widely accepted definition claims that a TCP-friendly flow is one that transmits at a rate

less than or equal to a TCP flow under the same conditions. The TCP-friendly bandwidth

5-62

for a given flow can be calculated by using Equation 2-2. We also have shown that there
are some considerations that must be taken into account when using this formula. First,
when a flow experiences a drop rate of zero the resulting TCP-friendly bandwidth
approaches infinity. For our purposes, we assumed this value to be the same & the
maximum bandwidth of the link. We also discussed how increasing the interval size can
help us obtain useful measurements, but at the expense of smoothing the actual
bandwidth and losing potentially valuable data points.

We conducted a series of tests involving TCP, MM-App-New, and TFRC to
examine how the TCP-friendly measurement applies to each. In most of our tests there
were extremely low drop rates. Rather than continually increase our interval size, we
chose to introduce a measurement of “fair” bandwidth. In general, we found that TCP-
friendly measurements obtained from simple simulations did not provide us with much
insight.

MM-App-New seemed to compete fairly, but TCP-friendly measurements still
were not very helpful due to few drops. In gereral, measurements of fair bandwidth were
consistent with results discussed earlier. TFRC seemed to take on avery odd behavior in
simple ssimulations, such as taking more bandwidth than it should when going against a
single TCP flow, regardless of the network layout. When MM-App-New and TFRC
competed in a simple ssimulation, we found that it took a long time for TFRC to reach a
stable state with MM-App-New. Once that state was reached, however, they competed
rather fairly.

Finally, we placed 4 TCP flows, 2 MM-App-New flows, and 2 TFRC flowsin a

simulation at the same time. This situation created enough drops to obtain actual lines for

5-63

TCP-friendly bandwidth. These values raised more questions than they answered
because al flows, including TCP, were indicated as not being TCP-friendly. Also
somewhat mysterious is the fact that both MM-App-New and TFRC transmitted below
the fair bandwidth, yet TCP was well above it. These results suggest that the TCP-
friendly measurement requires more analysis.

In the end, the question remains whether MM-Flow is at the level necessary for
today’s demands on multimedia protocols. The answer is “not yet.” We have given
MM-Flow some much needed improvements, particularly in the realm of fairness and
extensibility, but still lacks the smoothness of TFRC. In the next chapter, Future Work,
we discuss a vast number of extensions to this project that could help bring MM-Flow up

to the desired level of performance.

5-64

6 Future Work

MM-Flow is envisioned as an enabling protocol for a multitude of multimedia
based application layer protocols. It is an ongoing project; we would like to finish by
presenting a list of ideas for future work, in the hope that it will prove useful to those who
wish to study and extend our work. We dealt primarily with the ssmulated application
MM-App, and did not make many changes to MPEG-App, as meaningful changes would
require a more in-depth knowledge of MPEG video standards. As aresult, the number of
scales in MM-App increased from five to a user-specifiable number (defaulting to 50) but
MPEG-App remained at only five. It would be interesting to see if MPEG-App could
benefit from more scale values in the same way that MM-App has.

It is generally true that increasing the number of scales allows MM-Flow to be
more responsive, and at the same time causes it to take up less bandwidth. Ideally, we
would want it to share equally with TCP, which pointed us toward the idea of an optimal
number of scales. In our preliminary testing, we found that less than 150 scale values
caused MM-Flow to take up too much bandwidth, and more than 150 scale values caused
MM-Flow to take up too little bandwidth (see Figure 414). If 150 scales is indeed an
optimal number, perhaps applying our tests to MM-Flow while using 150 scale values
would yield better performance.

Much of the success of the TCP protocol is due to its application of the principles
of AIMD; one additional packet is sent per round trip time on success and half as many
packets are sent per round trip on failure. MM-Flow follows the lead in this regard, using
the same parameters to determine how many scales to increase or decrease. This is not

quite the same as TCP, in that the scale values are mapped to rates rather than packets.

6-65

An increase could signify several additional packets, making MM-Flow potentially more
aggressive. As MM-Flow differs from TCP, perhaps different values could be used in the
AIMD process; one alternative could be to increase by half of a scale value and decrease
to 75% of its former scale value. We decided not to explore this ourselves, as there are
many different combinations of these choices available, but we have provided the
functionality in MM-Flow to change these values; both the additive increase and
multiplicative decrease values may be changed while designing an OTcl simulation
scenario.

Since the scale values of MM-Flow are known to increase owly the first time,
another parameter that could be worth changing is the initial scale value. For maximum
fairness, we start the protocol at the minimum scale value, but it is possible that another
value would prove more optimal. While starting at the maximum would unfairly crowd
out other flows, starting in the middle may be reasonable. Further experimentation could
determine if starting at a point such as the arithmetic or geometric mean between the two
extremes would be better.

Other potential adjustments to MM-Flow’s scale system are the advent of a sow-
start phase and non-linear scales. While viewing graphs in which MM-Flow and TCP
compete for bandwidth, we noticed that TCP quickly takes up all of the free bandwidth,
given the chance, whereas MM-Flow’s utilization only increases at an approximately
linear pace. This appearsto be dueto TCP s “dow start” algorithm, which contrary to its
name allows TCP to achieve substantial bandwidth quickly at the beginning of itsrun. It
does this by increasing its rate after each receipt of an ACK caused by a successful packet

arrival, instead of once per round trip time. Adding a slow start phase could be beneficial

6-66

to MM-Flow in the short-term, as it consistently uses less bandwidth than it can at the
beginning of its run. Nonlinear scales could achieve the same effect by a different
process. If the bandwidth gaps between lower scale values were greater than between
higher scale values, MM-Flow could quickly increase in bandwidth before leveling off.
However, in a lowbandwidth environment, MM-Flow may be hurt by this scheme by
rapidly fluctuating between scale values that are too far apart. Perhaps using a dynamic
number of scale values is the key; using a small number of values would alow MM-Flow
to increase in bandwidth quickly to start, but switching to a greater number after reaching
a predetermined threshold would allow MM-Flow to become smooth after getting
established. It could aso increase the number of rates used when it is approaching
capacity, as determined by longer round trip times. This will cause the protocol to
increase its utilization more sowly, in an attempt to avoid congestion. The receiver
could effect this change as well, by not sending an ACK when an ACK would normally
be sent, or even by sending a NACK. This would be similar to what the RED router
does, in that it would force MM-Flow to slow down before it became truly necessary.

For the sake of simplicity, al of our simulations were done using DropTail
routers. These routers drop packets only when the queue is full, taking a passive role in
congestion situations. RED routers, on the other hand, start dropping packets
probabilistically when the queue nears capacity, in order to stave off future congestion. It
is possible that the performance of MM-Flow could be affected by using RED instead of
DropTail routers. Perhaps with this knowledge, routers could be configured specifically
to take advantage of MM-Flow. We decided not to investigate further, as protocols do

not typically get to choose which type of routers to use.

6-67

One observation made, which we could never satisfactorily explain, is that MM-
App and MPEG-App tend to dominate scenarios involving other protocols. We refer to
the fact that viewing graphs gives the impression that the applications operate mostly
independently of the other protocol (typically TCP), and the other protocol takes the
bandwidth that the MM application is not using. We expected to see utilization much
lower than full as the two protocols constantly competed over the resource, whereas
utilization was at or near full in most circumstances. Our desire is br MM-Flow to
compete fairly against other protocols, so we would like to see if this behavior is working
against that goal.

MM-Flow’s behavior against several protocols was tested, mostly in the situation
that the protocols attempted to run continuously for a period of time. On the Internet,
much traffic such as web browsing behaves in a way that produces utilization bursts
rather than continuous streams of data. Running a web traffic simulator would be useful
to see how MM-Flow would compete in rea-world situations. Even better would be to
adapt MM-Flow for use outside of the NS smulator and test how it fares competing
against whatever flows might also be present on the Internet. Unfortunately, the testing
situation would be difficult, as the experiments could not be controlled.

Testing MM-Fow against the TEAR protocol would be useful. Created as a
response to TFRC, it is suggested that TEAR solves some of the problems we discovered
with it. Our intention was originaly to test TEAR as we tested TFRC, but we were
forced to abandon this goal when we were unable to get the TEAR simulation code to run
properly. Asthisis merely an issue of technical difficulties, we are sure that interesting

research can be done once this is working.

6-68

Testing MM-Flow’s multicast performance by comparison to TEAR could be
especiadly informative. TEAR’s system of making decisions at the recelver helps a
multicast system by not forcing them to be concentrated in a single host, the sender, but
instead distributing the burden to multiple receivers. MM-Fow should be tested using
multicast streams, against TEAR and other protocols. One ideafrom TEAR that could be
utilized in a multicast-enabled version of MM-Flow is that of ACKing less often. The
current frequency of ACKs sent by the receivers may prove to take too much bandwidth
at the sender, as many recelvers may be ACKing at the same time.

We considered the implications of losing ACKs due to congestion and drops on
the return path. This would cause the sender to lose information on the condition of the
path to the receiver, and possibly behave inappropriately. Detecting this situation could
be implemented in the form of a timer on the sender; if an ACK or NACK weren't
received in the specified time period, the timer would go off, initiating a response on the
sender. However, since a NACK could be lost as well as an ACK, there is no easy way
to tell what the appropriate response of the sender would be in this circumstance. Our
decision was to simply ignore it and continue sending at the rate the sender was currently
using. If further study shows that the percentage of lost response packets leans toward
ACK or NACK, an “ACK expected” timer could be employed to perform the correct
action.

Measuring TCP-Friendly values was problematic for us in some respects. The
TCP-Friendly equation relies heavily on the number of dropped packets in a scenario and
works best when there are a substantial number of drops. A considerable amount of the

time our simulations yielded few drops, and so we could not obtain good TCP-Friendly

6-69

data. It would have been beneficial to our analysis to have access to atool for measuring
this value independent of the number of drops; perhaps a tool based solely on round trip
time. Developing this tool (and investigating if it could be done) would prove a useful
avenue for future research.

Finally, another interesting extension to MM-Flow would be writing applications
to take advantage of existing multimedia formats and to port existing applications. For
example, an application could be developed for streaming audio, based on principles
similar to MM-App or MPEG-App, depending on the file format specification. Also,
applications that currently use another protocol such as TCP or UDP for multimedia
streaming could be adapted to use MM-Flow instead. User experience testing of these
applications would be a good real-world measure of the value of MM-Flow. MPEG-App
could benefit from user testing as well, in regard to the amount of jitter experienced.
While MM-Flow is intended to reduce jitter by avoiding retransmissions and behaving

more smoothly than TCP, this was not specifically tested.

6-7C

7 References

[CC2000] Chung, J. and Claypool, M., “Better-Behaved, Better-Performing Multimedia
Networking”, Society for Computer Smulation Euromedia Conference (COMTEC),
Antwerp, Belgium, May 8-10, 2000.

[FF1999] Floyd, S. and Fall, K., “Promoting the Use of End-to-End Congestion Control
in the Internet”, IEEE/ACM Transactions on Networking, May 3, 1999.

[FHPW2000] Floyd, S., Handley, M., Padhye, J., and Widmer, J., “ Equation-Based
Congestion Control for Unicast Applications’, SGCOMM 2000, May 2000.

[ROY 2000] Rheg, I., Ozdemir, V., and Yi, Y., “TEAR: TCP emulation at receivers —flow
control for multimedia streaming”, April 28, 2000.

[perform] Chung, J. and Claypool, M., “NS by Example”, WPI Department of Computer
Science, http://perform.wpi.edu/NS.

7-71

Appendix A: MM-Flow.h

/1

/1 Modified: Joel Thibault
/1 Jason | ngal sbe
/1 Kei t h Bar ber
/1 Date: 02/ 27/ 2001

/1 File Nanme: mmflow. h

/1

/1

/'l Aut hor: Jae Chung

/1 Date: 7/ 17/ 99

/1 File Name: udp-mm h

/1

#i f ndef ns_mm fl ow_h
#define ns_mmflow_h

#i nclude "timer-handler.h”
#i ncl ude "packet.h"

#i ncl ude "udp. h"

#i ncl ude "ip.h"

#defi ne PTYPE_UNKNOWN 0
#define PTYPE_W 1
#def i ne PTYPE_ACK 2
#def i ne PTYPE_NACK 3

#tdefi ne SCALE_W NDOW S| ZE 8
cl ass MrFl owAgent ;

/1 Reciver uses this timer to schedule
/1 next ack/nack packet transmission tine
cl ass Ml owRespTi mer : public TinerHandl er {
publi c:
MrFl owRespTi mer (MrFl owAgent* t) : Ti nerHandl er(),
inline virtual void expire(Event*);
prot ect ed:
MTFl owAgent * t_;
b

/1 Header for MW App frames and Mt Fl ow packets
struct hdr_mmfl ow {

int frmseq; /1l frame sequence nunber
int frmtot_bytes; // total bytes for frame
char frmtype; /1l frame type

int frmnum /1 frame nunber

i nt pkt_seq; /1 packet sequence nunber
i nt pkt_type; /1l packet type

doubl e pkt _tine; /1 time packet sent

int pkt_tot_bytes; // size of nessage

t_(t) {}

double max_interval; // maximum |l ength of tinme to wait for

a packet

72

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_mm fl ow access(const Packet* p) {
return (hdr_mmfl ow*) p->access(offset);

}
}s

/1 Used to re-assenble segnented (by UDP) franes
struct asm mm {

int fseq; /'l frame sequence number

int recv_bytes; // currently received bytes

int tot_bytes; // total bytes to receive for frane

}s

/1 This is used for receiver's packet accounting
struct pkt_accounting {

int |ast_pseq; /1 sequence number of |ast received pkt
doubl e last_tine; /1l local time of |ast received pkt

int | ost_pkts; /1 nunber of |ost pkts since |ast ack

int recv_pkts; /'l nunmber of pkts received since |ast ack
int tot_recv_pkts; // nunber of total pkts received

double rtt; /1 round trip tinme

b

/1 MrFl owAgent Cl ass definition
cl ass MrFl owAgent : public UdpAgent {
publi c:
MrTFl owAgent () ;
MrTFl owAgent (packet _t);
virtual int supportMM) { return 1; }
virtual void sendnsg(int nbytes, const char *flags = 0);
voi d recv(Packet*, Handl er*);
voi d send_response();
pkt _accounting p_accnt;
int get_scale();
void set _max_interval (double max_interval);
void set_max_mn_scale(int max, int mn);

prot ect ed:

int command(int argc, const char*const* argv);

int mMmmbit_; /1 user supplied response (use nm bit?)
private:

void init();

void init_recv_pkt_accounting();

voi d account _recv_pkt(const hdr_mmfl ow *mh_buf);
voi d send_ack();

voi d send_nack();

voi d set _scal e(const hdr_nm fl ow *mm pkt);

asm mm asm.info; // packet re-assenbly information

i nt nack_flag_; /1 should a NACK packet be sent
int scale_; /1 scale value for sending rate

doubl e max_i nterval

int add_inc_; /1
double mult_dec_; [/
i nt max_scal e_; /1
int mn_scale_; /1
int flow control _; //
int weighted_; /1
int first_pkt_; /1
int |ast_pseq_; /1

i nt scal e_wi ndow_[SCALE_W NDOW SI ZE] ; // hol ds val ues for updating

scal e

i nt weighted _scale_;

/1 maxi mum frame transmi ssion interva

amount to increase the scale upon ACK

amount to decrease the scal e upon NACK
maxi mum scal e val ue

m ni mum scal e val ue

shoul d flow control be on

if scale values are weighted over tine
1if this is the first packet received
seq nunber of |ast packet (sender)

/1 value of scale value to use

int scale_weight _counter_; // keeps order of scale val ues

FILE* fd_delay_;

i

#endi f

MTFl owRespTi mer resp_tinmer_; // Ack/Nack Tinmer

74

Appendix B: mm-flow.cc

/1

/1 Modified: Joel Thibault
/1 Jason | ngal sbe
/1 Kei th Bar ber
/1 Date: 02/ 27/ 2001

/1 File Nanme: mmfl ow. cc

/1

/1

/1 Aut hor: Jae Chung

/| Date: 7/ 17/ 99

/1 File Name: udp-mm cc

/1

#i ncl ude "mmf 1l ow. h"
#i nclude "rtp.h"

#i ncl ude "random h"
#i ncl ude <string. h>

int hdr_mmflow :of fset_;

/1 Multinmedi a Header Cl ass
static class Ml owPacket Header Cl ass : public Packet Header Cl ass {
publi c:
MrFl owPacket Header Cl ass() : Packet Header Cl ass(" Packet Header / Ml ow',
si zeof (hdr_mm flow)) {
bi nd_of fset (&dr_nm fl ow: : of fset_);

} class_mm fl ow_hdr;

/1 Ml owAgent OTcl |inkage cl ass
static class Ml owAgentClass : public Tcl Cass {
publi c:
MrFl owAgent Cl ass() : Tcl Cl ass("Agent/ UDP/ Ml ow') {}
Tcl Obj ect* create(int, const char*const*) {
return (new Mil owAgent ());

} class_udpmm agent;

/1 Constructor (with no arg)
MTFl owAgent : : MrFl owAgent () : UdpAgent (), resp_tinmer_(this)
{
init();
}

/'l Constructor (with one arg)
MrFl owAgent : : Ml owAgent (packet _t type) : UdpAgent (type),
resp_tinmer_(this)
{
init();
}

75

void MrFl owAgent::init() {

bi nd("mmbit_", &mbit_); /'l (default 1 = true)
set the priority in the I P packet

bi nd_bool ("wei ghted_", &weighted); /1l (default) false
Al MD scal es true: use weighted scales

bi nd_bool ("fl ow_control _", &flow control); /'l (default) true:
adj ust scales to fit conditions fal se: stay at max_scal e_

bi nd("add_inc_", &add_inc_); /1 (default 1) numnber
to increase scale by in Al M

bi nd("mul t_dec_", &mult_dec_); /1 (default 0.5)
newscale = nmult_dec_ * oldscale, in AIMD

| ast _pseq_ = O; /'l sender: | ast
packet sent (= next) is O

first_pkt_ = 1; /1l set to 1 unti
first packet is sent

scal e_wei ght _counter_ = 0; /1 start at scale
nunber O

fd_del ay_ = NULL; /1 file has not been
sel ected yet

nack flag_ = 0; /1 no need to send a
nack yet

max_i nterval _ = 0.0; /1l initialize to
dummy val ue 0

asm.info.fseq = -1; /'l expected received

packet = 0. So the previous was -1

init_recv_pkt_accounting();

}

/1 When resp_tinmer_ expires call MrFl owAgent::send_response()
voi d MrFl owRespTi ner: : expire(Event *)
{

t _->send_response();

}

/1 OTcl conmand interpreter
i nt Ml owAgent :: conmand(i nt argc, const char*const* argv)

{

Tcl & tcl = Tcl::instance();

/! Record mm packet-arrival to a file

if(strcnp(argv[1l], "record-mm packet-arrival") == 0) {
if((fd_delay_ = fopen(argv[2], "w')) == NULL) {
tcl.resultf("cannot create mm packet-arrival file \"o%\"",
argv[2]);

return(TCL_ERROR);

}
return(TCL_OK);
}

return (Agent::commuand(argc, argv));

}

76

/1 Add Support of Miltinedia Application to UdpAgent::sendnsg
voi d MrFl owAgent :: sendnmsg(int nbytes, const char* flags)
{

Packet *p;

int n, remain,;

if (size) {
n = (nbytes/size_ + (nbytes%ize_? 1 : 0));
remai n = nbytes%i ze_;

}

el se
printf("Error: UDPmm size = 0\n");

if (nbytes == -1) {
printf("Error: sendnmsg() for UDPmm should not be -1\n");
return;

}

doubl e local _tine = Schedul er::instance().clock();

while (n-- > 0) {
p = allocpkt();
i f(n==0 && remai n>0)
hdr_cmm: : access(p)->size() = remain;

hdr_rtp* rh = hdr_rtp::access(p);
rh->flags() = 0;
rh->segno() = ++seqno_;

hdr_cm: :access(p)->tinmestanp() =
(u_int32_t)(SAMPLERATE*| ocal _ti ne);

/1l create outgoing header

hdr_mm fl owt nm = hdr_mm fl ow: : access(p);

/1 cast header comng fromapp to the appropriate type
hdr_mm fl ow nsg = (hdr_mm fl ow*)fl ags;

/1 set frame header values to the values coming in from application
l eve

mm >f rm_seq

mm >frmtot_bytes

mm >frm type

mm >f rm_num

neg- >frm seq;
nsg->frm tot _bytes;
nsg- >f rm type;
nsg- >f rm num

/1 MWt Fl ow packets are distinguished by setting the ip
/[l priority bit to 15 (Max Priority).
if(mmbit_) { // if user want to set it as nm packet
hdr i p* ih = hdr_ip::access(p);
ih->prio_ = 15; // used by CBT routers

}

/'l set packet header val ues
mm >pkt _seq = | ast_pseq_++;
mm >pkt _type = PTYPE_MM

mm >pkt _tine = |ocal _tine;

77

/1l give the sender's max interval to the receiver
mm >max_i nterval = max_interval _;

/'l add "beginning of talkspurt" labels (tcl/ex/test-rcvr.tcl)
if (flags & (0 ==strcnp(flags, "NEWBURST")))
rh->flags() |= RTP_M

target _->recv(p);

}
idle();

/1 Support Packet Re-Assenbly and Miltinmedia Application
voi d Ml owAgent::recv(Packet* p, Handl er*)

{

int bytes_to_deliver = hdr_cm::access(p)->size();
hdr _mm fl ow *nm = hdr_mm fl ow: : access(p);

/'l check packet type - ACK, NACK, MM or other

if (mm>pkt_type == PTYPE_ACK || mm >pkt_type == PTYPE_NACK)
set _scal e(mm);

else if (nmm >pkt_type == PTYPE_.MM {
account _recv_pkt(mm;

/1l sets the appropriate maxi muminterval on the receiver's side
max_interval _ = mm >max_i nterval ;

/1 if this is the first packet received, start the ACK/ NACK timer
if (first_pkt_) {

send_r esponse();

first_pkt_ = 0;
}

if(app_) { [// if MM Application exists

/1l re-assenble MM Application frane if segnmented

if(mm>frmseq == asm.info.fseq)
asm.info.recv_bytes += hdr_cmm::access(p)->size();
el se {

asminfo.fseq = mMm >frm seq;
asminfo.tot_bytes = mm>frmtot_bytes;
asm.info.recv_bytes = hdr_cmm::access(p)->size();

/1 if fully reassenbl ed, pass the frame to application
if(asminfo.tot_bytes == asm.info.recv_bytes) {
hdr _mm fl ow nmh_buf;
mencpy(&rh_buf, mm sizeof (hdr_mmflow));
app_->recv_nsg(nmh_buf.frmtot_bytes, (char*) &rh_buf);
}
}
}

Packet::free(p);

voi d MrFl owAgent::init_recv_pkt_accounting()
{
/1 initialize packet accounting val ues
p_accnt. | ast_pseq

p_accnt.last _tinme = 0;
p_accnt.| ost _pkts = 0O;
p_accnt.recv_pkts = 0;

p_accnt.tot_recv_pkts = O;

voi d MrFl owAgent : : account _recv_pkt(const hdr_mm fl ow *nh_buf)

{

doubl e local _time = Schedul er::instance().clock();

/1 Count Received packets and Cal cul ate Packet Loss
p_accnt.tot_recv_pkts ++;

p_accnt.recv_pkts ++;

p_accnt.| ost_pkts += (nmh_buf->pkt_seq - p_accnt.last_pseq - 1);
p_accnt. | ast_pseq mh_buf - >pkt _seq;

p_accnt.last _tine | ocal _ti ne;
/1 Calculate RTT
i f(p_accnt.tot _recv_pkts == 1)
p_accnt.rtt = 2*(local _time - nmh_buf->pkt_tine);

el se
p_accnt.rtt = 0.95 * p_accnt.rtt + 0.05 * 2*(local _time - mh_buf-
>pkt _tine);

/1 Record nm packet-arriva
if(fd_delay_ !'= NULL) {
fprintf(fd_ delay_ , "®f\t%d\t%Wf\in",
| ocal _time, mh_buf->pkt_seq, local _tinme - nmh_buf->pkt_tine);

}

/'l when tinmer expires, send ACK or NACK dependi ng on circunstances
voi d MrFl owAgent : : send_response() {

if (p_accnt.recv_pkts > 0 &% p_accnt.lost_pkts == 0) {
send_ack();

else if (p_accnt.recv_pkts == 0) {
if (nack_flag_ == 0 &% max_interval _ - p_accnt.rtt > 0) {
nack_flag_ = 1;
resp_tinmer_.resched(max_interval _ - p_accnt.rtt);
}
el se
send_nack();
}
el se /1 p_accnt.recv_pkts > 0 &&

p_accnt. |l ost_pkts > 0
send_nack();

79

}

voi d MrFl owAgent: :send_ack() {
Packet *p;
double local _time = Schedul er::instance().clock();

nack _flag_ = O;
p = all ocpkt();

/'l send ack packet

hdr _mm fl ow ack_buf = hdr_mm fl ow : access(p);
ack_buf->pkt _seq = O;

ack_buf->pkt _type = PTYPE_ACK; // this packet is ack packet
ack_buf->pkt _time = local _tineg;

ack_buf->pkt _tot_bytes = 40; [// Ack packet size is 40 Bytes
target _->recv(p);

resp_tinmer_.resched(p_accnt.rtt);

p_accnt.recv_pkts = 0O;
p_accnt. |l ost_pkts = 0;

}

voi d Ml owAgent :: send_nack() {
Packet *p;

doubl e local _time = Schedul er::instance().clock();
nack_flag_ = O;
p = allocpkt();

/'l send nack packet

hdr _mm fl ow* nack_buf = hdr_mm fl ow: : access(p);
nack_buf - >pkt _seq = O;

nack_buf->pkt _type = PTYPE_NACK; // this packet is nack packet
nack_buf->pkt time = | ocal _tine;

nack_buf->pkt _tot_bytes = 40; // Nack packet size is 40 Bytes
target_->recv(p);

resp_tinmer_.resched(p_accnt.rtt);

0;
0;

p_accnt.recv_pkts
p_accnt.| ost_pkts

voi d MrFl owAgent: :set_scal e(const hdr_mm fl ow *mm pkt) {
fl oat newscal e;

[lprintf("set_scale %\ n", scale);
fflush(stdout);

if (flow_control)

{

/1 cal cul ate unwei ghted scal e val ue
i f (mm_pkt->pkt_type == PTYPE_ACK)

scal e_ += add_inc_;

el se if (mm_pkt->pkt_type

scale_ = static_cast<int>(scale_ * nult_dec_);

== PTYPE_NACK)

!/l constrain scale to max/ m n val ues
if (scale_ > max_scale)

scal e_ = max_scal e_;
else if (scale_ < mn_scale)
scale_ = min_scal e_;

/1 weight scal e val ues
scal e_wi ndow_[scal e_wei ght _counter_] =

newscale = .20 *
newscale += .15 *

SCALE_W NDOW S| ZF] ;

newscale += .15 *

SCALE_W NDOW Sl ZE] ;

newscale += .10 *

SCALE_W NDOW S| ZF] ;

newscale += .10 *

SCALE_W NDOW S| ZF] ;

newscale += .10 *

SCALE_W NDOW S| ZF] ;

newscale += .10 *

SCALE_W NDOW S| ZF] ;

newscale += .10 *

SCALE_W NDOW S| ZE] ;

scal e_wi
scal e_wi

scal e_wi
scal e_wi
scal e_wi
scal e_wi
scal e_wi

scal e_wi

scal e_;

ndow [scal e_wei ght _counter_];

ndow [(scal e_wei ght _counter _
ndow [(scal e_wei ght _counter _
ndow [(scal e_wei ght _counter _
ndow [(scal e_wei ght _counter _
ndow [(scal e_wei ght _counter _
ndow [(scal e_wei ght _counter _

ndow [(scal e_wei ght _counter _

scal e_wei ght _counter_ = (scal e_wei ght_counter_ + 1) %
SCALE_W NDOW Sl ZE;

wei ghted_scale_ =

}

static_cast<int>(newscale + 0.5);

[lprintf("set_scale out scale = %d weighted = %\ n", scale_,
wei ght ed_scal e_);
fflush(stdout);

}

i nt

MTFl owAgent : : get _scal e() {

[lprintf("get_scale scale_ = % w scale_ =
wei ght ed_scal e_);
fflush(stdout);

/1 both scales are calculated just in case
if (weighted) {
return wei ghted_scal e_;

}

el se {

}

return scale_;

%@\ n",

scal e_,

6)
5)
4)
3)
2)

1)

%

%

%

%

%

%

%

81

}
/! called by application |ayer to set the max interval so that mmfl ow
doesn't time out inappropriately
voi d Ml owAgent::set_max_interval (doubl e max_interval) {
max_i nterval _ = max_interval
}

voi d MrFl owAgent::set_max_m n_scal e(int max, int mn) {

[lprintf("set max min max_in = % mn_in = %\ n", max, mn);
fflush(stdout);

max_scal e_
m n_scal e_

max ;
mn;

if (flow_control) {
scale_ = m n_scale_;
wei ghted_scale_ = mn_scal e_;

// initialize window to m ni num val ues
for (int loop = 0; |loop < SCALE W NDOW S| ZE; | oop++)

scal e_wi ndow_[| oop] = m n_scal e_;
}
el se {
scal e_ = max_scal e_;
wei ghted_scal e_ = max_scal e_;
}

[lprintf("set max min max_out = % mn_out = % scale = % w_scale =
%\ n",

/'l max_scale_, mn_scale_, scale_, weighted_scale);

fflush(stdout);

82

Appendix C: MM-Flow Parameters

flow control _ (default = true)
This value determines if MM-Flow uses flow control algorithmsto avoid

congestion. If false, MM-Flow will send constantly at the maximum rate.

wei ghted_ (default = false)
This value determines if MM-Fow uses weighted scale values or AIMD

scale values in caculating the current scale.

mm bit_ (default = 1)
A value of 1 indicates that packets will have the “mm” priority bit set at

the IP level. Other values will cause this bit to not be set.

add_inc_ (default = 1)
This value sets the number of scale values to increase by on receipt of an

ACK packet, in AIMD.

mul t _dec_ (default = 0.5)
This value sets the percentage of scale values to decrease by on receipt of

aNACK packet, in AIMD.

Additionally, an output file can be specified to record frame arrival times, in the

format “ <flow> record- mm-packet-arrival <tracefile>.”

83

Appendix D: mm-app-new.h

/1

/1 Modified: Joel Thibault
/1 Jason | ngal sbe
/1 Kei t h Bar ber
/1 Date: 02/ 27/ 2001

/1 File Nanme: mm app-new. h
/1

/1

/1 Aut hor: Jae Chung

/1 Date: 10/ 05/ 99

/1 File Name: mmapp.h

/1

#i f ndef ns_mm app_new_h
#defi ne ns_mm app_new_h

#i ncl ude "tiner-handler.h"
#i ncl ude "app. h"
#i ncl ude "mmf1l ow. h"

cl ass MMAppNew;

/1 Sender uses this timer to
/'l schedul e next frame transm ssion tinme
cl ass MmAppNewSendTi ner : public TimerHandl er {
publi c:
MMppNewSendTi mer (MmMAppNew* t) : TinmerHandler(), t_(t) {}
inline virtual void expire(Event*);
prot ect ed:
MMppNew* t _;
1

/1 Multinmedia Application Class Definition
cl ass MmMppNew : public Application {

publi c:

MmAppNew() ;

void send_frane(); // called by SendTi nmer:expire (Sender)

prot ect ed:

int command(int argc, const char*const* argv);

void start(); /1 Start sending frames (Sender)

voi d stop(); /1 Stop sending frames (Sender)

private:

i nline double next_snd_time(); /1 (Sender)

virtual void recv_msg(int nbytes, const char *nsg = 0); //
(Sender/ Recei ver)

void calc_rates(); /1 Binds TCL rates to internal rates
doubl e *rat e; /] Transm ssion rates associated to scal e
val ues

doubl e interval _; /1l Application frame transm ssion interva

doubl e max_bandwi dth_; //

FILE* fd_scale_;
int file closed_;

pkt _accounting p_accnt;

nt
nt
nt
nt
nt
nt
nt

mn_scal e_;
max_scal e_;
frmsi ze_;
random ;
runni ng_;
fseq_;

scal e_;

11
11
/1
/1
/1
/1
11

11
11

Maxi mum possi bl e bandwi dt h

M ni mum scal e all owed for the application
Maxi mum scal e al l owed for the application
Application frane size

If 1 add randommess to the interva

If 1 application is running

Application frane sequence nunber

Medi a scal e paraneter

file to wite scale values to
input file closed flag

MMAppNewSendTi ner snd_tinmer_; // SendTi ner

}s

#endi f

85

Appendix E: mm-app-new.cc

/1

/1 Modified: Joel Thibault
/1 Jason | ngal sbe
/1 Kei t h Bar ber
/1 Date: 02/ 27/ 2001

/1 File Name: mm app-new. cc
/1

/1

/1 Aut hor: Jae Chung

/1 Date: 10/ 05/ 99

/1 File Name: mm app.cc

/1

#i ncl ude "random h"
#i ncl ude "nmm app- new. h"

/1 MmApp OTcl |inkage cl ass
static class MmMppNewCl ass : public Tcl C ass {
publi c:
MmAppNewCl ass() : Tcl Cl ass("Application/ MMppNew"') {}
Tcl Obj ect* create(int, const char*const*) {
return (new MmAppNew) ;
}

} class_app_nm new,

/1 When snd_tinmer_ expires call MMAppNew. send_frame()
voi d MmMAppNewSendTi ner: : expi re(Event *)

{

t_->send_franme();

}

/1 Constructor (also initialize instances of tinmers)
MMppNew: : MAppNew() : running_(0), snd_timer_(this)

bi nd("m n_scale_", &mn_scale_);
m ni mum scal e for the application
bi nd("max_scal e_", &max_scale);

maxi mum scal e for the application

bi nd_bw("max_bandwi dt h_", &max_bandwi dth_);
bandwi dth used at max_scal e_

bi nd("frmsi ze_ ", &frnsize);
size of one frame

bi nd_bool ("random ", &random);

randommess in intervals

fd_scal e_ = NULL;
file has been opened ..
file_closed_ = 0;
or closed

}

11

/1

/1

11

11

/1

/1

us

no

e

86

/1 Linearly interpolates what the scale rates should be
/1

/] rate[m n_scale_ - 1] would be O if it were set
/'l rate[max_scale_] is equal to max_bandw dth_
Qgid MmAppNew: : cal c_rates() {
int numrates = nax_scale_ - mn_scale_ + 1; /1 the number of valid
raggible stepsi ze = max_bandwi dth_ / numrates; /1 the difference

bet ween one rate and the next

/'l allocates space in the array fromO to nax_scal e
rate = (double *)calloc(max_scale_ + 1, sizeof(double));

for(int |ooper
rat e[l ooper]

}
}

// Ofrcl command interpreter
i nt MmAppNew: : cormand(i nt argc, const char*const* argv)

{

m n_scal e_; |ooper <= max_scal e_; |ooper++) {
stepsize * (looper - mn_scale_+ 1);

Tcl & tcl = Tcl::instance();

if (argc == 3) {
/1 Attach Agent
if (strcmp(argv[1l], "attach-agent") == 0) {
agent _ = (Agent*) Tcl Object::lookup(argv[?2]);
if (agent_ == 0) {
tcl.resultf("no such agent %", argv[2]);
return(TCL_ERROR);

}

/1 Make sure the underlying agent support MV

i f(!agent_->supportMM)) {

tcl.resultf("agent \"%\" does not support MM Application”,
argv[2]);

return(TCL_ERROR);

}

agent _->attachApp(this);
return(TCL_OK);

}

/1l Record MM Scale Value to A File

if(strcnp(argv[1l], "record-mmscal e-value") == 0) {
if((fd_scale_ = fopen(argv[2], "w')) == NULL) {
tcl.resultf("cannot create mmscale-value file \"%\"", argv[2]);
return(TCL_ERROR);
}
return(TCL_OK);

}

87

}

return (Application::command(argc, argv));

voi d MmMAppNew. : start ()

{

[lprintf("start 1\n");
fflush(stdout);

calc_rates();

[lprintf("start 2\n");
fflush(stdout);

agent _->set_max_interval ((double)(frmsize_ <<

3)/ (doubl e)rate[m n_scale_]);

[lprintf("start 3 max = % nmin = %\ n", max_scale_, nmin_scale);
fflush(stdout);

agent _->set_max_mi n_scal e(max_scale_, m n_scale_);

[lprintf("start 4 scale_ = % \n", scale);
fflush(stdout);

interval _ = (double)(frnsize_ << 3)/(double)rate[m n_scale_];

[lprintf("start 5\n");
fflush(stdout);

running_ = 1;

[lprintf("start 6\n");
fflush(stdout);

fseq_ = 0;

[lprintf("start 7\n");
fflush(stdout);

send_franme();

[lprintf("start 8\n");
fflush(stdout);

voi d MmMAppNew: : st op()

{

running_ = 0;

if (file_closed_ == 0) {
fclose(fd_scale);
file_closed_ = 1;

}

88

/1 Send application frane
voi d MmMAppNew: : send_frame()
{

double local _time = Schedul er::instance().clock();
hdr _mm fl ow mh_buf;
if (running_) {

/1 the belowinfo is passed to Ml ow agent, which will wite it
/1l to MM header after franme creation.

mh_buf.frmseq = fseq_++; /'l MM sequence number
mh_buf.frmtot_bytes = frnsize_; [/ Size of frame
mh_buf.frmtype = 'N; /1 Normal Frane

mh_buf.frmnum= nmh_buf.frmseq; // Franme-numis sanme as seq-num
agent _->sendmsg(frnsize_, (char*) &rh_buf); // send to UDP

/] gets scale to determ ne next send tine
scal e_ = agent_->get _scal e();

[lprintf("send frame post getscale scale = %\ n", scale);
fflush(stdout);

/'l Reschedul e the send_pkt tiner
doubl e next _tinme_ = next_snd_time();

if(next_time_ > 0)
snd_tinmer_.resched(next_time_);

/! Record mm scal e-val ue

i f(fd_scale_ !'= NULL)
{
fprintf(fd_scale_, "%f\t%d\n", local _time, scale);
}

/1 Schedul e next frame transm ssion tine
doubl e MmMAppNew: : next _snd_tine()

{
/1l Reconpute interval in case rate or size chages
interval _ = (double)(frmsize_ << 3)/(double)rate[scale_];
doubl e next _time_ = interval _;

i f(random)
next _time_ += interval _ * Random :uniforn(-0.2, 0.2);

return next_tinme_;

/'l Receive nessage from underlying agent
void MMMAppNew. : recv_nsg(int nbytes, const char *msg = 0)

89

{
}

/1 does not hing

90

Appendix F: MM-App-New Parameters

m n_scale_ (default = 0)
This is the lowest scale value to use.

max_scal e_ (default = 50)
Thisis the largest scale value to use.

max_bandwi dt h_ (default = 1.5nb)
This value defines the sending rate used by the highest scale value.

Sending rates will be interpolated between min_scale and max_scale .

frmsize_ (default = 2000)
This value determines the size of frames to send.

random_(default = fal se)
When set to true, this value adds randomness to the sending interval time,

using the formula interva = interval * (1 + random(-0.2, 0.2))

MM-App scale values can be output to atrace file, by using “<flow> record-mm-scale-
value <tracefile>.”

91

Appendix G: mm-app-mpeg-new.h

/1

/1 Modified: Joel Thibault
/1 Jason | ngal sbe
/1 Kei t h Bar ber
/1 Date: 02/ 27/ 2001

/1l File Nanme: mm app- npeg-new. h
/1

/1

/1 Aut hor: Jae Chung

/1 Date: 10/ 10/ 99

/1 File Name: mm app-npeg.h
/1

#i f ndef ns_mm app_npeg_new_h
#defi ne ns_mm app_npeg_nhew_h

#i ncl ude "tiner-handler.h"
#i ncl ude "packet.h"

#i ncl ude "app. h"

#i ncl ude "mmf1l ow. h"

cl ass MMAppMoegNew;

/1 Sender uses this timer to

/1 schedul e next app data franme transmi ssion tinme

cl ass MmMppMoegNewSendTi ner : public TinmerHandl er {
publi c:
MMAppMpegNewSendTi mer (MmMAppMoegNewr t) : Ti nmerHandl er (),
inline virtual void expire(Event*);

prot ect ed:

MMppMpegNew* t _;

1

/1 Multinmedia Application Class Definition
cl ass MmMppMoegNew : public Application {

t_(t) {}

public:

MmAppMpegNew() ;

void send_franme(); // called by SendTi mer:expire (Sender)
prot ect ed:

int command(int argc, const char*const* argv);

void start(); /1 Start sending frames (Sender)

voi d stop(); /1 Stop sending frames (Sender)
private:

void init();

int get _frame_size(char* ftype);

voi d update_recv_frame_type(char frame_type);

virtual void recv_nsg(int nbytes, const char *nsg = 0);
(Sender/ Recei ver)

/'l (Sender)
/1 (Sender)
/1

92

double rate[5]; /1 Transnission rates associated with scale
val ues

doubl e interval _; /1 Application frame transm ssion interva

doubl e max_interval _; // Maxi mum possi ble transm ssion interva

int mn_scale_; /1 Mninmmscale allowed for the application

int max_scal e_; /1 Maximum scal e allowed for the application

int frame_per_sec_; /1 Moeg Frame Rate

int franesize_; /1 Application frame size

i nt running_; /1 1f 1 application is running

int fseq_; /1 Application frame sequence nunber (sent
only)

int fnum; /! Frame nunber (account for not sent franmes
al so)

int scale_; /1 Media scal e paraneter

FI LE* fdr_; /1 file descriptor for input file

FILE* fd_scale_; /1l file to wite scale values to

int file_closed_; /1 input file closed flag

char recv_frame_type[9]; // 9 previously read npeg franme type

int p_frame_sent_; /[l P frame drop flag for IBBPBBI at scale 1
MMAppMpegNewSendTi ner snd_tinmer_; // SendTi ner

b

#endi f

93

Appendix H: mm-app-mpeg-new.cc

/1

/1 Modified: Joel Thibault
/1 Jason | ngal sbe
/1 Kei t h Bar ber
/1 Date: 02/ 27/ 2001

/1 File Name: mm app- npeg-new. cc
/1

/1

/1 Aut hor: Jae Chung

/1 Date: 10/ 10/ 99

/1 File Nanme: mm app-npeg.cc
/1

#i ncl ude "random h"
#i ncl ude "nmm app- npeg- new. h"
#i ncl ude <string. h>

/1 MmMAppMoegNew OTcl |inkage cl ass
static class MmMppMegNewCl ass : public Tcl Class {
public:
MMAppMpegNewCl ass() : Tcl Cl ass(" Applicati on/ MMAppMpegNew') {}
Tcl Obj ect* create(int, const char*const*) {
return (new MmMppMoegNew) ;
}

} class_app_npeg_new,

/1 When snd_timer_ expires call MrAppMoegNew: send_franme()
voi d MMAppMpegNewSendTi mer: : expire(Event *)
{

t_->send_frane();

}

/1 Constructor (also initialize instances of tiners)
MMAppMpegNew: : MMAppMpegNew() : running_(0), snd_timer_(this)
{

bi nd("m n_scale_", &mn_scale); /1 mnimmscal e
to use

bi nd("max_scal e_", &max_scale); /1 maxi mum scal e
to use

bi nd("frane_per_sec_", & rame_per_sec_); /1 nunber of

video frames that can be sent per second

fdr_ = NULL; /1 no file has
been opened or cl osed yet

fd_scal e_ = NULL;

file_closed_ = 0;

}

/1 QOTcl conmand interpreter

i nt MmMAppMpegNew: : cormmand(i nt argc, const char*const* argv)
Tcl & tcl = Tcl::instance();

if (argc == 3) {
/1 Attach Agent
if (strcnmp(argv[1l], "attach-agent") == 0) {
agent _ = (Agent*) Tcl Object::lookup(argv[2]);
if (agent_ == 0) {
tcl.resultf("no such agent %", argv[2]);
return(TCL_ERROR);

}

/1 Make sure the underlying agent support MM
i f(!agent_->supportMM)) {
tcl.resultf("agent \"%\" does not support MMV Application”,
argv[2]);
return(TCL_ERROR);
}

agent _->attachApp(this);
return(TCL_OK);
}
/'l Get Mpeg Trace lnput File Nanme
if (strcnmp(argv[1], "npeg-trace-input") == 0) {
if ((fdr_ = fopen(argv[2], "r")) == NULL) {
tcl.resultf("cannot open npeg-trace-input file \"%\"", argv[2])
return(TCL_ERROR);

}
return(TCL_OK);

}
/1 Record MM Scale Value to A File
if(strcnp(argv[1l], "record-nmmscal e-value") == 0) {
if((fd_scale_ = fopen(argv[2], "w')) == NULL) {
tcl.resultf("cannot create mmscale-value file \"%\"", argv[2])
return(TCL_ERROR);
}
return(TCL_OK);
}
}
return (Application::conmand(argc, argv));

}

voi d MmAppMoegNew: : start ()
{

i f(fdr_ == NULL) {
printf ("MmMppMoegNew Error: specify npeg-trace-input file.\n");
exit(1l);

}

init();

running_ = 1;

95

}

send_frane();

voi d MmMAppMoegNew. :init()

fseq_
fnum_

0; /1 MM sequence nunber (start from 0)
-1; /1 MM frame nunmber (start from 0)

agent _->set_max_m n_scal e(nax_scale_, min_scale);
agent _->set _max_interval ((doubl e) 1/ (doubl e) frame_per_sec_);

p_frane_sent = 0; /1 Flag for 1BBPBBI format: drop every
/1 other '"P" frane at scale 1

interval _ = ((double) 1/ (doubl e)frane_per_sec_);
recv_frame_type[0] = 'B';

recv_frame_type[l] = 'B';

recv_frame_type[2] = "P;

recv_frame_type[3] = "'B';

recv_frame_type[4] = 'B';

recv_frame_type[5] = 'P';

recv_frame_type[6] = 'B';

recv_frame_type[7] = 'B';

recv_frame_type[8] o I

voi d MmAppMpegNew: : st op()

}

running_ = 0;

if (file_closed_ == 0) {
fclose(fdr_);
fclose(fd_scale);
file_closed_ = 1;

}

/1 Send application frane
voi d MmMAppMoegNew:. : send_frane()

{

doubl e local _time = Schedul er::instance().clock();

hdr _mm fl ow mh_buf;
char ftype

if (running) {
/1l gets scale

scal e_ = agent _->get _scal e();

/1l Get Size of next frame
if ((framesize_ = get_frame_size(& type)) == -1) {

96

stop(); /1l if EOF then stop
return,;

}

/1 Increnment frame nunber
/1 (account for not sent franes al so)

f num_++;
/1l franesize_ = (positive integer, 0, -1)
/1 where 0 nmeans due to network congestion, sender will not

// send the frane

if (framesize_ > 0) {
i f(agent _->supportMM)) {
/1 the belowinfo is passed to MM Fl ow agent, which will wite it
/1 to MM header after franme creation.
mh_buf.frmseq = fseq_++; /1 MM sequence nunber

mh_buf.frmtot_bytes = franesize_; [/ Size of frame
mh_buf.frmtype = ftype; /1 Frame-type (I,B,P)
mh_buf . frmnum = fnum;

agent ->sendnmsg(framesize , (char*) &mrh _buf); // send to UDP

}

el se {
agent _->sendnsg(franesi ze_);
}

}

/'l Reschedul e the send_frame tiner
snd_tiner_.resched(interval);

/1 Record mm scal e-val ue

i f(fd_scale_ !'= NULL)
fprintf(fd_scale_, "% f\t%d\n", local _tinme, scale);
}

/1 Read Next frame type and size frominput file and
/1 deternmi ne whether or not transnit depending on current scal e val ue
i nt MmMAppMpegNew: : get _frane_si ze(char* ftype)

char frame_type_;
int size_read_;
int frame_size_ = 0;

/1 if EOF return -1 to finish
if (fscanf(fdr_, "%\t%d\n", & rame_type_, &size read_) == EOF)
return -1;

/1 Different transm ssion policy for each nedia scale | eve
/[l Initially, frane_size_=0

97

switch (scale) {

case O:
if (frame_type_ == "'1") frame_size_ = size_read_;
br eak;
case 1:
if (franme_type_ == "'1"') frame_size_ = size_read_;
if (frame_type_ == "P') {
if (recv_frame_type[2] =="1")
/1 for |BBPBBPBBI and | BBPBBPBBPBBI f or mat
if (recv_frame_type[8] == "P") {
frame_size_ = size_read_;
}
/1 for |1BBPBBI fornmat
el se {
if (p_frame_sent_ == 0) {
frame_size_ = size_read_;
p_frame_sent_ = 1;
}
el se
p_frame_sent_ = 0;
}
}
}
br eak;
case 2:
if (frame_type_ == "'I1") frame_size_ = size_read_;
if (frame_type_ == 'P'") frame_size_ = size_read_;
br eak;
case 3:
if (franme_type_ == "'1"') frame_size_ = size_read_;
if (frane_type_ == 'P') frame_size_ = size_read_;
if ((frame_type_ == 'B') && (recv_franme_type[0] == 'B"))
frame_size_ = size_read_;
br eak;
case 4:
frame_size_ = size_read_;
br eak;
defaul t:
printf("Error: unrecognized frame type\n");
exit(1l);
br eak;
}

update_recv_franme_type(frame_type_);
*ftype = frame_type_;
return frame_size_;

/1 Keep track of 9 previously read frane type.
voi d MmMppMoegNew:. : update_recv_franme_type(char frane_type)

98

int i;
for (i=8; i>0; i--) {

recv_frame_type[i] = recv_frame_type[i-1];
}

recv_frame_type[0] = frane_type;

/'l Receive nessage from underlying agent
voi d MmAppMoegNew: : recv_nsg(i nt nbytes, const char

/1 do nothing
}

*rTSg

0)

99

Appendix I: MM-App-Mpeg-New Parameters

frame_per_second_ (default = 30)

This value sets the number of frames to send per second.

m n_scal e_ (default
This is the lowest scale value to use.

max_scal e_ (default = 4)
This is the largest scale value to use.

:0)

While changing min_scale _and max_scale is permitted, scale values outside of

0-4 have not yet been implemented. MPEG-App may also generate a scale values trace

file, by using “<flow> record-mm-scale-value <tracefile>.” It also requires an input file,

specified by using “<flow> mpegtrace-input <inputfile>.” This file must follow the

“I1BBPBBPBBI” or “IBBPBBPBBPBBI” formats. Different sending rates will send

differing numbers of frames, as follows:

rate
rate
rate
rate
rate

0
1 -
2 -
3
4

or
or
or
or
or

| |
| P |
Il P P P I
| BP BP BP BI
| BB

BBPBBPBBPBBI

100

Appendix J: OTcl Example — basic_ MMAppNewUW.tcl

File Nane: basi c_ MVAppNewUW t cl

Aut hors: Kei t h Bar ber

Joel Thi bault

Jason | ngal sbe

Date: 2/ 28/ 01

Description: Si mul ati on runni ng MVAppNewUW vs. TCP in a standard
#

bottl eneck |ink |ayout.

#Create a simul ator object
set ns [new Sinul at or]

#Define different colors for data fl ows
$ns color 0 Geen
$ns color 1 Red

#0Open the namtrace file

set nf [open basi c_MVAppNewUW nam w]
set tf [open basic_MVAppNewUW tr wj
$ns nantrace-all $nf

$ns trace-all $tf

#Define a 'finish' procedure
proc finish {} {
gl obal ns nf tf
$ns flush-trace
#Cl ose the trace file
cl ose $nf
cl ose $tf
#Execute namon the trace file
exec nam | ost Acks. nam &
exit O

}

#Create four nodes
#TCP Node

set sl [$ns node]
#MVApp Node

set s2 [$ns node]
#M ddl e Node

set m [$ns node]
#Recei ver

set r [$ns node]

#Create |inks between the nodes

$ns dupl ex-link $s1 $m 4Mo 20ns DropTai
$ns dupl ex-link $s2 $m 4Mo 20ns DropTai
$ns dupl ex-l1ink $m $r 2Mo 20nms Dr opTai

#Set out bound queue limt
$ns queue-limt $m $r 60

#Set up orientation |layout for nam
$ns dupl ex-1ink-op $s1 $morient right-down

101

$ns dupl ex-1ink-op $s2 $morient right-up
$ns dupl ex-1ink-op $m $r orient right

#Moni tor the queue for the possibly congested |inks
$ns dupl ex-1ink-op $m $r queuePos 0.5

BHHBHERHIERHERHRHHR
TCP Connections
HHHHHHHHHBHHHHHHHHHH

#Setup 1st TCP connecti on

set tcpl_s [new Agent/ TCP/ Reno]
$tcpl_s set window_ 20

$tcpl_s set packetSize_ 1000
$ns attach-agent $s1 $tcpl_s
set tcpl_r [new Agent/ TCPSi nk]
$ns attach-agent $r $tcpl r

$ns connect $tcpl_s $tcpl_r
$tcpl_ s set fid_ O

HHtHHHERHERHERHE R HERHH
MVFlI ow Connections
HHtHHHERHE R R R R R H R

#Setup 1st MVF connecti on

set nmmf1_s [new Agent/ UDP/ MiFl ow]
$ns attach-agent $s2 $mf1l_s

set nmmf 1_r [new Agent/ UDP/ MiFl ow]
$ns attach-agent $r $mmf1_r

$ns connect $mmfl_s $mmfl_r

$mmf 1_s set packet Size_ 1000
$mfl_s set fid_ 1

$mf1_s set weighted_ false
$mmfl s set add_inc_ 1

$mfl s set nult_dec_ 0.50
$mfl r set packetSize_ 1000
$mmfl r set fid_ 1

HHHBH PR
FTP Setup
HHHBH BB

#Setup 1st FTP Application
set ftpl [new Application/FTP]
$ftpl attach-agent $tcpl_s
$ftpl set type_ FTP

HHHBH PR H AR
MM_APP Setup
HHHBH PR HBHH B

#Setup 1st MM Application
set nmappl_s [new Application/ MMppNew]

102

$mmappl_s
$mmappl_s
$mmappl_s
$mmappl_s
$mmappl_s
$mmappl_s
$mmappl_s

attach-agent $mf1l_s

set frmsize_ 1000

set random_ true

record- mm scal e-val ue "basi c_ MVAppNewUW mmappnewl. scl "
set max_bandwi dth_ 2. 0nb

set mn_scale_ 0

set max_scal e_ 49

set mmappl_r [new Applicati on/ MmMAppNew]
$mf 1l r record-mm packet-arrival "basi c_MVAppNewUW nmappnewl. dl y*"

$nmmappl_r

attach-agent $mf 1 r

HHtHBHERHERHERHERHE
#Schedul e events #
BB HERHERHRH R

$ns at 0.5 "$ftpl start”
#lLet the ftp application get settled before starting Mvapp
$ns at 2.5 "$mmappl_s start”

$ns at 92.5 "$mmappl_s stop”
$ns at 94.5 "$ftpl stop”

#Call the finish procedure after 5 seconds of sinulation tine
$ns at 95.0 "finish"

HAH#HHH R R TSR HH
#Run the sinul ation #
HHH#HIHH SRR R R R HH

$ns run

103

Appendix K: OTcl Example — all.tcl

#Create a simnul ator object
set ns [new Sinul at or]
#H##H A Col or vs.

Protocol vs. Fl ow D #######HH##HHH

Black => TCP = 0
Red => TCP = 1
Bl ue => TCP = 2
Green => TCP = 3
Orange => MV AppNewUwW = 4
Wite => MW AppNewUw = 5
Purple => TFRC => 6
G ey => TFRC = 7

HHH#HH R R H R R R R R R R R R R R
#Define different colors for data fl ows

$ns color 0 Bl ack
$ns color 1 Red
$ns col or 2 Bl ue
$ns color 3 Green
$ns col or 4 Orange
$ns color 5 Wite
$ns color 6 Purple
$ns color 7 Gey

#0Open the namtrace file
set nf [open all.namw]
set tf [open all.tr wj
$ns nantrace-all $nf

$ns trace-all $tf

#Define a 'finish' procedure
proc finish {} {
gl obal ns nf tf

$ns flush-trace
#Cl ose the trace file
cl ose $nf
cl ose $tf
#Execute namon the trace file
#exec nam out.nam &
exit O

}

File Nane: all.tcl

Aut hors: Kei t h Bar ber

Joel Thi bault

Jason | ngal sbe

Date: 2/ 28/ 01

Description: Si mul ati on runni ng MVAppNewUW vs. TCP vs.

#Create all
set sO [$ns
set sl [$ns
set s2 [$ns
set s3 [$ns

t he nodes
node]
node]
node]
node]

TFRC

104

s4
s5
s6
s7
ro
ri
r2
r3
ra
r5
reé
r7
nil
n2

set
set
set
set
set
set
set
set
set
set
set
set
set
set

[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns
[$ns

node]
node]
node]
node]
node]
node]
node]
node]
node]
node]
node]
node]
node]
node]

#Create |inks between the nodes

$ns dupl ex-1ink $s0 $nl 4Mo 5ns DropTai

$ns dupl ex-1ink $s1 $nl 4Mo 5ms DropTai

$ns dupl ex-link $s2 $nl 4M> 5ns DropTai

$ns duplex-link $s3 $nl 4Mo 5ns DropTai

$ns dupl ex-1ink $s4 $nl 4Mo 5ms DropTai

$ns dupl ex-link $s5 $nl 4Mb 5ns DropTai

$ns dupl ex-link $s6 $nl 4Mo 5ns DropTai

$ns dupl ex-link $s7 $nl 4M> 5ns DropTai

$ns dupl ex-1ink $nl $n2 4Mo 20ns DropTai
$ns dupl ex-1ink $n2 $r0 4Mo 5ms DropTai

$ns dupl ex-link $n2 $r1 4M> 5ns DropTai

$ns dupl ex-link $n2 $r2 4Mo 5ns DropTai

$ns dupl ex-link $n2 $r3 4M> 5ns DropTai

$ns dupl ex-link $n2 $r4 4Mo 5ns DropTai

$ns dupl ex-link $n2 $r5 4M> 5ns DropTai

$ns duplex-link $n2 $r6 4Mo 5ns DropTai

$ns duplex-link $n2 $r7 4Mo 5ns DropTai

$ns queue-linmt $nl $n2 60

$ns dupl ex-1ink-op $s0 $nl1 orient |eft-down
$ns dupl ex-1ink-op $s1 $nl orient down

$ns dupl ex-1ink-op $s2 $nl orient right-down
$ns dupl ex-1ink-op $s3 $nl orient right

$ns dupl ex-1ink-op $s4 $nl orient right-up
$ns dupl ex-1ink-op $s5 $nl orient up

$ns dupl ex-1ink-op $s6 $nl orient left-up
$ns dupl ex-link-op $s7 $nl orient |left

$ns dupl ex-1ink-op $nl $n2 orient right

$ns dupl ex-1ink-op $n2 $r0 orient left-up
$ns dupl ex-1ink-op $n2 $rl1 orient up

$ns dupl ex-1ink-op $n2 $r2 orient right-up
$ns dupl ex-link-op $n2 $r3 orient right

$ns dupl ex-1ink-op $n2 $r4 orient right-down
$ns dupl ex-1ink-op $n2 $r5 orient down

$ns dupl ex-1ink-op $n2 $r6 orient |eft-down
$ns dupl ex-link-op $n2 $r7 orient right

105

#Moni tor the queue for the possibly
$ns dupl ex-1ink-op $s0 $nl queuePos
$ns dupl ex-1ink-op $s1 $nl queuePos
$ns dupl ex-1ink-op $s2 $nl queuePos
$ns dupl ex-1ink-op $s3 $nl queuePos
$ns dupl ex-1ink-op $s4 $nl queuePos
$ns dupl ex-1ink-op $s5 $nl1 queuePos
$ns dupl ex-1ink-op $s6 $nl queuePos
$ns dupl ex-1ink-op $s7 $nl queuePos
$ns dupl ex-11ink-op $nl $n2 queuePos
HAHHHHHRHTH SRR HATH BT

TCP Connections

HAHHHHH R HTH SRR HAEH T

#Setup 1st TCP connecti on

set tcpl_s [new Agent/ TCP/ Reno]
$tcpl_s set wi ndow_ 20

$tcpl_s set packetSize_ 1000
$ns attach-agent $sO0 $tcpl_s
set tcpl_r [new Agent/ TCPSi nk]
$ns attach-agent $r0 $tcpl_r
$ns connect $tcpl_s $tcpl_r
$tcpl_s set fid_ O

#Setup 2nd TCP connecti on

set tcp2_s [new Agent/ TCP/ Reno]
$tcp2_s set wi ndow_ 20

$tcp2_s set packet Size_ 1000
$ns attach-agent $s1 $tcp2_s
set tcp2_r [new Agent/ TCPSi nk]
$ns attach-agent $rl1 $tcp2_r
$ns connect $tcp2_s S$tcp2_r
$tcp2_s set fid_ 1

#Setup 3rd TCP connecti on

set tcp3_s [new Agent/ TCP/ Reno]
$tcp3_s set wi ndow_ 20

$tcp3_s set packet Size_ 1000
$ns attach-agent $s2 $tcp3_s
set tcp3_r [new Agent/ TCPSi nk]
$ns attach-agent $r2 $tcp3_r
$ns connect $tcp3_s $tcp3_r
$tcp3_s set fid_ 2

#Setup 4th TCP connecti on

set tcp4_s [new Agent/ TCP/ Reno]
$tcp4_s set wi ndow_ 20

$tcp4_s set packet Size_ 1000
$ns attach-agent $s3 $tcp4d_s
set tcp4_r [new Agent/ TCPSi nk]
$ns attach-agent $r3 $tcp4d_r
$ns connect $tcpd_s $tcpd_r
$tcpd_s set fid_ 3

c
0
0
0
0.
0.
0
0
0
0

ongested |inks

o1 o1 010101010101 Ol

106

HAHHHHH RS RRHH 7
MVWF Connections
HHH#HH R HH R #

#Setup 1st MMApp New connection
set Mt 3_s [new Agent/ UDP/ Ml ow]
$ns attach-agent $s4 $mf3_s

set Mt 3_r [new Agent/ UDP/ Ml ow]
$ns attach-agent $r4 $mmf 3 r

$ns connect $mf3_s $mf 3_r

$mmf 3_s set packet Size_ 1000
$mf3_s set fid_ 4

$mmf 3_s set weighted_ false

$mmf 3_r set packet Size_ 1000
$mf3_r set fid_ 4

set Mt 4_s [new Agent/ UDP/ Ml ow]
$ns attach-agent $s5 $mf4_s

set mTf4_r [new Agent/ UDP/ Ml ow]
$ns attach-agent $r5 $mf4_r

$ns connect $mmf4_s $mmf4_r

$mmf 4_s set packet Size_ 1000

$mmf 4_s set weighted_ false
$mf4_s set fid_ 5

$mf4_r set packetSize_ 1000
$mmf4_r set fid_ 5

#Setup 1st TFRC

set tfrcl [new Agent/ TFRC]

$ns attach-agent $s6 $tfrcil

set tfrcsinkl [new Agent/ TFRCSi nk]
$ns attach-agent $r6 $tfrcsinkl
$tfrcl set fid_ 6

$tfrcl set packetSize_ 1000
$tfrcl set discount 5

$tfrcl set printLoss_ 1

$tfrcl set smooth_ 1

$tfrcl set printStatus_ O
$tfrcl set df _ 0.95

$tfrcl set ca_ 1

$ns connect S$tfrcl $tfrcsinkl

#Setup 2nd TFRC Connecti on

set tfrc2 [new Agent/ TFRC]

$ns attach-agent $s7 $tfrc2

set tfrcsink2 [new Agent/ TFRCSi nk]
$ns attach-agent $r7 $tfrcsink2
$tfrc2 set fid_ 7

$tfrc2 set packetSize_ 1000
$tfrc2 set discount_ 5

$tfrc2 set printLoss_ 1

$tfrc2 set smooth_ 1

$tfrc2 set printStatus_ 0
$tfrc2 set df _ 0.95

$tfrc2 set ca_ 1

107

$ns connect $tfrc2 $tfrcsink2

R HBH R
FTP Setup
e

#Setup 1st FTP Application
set ftpl [new Application/FTP]
$ftpl attach-agent $tcpl s
$ftpl set type_ FTP

#Setup 2nd FTP Application
set ftp2 [new Application/FTP]
$ftp2 attach-agent $tcp2_s
$ftp2 set type_ FTP

#Setup 3rd FTP Application
set ftp3 [new Application/FTP]
$ft p3 attach-agent $tcp3_s
$ftp3 set type_ FTP

#Setup 4th FTP Application
set ftp4 [new Application/FTP]
$ftp4 attach-agent $tcp4_s

$ftp4 set type_ FTP

HHHH R
###E MVAPP New ###
HHHH Y

#Setup 1st MM Application
set mmappnewl_s [new Application/ MMAppNew]

$mmappnewl_s
$mmappnewl_s
$mmappnewl_s
$mmappnewl_s
$nmmappnewl_s
$nmmappnewl_s
$Snmappnewl_s
$Snmappnewl_s

attach-agent $mf 3_s

set flow control _ true

set frnsize_ 1000

set random_ true

record-mm scal e-val ue "al |l . muappnewl. scl "
set max_bandwi dth_ 4. 0nb

set min_scale_ 0

set max_scal e_ 49

set mmappnewl_r [new Application/ MmMAppNew]

$Smmappnewl _r

attach-agent $mmf3_r

$mf 3_r record-mm packet-arrival "all.nmmppnewl. dl y"

#Setup 2nd MM _Application
set nmappnew2_s [new Appli cati on/ MmMAppNew]

$Snmappnew2_s
$nmappnew2_s
$Snmappnew2_s
$mmappnew2_s
$Smrappnew2_s
$Smrappnew2_s
$mmappnew2_s
$nmappnew2_s

attach-agent $mf4_s

set flow control _ true

set frnsize_ 1000

set random_true

record-mm scal e-val ue "al |l . mappnew2. scl "
set max_bandwi dth_ 4. 0nb

set mn_scale_ 0

set max_scal e_ 49

108

set

$mmf 4_r

nmappnew2_r [new Appli cati on/ MMAppNew]
$mmappnew2_r attach-agent $mf4_r

recor d- mm packet-arriva

al I . mmappnew2. dl y"

HHtHBHERHERHERHERHE
#Schedul e events #
HHHBHERHERHERHIRH

$ns
$ns
$ns
$ns

$ns
$ns

$ns
$ns

$ns
$ns
$ns
$ns

$ns
$ns

$ns
$ns

at
at
at
at

at
at

at
at

at
at
at
at

at
at

at
at

#Cal
$ns at 95.0

e
cooo

©

0.
0.

90.
90.
90.
90.

90.
90.

90.
90.

t he

"$ftpl start"”
"$ftp2 start”
"$ftp3 start”
"$ftpd start"

"$mmappnewl_s start"
"$mmappnew2_s start"

"$tfrcl start"
"$tfrc2 start"

"$ftpl stop"”
"$ftp2 stop"
"$ftp3 stop"”
"$ftpd stop”

"$mmappnewl_s stop"
"$mappnew2_s stop"

"$tfrcl stop"
"$tfrc2 stop”

ni sh procedure after 5 seconds of sinulation tine
“finish"

HHHBHERHERHERHERHERHH
#Run the sinmul ation #
HHHHHHHHHBHHHHHHHHHHHH

$ns run

109

Appendix L: get_thruput_data.c

Fil e Nane: get_thruput_data.c
Dat e: 02/ 28/ 2001
Aut hor (s): Jason I|ngal sbe
Joel Thi bault
Kei t h Bar ber

Description:
This script collects data about events al ong
a given link in the sinulated network. Qutput
data includes files for percent utilization,
enqueues, dequeues, drops, receives, and queue size.

L B T T S RS R N

~

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

#defi ne MAX_FI D_NUM 15
#def i ne MAX_EVT_NUM 4
#define M N_ARGC 8
#defi ne MAX_ARGC 9

#defi ne MAX_FI LENAME_LEN 50

#define EVI_ENQ O /* Array index for enqueue event */
#define EVI_DEQ 1 /* Array index for dequeue event */
#define EVI_DRP 2 /* Array index for drop event */

#define EVTI_RCV 3 /[/* Array index for receive event */

#def i ne ARGV_FI NNAME 1
#defi ne ARGV_FNODE 2
#defi ne ARGV_TNODE 3
#defi ne ARGV_MAX _QUE 4
#def i ne ARGV_MAX_BND 5
#defi ne ARGV_FID 6
#defi ne ARGV_I NTERV 7
#def i ne ARGV_LABEL 8

#tdef i ne AVGQUE_WEI GHT 0. 002
mai n(int argc, char *argv[]) {

char fEngNanme[MAX_FI LENAME_LEN] ;
char f DegName[MAX_FI LENAME_LEN] ;
char f Dr pName[MAX_FI LENAME_LEN] ;
char fRcvName[MAX_FI LENAME_LEN] ;
char f QueNanme[MAX_FI LENAMVE_LEN] ;
char fUt| Name[MAX_FI LENAME_LEN] ;

i nt fid[MAX_FI D_NUM ;

i nt mByt es[MAX_EVT_NUM [MAX_FI D_NUM ;

i nt queue_si ze = 0, max_queue_si ze=0, | ast_queue_si ze=0;
doubl e avg_queue_si ze=0. 0O;

110

doubl e nirhr uput [MAX_EVT_NUM [MAX_FI D_NUM ;
doubl e nirhruTot al [MAX_EVT_NUM ;

double cTinme, mlime, mnterval;

float tinme;

i nt cFnode, cTnode, cFid, cBytes, fNode, tNode;
int fCount, i, j, evt, allFl ow=0, addFid;

char *flnNanme, *pNext, op;

FILE *fdl1l, *fdENQ *fdDEQ *fdDRP, *fdRCV, *fdQUE;
char Lbl Spc[] B

char EngExt[] = ".enq";
char DeqExt[] = ".deq";
char DrpExt[] = ".drp";
char RcvExt[] = ".rcv";
char QuekExt[] = ".que";
char Ul Ext[] = ".utl";

FI LE *f dUTL;
doubl e max_bandwi dth = 0. 0;

/* for dumry data */
char tnpl[10], tnp2[10];
float tnp3, tnp4,

i nt tnp5, tnpé6;

/******************************/

/* Handling Command Line Args */

/******************************/

for(i = 0; i < MAX_FILENAME _LEN; i++) {
f EngNane[i] ;
f DegNane[i]
f DrpName[i]
f RevNanme[i]
f QueNane[i]
fU I Name[i]

cooo0o9

if(argc < MN_ARGC || argc > MAX_ARGC) {
fprintf(stdout, "Usage: get_thruput_data ifname of nane fnode tnode
fid event interval\n\n");
fprintf(stdout, "

TrcFi | eNane Trace File Name (ex:

out.tr)\n");

fprintf(stdout, " f Node = from node of the link
(integer)\n");

fprintf(stdout, " t Node = to node of the link

(integer)\n");
fprintf(stdout,
(as defined tcl script)\n");
fprintf(stdout, " max_bandw dt h
for link (as defined tcl script)\n");
fprintf(stdout, " fid = flowid to nonitor
(integer); \"-1\" for all flows)\n");
fprintf(stdout, " i nterval
Sec (ex: 0.1)\n");

max_queue_si ze max queue size for link

max bandwi dth (in Mops)

neasurenent interval in

111

fprintf(stdout, " [l abel] = Optional |abel to be added

to output file names\n\n");

exit(l);

}

el se {
flnName = ar gv[ARGV_FI NNAME] ;
f Node = atoi (ar gv[ARGV_FNODE]) ;
t Node = atoi (argv[ARGV_TNODE]) ;
max_queue_si ze = atoi (argv[ARGV_MAX_QUE]) ;
max_bandwi dt h = at of (ar gv[ARGV_MAX_BND]) ;

i f (max_bandwi dth <= 0.0) {
fprintf(stdout, "Error: max_bandw dt h nust
0.0\ n");
exit(1l);
}

i f(argc == MAX_ARGC) {

be greater then

i f(!strncpy(fEngNane, flnName, strlen(flnNanme) - 3)) exit(1l);

i f(!strcat(fEngNane, Lbl Spc)) exit(1);

i f(!strcat(fEngNanme, argv[ARGV_LABEL])) exit(1l);

}
el se {

i f(!strncpy(fEngNane, flnName, strlen(flnNanme) - 3)) exit(1);
}

i f(!strcpy(fDegNane, fEngNanme)) exit(1);
i f(!strcpy(fDrpNane, fEngNanme)) exit(1);
i f(!strcpy(fRcvNanme, fEngNanme)) exit(1l);
i f(!strcpy(fQueNane, fEngNanme)) exit(1l);
if(!strcpy(fUtl Name, fEngNanme)) exit(1l);

i f(!strcat(fEngNane, EngExt)) exit(1);
i f(!strcat(fDegNane, DeqExt)) exit(1);
if(!strcat(fDrpNane, DrpExt)) exit(1);
i f(!strcat(fRcvNane, RcvExt)) exit(1);
i f(!strcat(fQueNane, QueExt)) exit(1);
)

if(!strcat(fUtl Name, UtlExt)) exit(1l);
if((strtol (argv[ARGV_FID], &pNext, 10) == -1) && (*pNext == "\0"))
{
al |l Fl ow = 1;
f Count = O;
}
el se {
f Count = O;
pNext = argv[ARGV_FI D] ;
while(l) {
if((*pNext < 48) || (*pNext >59)) {
fprintf(stdout, "Error: Invalid Flow ID\n");
exit(1l);
}
fid[fCount++] = (int)strtol (pNext, &pNext, 10);
i f(*pNext == '\0') break;
if((*pNext =="-") && (*(pNext+1)!= "\0")) pNext = pNext+1;
el se {

fprintf(stdout, "Error: Invalid Flow ID Format\n");

exit(l);

112

}
}

}

if((mnterval = atof (argv[ARGV_INTERV])) <= 0) {
fprintf(stdout, "Error: Measurenent Interval <= \"0\"\n");
exit(1l);

}

}

/******************************/

/* Opening Input Qutput Files */

/******************************/

if((fdl = fopen(flnName, "r")) == NULL) {
fprintf(stdout, "Cannot open \"%\" for read.\n", flnNane);
exit(1l);

}

i f((fdENQ = fopen(fEngNarme, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fEngNane);
exit(1l);

}

i f((fdDEQ = fopen(fDegNane, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fDeqNane);
exit(1l);

}

i f((fdDRP = fopen(fDrpName, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fDrpNane);
exit(1l);

}

i f((fdRCV = fopen(fRcvName, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fRcvNane);
exit(1l);

}

i f((fdQUE = fopen(fQeNanme, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fQueNane);
exit(1l);

}

i f((fdUTL = fopen(fUtl Name, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fUI Name);
exit(l);

}

/***************************/

/* Get all flows fromfile */
/***************************/

if(all Flow == 1){
whil e(fscanf(fdl, "% % % % % % 9% % % % % %\ n",
&op, &tine, &cFnode, &cTnode, tnpl, &cBytes,
tmp2, &cFid, &t np3, & np4, & np5, & np6) != EOF){
addFid = 1;

for(i=0; i<fCount; i++){
if(fid[i]==cFid)

addFid = 0;
}

113

i f(addFid == 1) {
fid[fCount++] = cFid;
}

fseek(fdl, 0, 0); /* Reset file pointer to top */
}

/**/

/* Print Configuration Info to the screen */

/**/

printf("\nlnput File Nane: %\ n", flnName);
printf("Enqueue File Name: %\ n", fEngName);
printf("Dequeue File Nane: %\ n", fDeqNane);
printf("Drop File Name: %\ n", fDrpNane);
printf("Receive File Nane: %\ n", fRcvNane);
printf("Queue Size File Nane: %s\n", fQueNane);
printf("Band. Util. File Name: %s\n", fUtl Nane);
printf("FID(s) entered: ");

for(i=0; i<fCount; i++)
printf("fid(wd) ", fid[i]);

printf("\nFrom Node: %\ n", f Node);
printf("To Node: %\ n", tNode);
printf("Max Queue Size: %\ n", max_queue_si ze);
printf("Max Bandwi dt h: % Mo\n", max_bandw dth);
printf("Measurnment Interval: % \n\n", mnterval);

/*********************/

/* Cal cul ate Thruput */

/*********************/

/* Print Headers and initialize data */

fprintf(fdENQ "#Tinme\t");
fprintf(fdDEQ "#Tinme\t");
fprintf(fdDRP, "#Tinme\t");
fprintf(fdRCV, "#Time\t");
fprintf(fdUTL, "#Tinme\t");

for(i=0; i<fCount; i++) {

fprintf(fdENQ "Flow\t", fid[i])
fprintf(fdDEQ "Flowa\t", fid[i])
fprintf(fdDRP, "Flow@\t", fid[i])
fprintf(fdRCV, "Flow@\t", fid[i])
fprintf(fdurL, "Flowe@\t", fid[i])

for (j=0; j<MAX_EVT_NUM | ++) {
mBytes[j][i] = O;

}

fprintf(fdENQ "Total\n");
fprintf(fdDEQ "Total\n");
fprintf(fdDRP, "Total\n");
fprintf(fdRCV, "Total\n");
fprintf(fdurL, "Total\n");

114

nri me = 0;

whi l e(fscanf(fdl, "% % % %@ % % % % % % % %\ n",
&op, &t ine, &cFnode, &cTnode, tnpl, &cBytes,
tmp2, &cFid, &t np3, & np4, &t np5, & np6) != EOF) {

/* We only care about events that occur between the fromNode and
t oNode */

i f((cFnode==f Node) && (cTnode==t Node)) {

/* Determ ne which type of event this is */

if (op=="+"') evt = EVT_ENQ
else if(op=="-') evt = EVT_DEQ
else if(op=="d') evt = EVI_DRP
else if(op=="r') evt = EVI_RCV

/* If cTime <= nline we are within the current interval so add
bytes to correct fid and event */

cTime = (double)tine;
if(cTime <= nili ne) {
for(i=0; i<fCount; i++) {
if(cFid==fid[i])
nmBytes[evt][i] += cBytes;
}

}

el se {

/* While cTime > nlTime we are beyond the current interval so
write output */

while(cTinme > nilinme) {
/* Print time interval to output files */
fprintf(fdENQ "% \t", niline)
fprintf(fdDEQ "% \t", niline);
fprintf(fdDRP, "% \t", mline);
fprintf(fdRCV, "% \t", mline);
fprintf(fdurL, "% \t", mline);

/* Zero out nThruTotal for each event */

for(i=0; i<MAX EVT_NUM i ++)
nrhruTotal [i] = O;

/* Print mrhruput for each flow (i) for each event (j) and add
to mrhruTotal */

for(i=0; i<fCount; i++) {

for(j=0; j<MAX_EVT_NUM | ++) {
/* Need to convert packet size from Bytes to Mops */

115

nrhruput[j]1[i] =
(((double)(mBytes[j][i]))*8/ m nterval)/1000000;
mrhruTotal [j] += nmThruput[j][i];

}

fprintf(fdENQ "% \t", mThruput[EVT_ENQ [
fprintf(fdDEQ "% \t", mThruput[EVT_DEQ [
fprintf(fdDRP, "% \t", mThruput[EVT_DRP]|
fprintf(fdRCV, "% \t", mThruput[EVT_RCV]|

i)
i)
i)
i1);
/* Print Flow Bandwidth Utilization for RCV event */

fprintf(fdutL, "% \t", (mThruput[EVT_RCV][i])/ max_bandwi dth);
}

/[* Print mrfhruTotal for each event */

fprintf(fdENQ "% \n", mThruTotal [EVT_ENQ) ;

fprintf(fdDEQ "% \n", mThruTotal [EVT_DEQ);

fprintf(fdDRP, "% \n", mlhruTotal [EVT_DRP]);

fprintf(fdRCV, "% \n", mThruTotal [EVT_RCV]);

/* Print Total Bandwidth Utilization for RCV event */
fprintf(fdUurL, "% \n", (nThruTotal [EVT_RCV])/ max_bandw dt h);
/* Increnent interval and reset nBytes */

mli me += mnterval;

for(i=0; i<MAX_EVT_NUM i++) {

for(j=0; j<fCount; j++)
nmBytes[i][j] = O;

}
}
/* We are now within the correct interval so save to the array */
for(i=0; i<fCount; i++)
if(cFid==fid[i])
mBytes[evt][i] = cBytes;

}
}
}

/* Run through print process one last tine to get last interval */

fprintf(fdENQ "% \t", niline);
fprintf(fdDEQ "% \t", niline);
fprintf(fdDRP, "% \t", niline);
fprintf(fdRCV, "% \t", mline);
fprintf(fdurL, "% \t", mline);

for(i=0; i<MAX_EVT_NUM i ++)
nrhruTotal [i] = O;

for(i=0; i<fCount; i++) {

116

for(j=0; j<MAX_ EVT_NUM
/* Need to convert

}

fprintf(fdENQ "9%\t",
fprintf(fdDEQ "9%\t",
fprintf(fdDRP, "96\t",
fprintf(fdRCV, "9%\t",

/* Print Flow Bandwidth Utilization for

fprintf(fdurL, "9\t",

}

fprintf(fdENQ "% \n"
fprintf(fdDEQ "% \n"
fprintf(fdDRP, "% \n"
fprintf(fdrCV, "% \n"

/* Print Total Bandwidth Utilization for

fprintf(fdurL, "% \n"

/* Close file pointers */

fcl ose(fdENQ) ;
fcl ose(fdDEQ) ;
fcl ose(fdDRP);
fcl ose(fdRCV);
fclose(fdUTL);

j+) |

nmrhr uput [EVT_ENQ [
mrhruput [EVT_DEQ| [i
nmrhruput [EVT_DRP] [i
nmrhruput [EVT_RCV] [i]);

packet size fromBytes to Myps */
mThruput[j][i] = (((double)(nBytes[j][i]))*8/ m nterval)/1000000;
mrhruTotal [j] += mThruput[j][i];

RCV event */

(mThruput [EVT_RCV] [i])/ max_bandwi dt h) ;

nirhruTot al [EVT_ENQ) ;
nirhr uTot al [EVT_DEQ) ;
nirhruTot al [EVT_DRP]) ;

, nmrhruTotal [EVT_RCV]) ;

RCV event */

, (mTrhruTot al [EVT_RCV])/ max_bandwi dt h) ;

/************************/

/* Cal cul ate Queue Size */

/************************/

fprintf(fdQUE, "#Tinme\tQueueSi ze\t AvgQueueSi ze\n");

fseek(fdl, 0, 0); /*

whi l e(fscanf (fdl, "%

%

%l
&op, &tine, &cFnode,

Reset file pointer

% % %
&cTnode,

to top */

% % 9% % %\ n",

tmpl, &cBytes,

tmp2, &cFid, &t np3, & np4, &t np5, & np6) != EOF) {

/* We only care about events that occur

t oNode */

bet ween the fromNode and

i f((cFnode==f Node) && (cTnode==t Node)) {

/* Determ ne which type of event this is */

if (op=="+")
else if(op=="-")
else if(op=="d")
else if(op=="r")

evt
evt
evt
evt

EVT_ENQ
EVT_DEQ
EVT_DRP;
EVT_RCV:

117

/* Adj ust Queue Size */
if (evt == EVIT_ENQ {
/* print to the file if <= max and is different */
i f(queue_size <= nax_queue_si ze && queue_si ze != | ast_queue_si ze)
| ast _queue_si ze = queue_si ze;
fprintf(fdQUE, "% \t%\t% \n", (double)tine, queue_size,
avg_queue_si ze);

gqueue_si ze++;

avg_queue_size *= 1.0 - AVGQUE_VEI GHT;
avg_queue_si ze += AVGQUE_WEI GHT * queue_si ze;
else if(evt == EVI_DEQ || evt == EVT_DRP) {
gueue_si ze- -;
}
}
}

fcl ose(fdQUE);

fclose(fdl);

118

Appendix M: get_delay data.c

Fil e Nane: get_delay _data.c
Dat e: 02/ 28/ 2001
Aut hor (s): Jason I|ngal sbe
Joel Thi baul t
Kei t h Bar ber

Description:
This script calculates delay for each packet traveling
along a given link in the sinulated network. The out put
data includes a file with arrival tinme, packet id, and
and delay in seconds.

L B T T S RS R N

~

#i ncl ude <stdi o. h>

#def i ne MAX_FI D_NUM 15
#defi ne MAX_EVT_NUM 4
#define M N_ARGC 6
#defi ne MAX_ARGC 6

#def i ne MAX_FI LENAME_LEN 50

#def i ne ARGV_TRCNAME 1
#defi ne ARGV_DLYNAME 2
#defi ne ARGV_FLOND 3
#def i ne ARGV_SNDNODE 4
#def i ne ARGV_RCVNODE 5

mai n(int argc, char *argv[]) {

doubl e cTinme, nifime, mnterval;

float tinme;

i nt cFnode, cTnode, cFid, cBytes, cPkt;

int flowl D, sndNode, rcvNode, intMaxPkt, evt, i, intRcvldx;
char *fTrcName, *fDl yName, op;

FILE *fdTRC, *fdDLY;

doubl e *arySndTi me, *aryRcvTi ne;
int *aryRcvPkt, *aryRcvFl ag;

doubl e dbl Tinme, dblDy;
i nt intPkt;

/* for dumry data */

char tnpl[10], tnp2[10];

float tmp3, tnp4;

int tnp5, tnmp7;
/****-k*************************/

/* Handling Command Line Args */

/******************************/

if(argc < MN_ARGC || argc > MAX _ARCC) ({

119

fprintf(stdout, "Usage: get_delay_data TrcFil eNanme D yFil eNane

fl ow D start Node endNode\ n\n");

fprintf(stdout, Tr cFi | eNane Trace File Name (ex:

out.tr)\n");
fprintf(stdout, " Dl yFi | eNane = Delay File Name (ex:
out.tcpl.dly)\n");
fprintf(stdout, " flow D = |D of the Flow to get
del ay data for (integer)\n");
fprintf(stdout, " sndNode = Node where the sender is
| ocated (integer)\n");
fprintf(stdout, " r cvNode = Node where the receiver is

| ocated (integer)\n");

exit(l);
}
el se {
f TrcNanme = ar gv[ARGV_TRCNAME] ;
f Dl yName = ar gv[ARGV_DLYNAME] ;
flow D = atoi (argv[ARGV_FLOW D]) ;
sndNode = atoi (argv[ARGV_SNDNCDE]) ;
rcvNode = atoi (argv[ARGV_RCVNODE]) ;
}

/******************************/

/* Opening Input Qutput Files */

/******************************/

i f((fdTRC = fopen(fTrcName, "r")) == NULL) {
fprintf(stdout, "Cannot open \"%s\" for read.\n", fTrcNane);
exit(1);

}

i f((fdDLY = fopen(fD yNarme, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fD yNane);
exit(1l);

}

/**/

/[* Print Configuration Info to the screen */

/**/

printf("\nTRC File Nane: %\ n", fTrcNane);
printf("DLY File Nane: %\ n", fD yNane);
printf("Fl ow D: %\ n", flow D);
printf("Sender Node: %\ n", sndNode);
printf("Receiver Node: %\ n\ n", rcvNode);

/**************************************/

/* Get nunber of packets sent by flow */
/* and allocate menory for array */

/**************************************/
i nt MaxPkt = 0;
whil e(fscanf (fdTRC, "% % % % % % % % % % % %\ n",

&op, &tinme, &cFnode, &cTnode, tnpl, &cBytes,
tnp2, &cFid, &t nmp3, &t np4, &cPkt, &t mp5) != ECF){

120

if(cFid flowl D & cFnode
if(cPkt > intMaxPkt) {
i nt MaxPkt = cPkt;
}

}

}
fseek(fdTRC, O,

sndNode

0); /* Reset file pointe
arySndTi e
This will be i
aryRcvTi me
This will be i
ar yRcvPkt
This will be i
aryRcvFl ag
This will be i

= (doubl e *)call oc(int MaxPkt +
ndexed by the Packet Num

= (doubl e *)call oc(int MaxPkt +
ndexed in order they appear in
= (int *)calloc(intMaxPkt + 1,
ndexed in order they appear in
= (int *)calloc(intMaxPkt + 1,
ndexed by the Packet Num

for(i =0; i <
arySndTi e[i]
aryRcvTime[i]
aryRcvPkt [i]

}

i nt Revldx = 0;

nt MaxPkt ;
0. 0;
0. 0;
0;

i++) {

whi l e(fscanf (fdTRC, "% % % %
&op, &tinme, &cFnode,
tmp2, &cFid, &tnp3,

% % Us
&cTnode, t
&t mp4, &cPk

if(cFid flow D & cFnode
arySndTi ne[cPkt] = ti ne;
}

if(cFid

sndNode

flowm D & & cTnode r cvNode

i f(aryRcvFI ag[cPkt]
aryRcvTi me[i nt Revl dx] =
aryRcvPkt[i nt Revldx] =
aryRcvFl ag[cPkt] = 1;

i nt Revl dx++;

}

0) {
tinme;
cPkt ;

}
}

dbl Ti me
dbl Dl 'y
i nt Pkt

0;
0.

0
0
0

for(i=0; i
dbl Ti e
i nt Pkt
dbl D'y

< intRcvldx; i++) {
aryRcvTine[i];
aryRcvPkt[i];
aryRevTinme[i] -

arySndTi me[i nt

fprintf(fdDLY, "% f\t%\t% f\n", dblTine,

&& op == "+) {

r totop */
1, sizeof(double));

1, sizeof(double));
Trc File

si zeof (int));

Trc File

sizeof (int));

% % % % %\n",
nmpl, &cBytes,
t, & np5) !'= EOF){

&& op "+) |

& op == "'r"') {

Pkt];

i nt Pkt, dblDy);

11

11

/1

/1

121

/* Close file pointers */

fcl ose(fdTRC);
fcl ose(fdDLY);

}

122

Appendix N: get_tcpfriendly_data.c

File Nane: get_tcpfriendly_data.c
Dat e: 02/ 28/ 2001
Aut hor (s): Jason I|ngal sbe

Joel Thi bault

Kei t h Bar ber

Description:

bandwi dth for a given flow along a given link in the
si mul ated network. The output data includes a file
containing the TCP-Friendly bandwi dth and act ual
bandwi dth used by the flow.

EBE R R R R I R

~

#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>

#defi ne MAX_EVT_NUM 4
#define M N_ARGC 10
#defi ne MAX_ARGC 10

#defi ne MAX_FI LENAMVE_LEN 50

#define EVT_ENQ O /* Array index for enqueue event */
#define EVI_DEQ 1 /* Array index for dequeue event */
#define EVI_DRP 2 /* Array index for drop event */

#define EVI_RCV 3 /* Array index for receive event */

#defi ne ARGV_TCPNAME
#def i ne ARGV_TRCNAME
#defi ne ARGV_DLYNAME
#defi ne ARGV_FID
#defi ne ARGV_FNODE
#defi ne ARGV_TNODE
#def i ne ARGV_I NTERV
#def i ne ARGV_PKTSI ZE
#def i ne ARGV_MAXBAND

O©CO~NOOD WN P

mai n(int argc, char *argv[]) {

i nt fid;
i nt nByt es[MAX_EVT_NUM ;
doubl e nirhr uput [MAX_EVT_NUM ;

doubl e cTinme, mlinme, mnterval;

float tinme;

i nt cFnode, cTnode, cFid, cBytes, fNode, tNode, i, evt;
char *fTCPNanme, *fTrcNanme, *fDl yName, op;

FI LE *fdTCP, *fdTRC, *fdDLY;

This script calculates the TCP-Friendly bandw dth, as
determined by the formula presented in "Pronoting the
Use of End-to-End Congestion Control in the Internet”
by Sally Floyd and Kevin (1999), as well as the actual

123

int nmDlyCnt,

doubl e dropRate = 0.0,

totQutSim = 0.0;
doubl e nDIyTotal ,
doubl e cDel ay,

mDl yCnt Si m

cTi meDl vy,

totDrp = 0.0, t

nDl yTot al Si m

i nt Num nt erval s,

| ower Ti ne,
dbl Last Ti ne, Tfrd;

otQut =

upper Ti ne,

doubl e *aryAvgDel ay;

doubl e maxPkt Si ze = 0.0, maxBandwi dth = 0.0;
/* for dumry data */

char tnpl[10], tnp2[10];

float tmp3, tnp4;

int tnp5, tnp6, tnp7;
/******************************/

/* Handl i ng Command Line Args */

/******************************/

if(argc < MN_ARGC | |

fprintf(stdout,

TrcFil eNane Dl yFil eNanme fid

maxBandwi dt h\ n\n") ;
fprintf(stdout,
tfd)\n");
fprintf(stdout,
.tr)\n");
fprintf(stdout,
diy)\n");
fprintf(stdout,
(integer)\n");
fprintf(stdout,

out .

out

out .

argc > MAX_ARGC)
"Usage:
fnode tnode

" TCPFi | eNane

TrcFi | eNane

Dl yFi | eNane
" fid

f node

bottl eneck (integer)\n");

fprintf(stdout,
(integer)\n");
fprintf(stdout,
Sec (ex: 0.1)\n");
fprintf(stdout,
bytes (ex:
fprintf(stdout,

t node

i nt erval

maxPkt Si ze

1000)\ n");

maxBandwi dt h

the bottleneck (ex: 2.0)\n");

exit(l);

}

el se {
f TCPNanme = ar gv[ARGV_TCPNAME] ;
f TrcName = ar gv[ARGV_TRCNAME] ;
f Dl yName = argv[ARGV_DLYNAME] ;
fid = atoi (argv[ARGV_FI D]);
f Node = atoi (argv[ARGV_FNODE]) ;
t Node = atoi (argv[ARGV_TNCDE]) ;

max Pkt Si ze =
maxBandw dt h =

if((mnterval =
fprintf(stdout,

exit(1l);
}
}

{

i nterval

= TCP Qut put

intlntervalldx;
0.0,

totDrpSim = 0.0,

avgDly;

get _tcpfriendly_data TCPFi | eNane
max Pkt Si ze

File Nanme (ex:

= Trace File Name (ex:

= Delay File Name (ex:

= Flow | D to nonitor

= from node of the

= to node

= measur enent

of the bottl eneck

interval in

= Maxi mum packet size in

at oi (argv[ARGV_PKTSI ZE]) ;
at of (ar gv[ARGV_MAXBAND]) ;

Maxi mum bandwi dt h al ong

atof (argv[ARGV_I NTERV])) <= 0) {

"Error:

Measur enent

I nterval

<= \"0\"\n");

124

/******************************/

/* Opening Input Qutput Files */

/******************************/

i f((fdTCP = fopen(fTCPNanme, "w')) == NULL) {
fprintf(stdout, "Cannot create \"%\" for wite.\n", fTCPNane);
exit(1l);

}
i f((fdTRC = fopen(fTrcName, "r")) == NULL) {
fprintf(stdout, "Cannot open \"%s\" for read.\n", fTrcNane);

exit(1l);

}

i f((fdDLY = fopen(fD yNanme, "r")) == NULL) {
fprintf(stdout, "Cannot open \"%\" for read.\n", fD yNane);
exit(1l);

}

/**/

/* Print Configuration Info to the screen */

/**/

printf("\nTCP Fil e Nane: %\ n", fTCPNane);
printf("TRC File Nane: %\ n", fTrcNane);
printf("DLY File Nane: %\ n", fD yNane);
printf("FID entered: %\ n", fid);
printf("From Node: %\ n", fNode);
printf("To Node: %\ n", t Node);
printf("Measurment Interval: %\n", mnterval);

printf("TCP Max Packet Size: % f\n\n", maxPktSize);

/**/

/* Calcul ate Average Del ay Per Interval Based On Specified DLY File
*/

/**/

maxPkt Si ze = maxPkt Size * 8.0 / 1000000; // Convert from Bytes to M
intNum ntervals = (int)(dblLastTime/m nterval + 1.0);

aryAvgDel ay = (double *)calloc(intNum ntervals, sizeof(double));

for(i = 0; i <intNumintervals; i++)
aryAvgDel ay[i] = 0.0;

nDl yTotal = 0.0;
nDl yCnt = O;

nmDl yTotal Sim = 0. 0;
mDl yCntSim = 0
| owerTinme =
upperTi ne =
intlntervall

O.b;
0.0;
dx = 0;

whil e(fscanf (fdDLY," %W f % %A f\n", &TinmeDy, & np7, &cDelay) != EOF
) A

125

nDl yTot al Si m += (doubl e) cDel ay;
nDl yCnt Si mt++;

if((double)cTinmeDly <= upperTine) {
nDl yTotal += (doubl e)cDel ay;
nDl yCnt ++;

}

el se {

if(mbyCnt >0) {
avgDly = nDlyTotal / nDlyCnt;
aryAvgDel ay[i ntlnterval | dx] = avgDly;

whil e((double)cTimeDly > upperTinme) {
i ntlnterval | dx++;

| ower Ti me = upper Ti ne;

upperTi me += mnterval;

}

mDl yTotal =
nDl yCnt = 1;
}

(doubl e) cDel ay;

}

if(mbyCnt >0) {
avgDly = nDlyTotal / nDlyCnt;
aryAvgDel ay[intlnterval 1dx] = avgDy;
}

/************************/

/* Cal cul ate Bandw dt hs */

/************************/

[* Print Headers and initialize data */
fprintf(fdTCP, "#Ti ne\tActual Bandw dt h\tTCP-Friendly Bandw dth\n");

for (i=0; i<MAX_ EVT_NUM i++) {
mBytes[i] = O;
}

mli me = O;

| ower Time =
upperTi me =
intlntervall

3. 14,

0. 0;

dx = 0;

whil e(fscanf (fdTRC, "% % % % % % % % % % % %\ n",
&op, &t ine, &cFnode, &cTnode, tnpl, &cBytes,
tmp2, &cFid, &t np3, & np4, &t np5, & nmp6) != EOF) {

/* We only care about events that occur between the fromNode and
toNode for this flow */

126

if((cFid==fid) && (cFnode==f Node) && (cTnode==t Node)) {

byt es

wite

/* Determ ne which type of event this is */

if (op=="+"') evt = EVT_ENQ
el se if(op=="-"') evt = EVI_DEQ
else if(op=="d') evt = EVI_DRP;
else if(op=="r') evt = EVI_RCV,

[* If cTinme <= nifine we are within the current interval so add
to event */

cTime = (double)tine;
if(cTime <= nili ne) {
/* From TRC File */
nmByt es[evt] += cBytes;
el se {

/* While cTime > nlTime we are beyond the current interval so
out put */

while(cTinme > nilinme) {
/* Need to convert packet size from Bytes to Mops */
for(i=0; i<MAX_EVT_NUM i ++) {
} mrhruput[i] = (((double)(nBytes[i]))*8/ ninterval)/1000000;
/* Print time interval to output files */
fprintf(fdTCP, "% \t", mline);
/* Print Actual Bandwi dth */
fprintf(fdTCP, "% \t", niThruput[EVT_RCV]);
/* Print TCP-Friendly Bandwi dth */

t ot Qut
totDrp

nmrhruput [EVT_DRP] + mrThruput [EVT_RCV];
nmrhr uput [EVT_DRP] ;

totQutSim+= totQut; // Keep track of total RCVs throughout the

simul ation

totDrpSim+= totDrp; // Keep track of total DRPs throughout the

si mul ati on

if(totQut > 0.0)
dropRate = totDrp/totQut;
el se
dropRate = 0.0;

avgDly = aryAvgDel ay[intlntervalldx];

127

if(avgDly > 0.0 && dropRate > 0.0)
Tfrd = (1.5 * sqrt(2.0/3.0) * maxPktSize) / (2.0 * avgDy *

sgrt (dropRate));

S

S

el se
Tfrd = maxBandwi dt h;

fprintf(fdTCP, "W f\n", Tfrd);
/* Increnment interval and reset nBytes */

| ower Ti e = nili ne;
nmli me += m nterval;
intlnterval | dx++;
for(i=0; i<MAX_EVT_NUM i ++)
mBytes[i] = O;
}

/* We are now within the correct interval so save to the array */

nBytes[evt] = cBytes;
}

}
}

/**/

/* Run through print process one last tine to get last interval */

/**/

/* Need to convert packet size fromBytes to Mops */
for(i=0; i<MAX_EVT_NUM i ++) {
mrhruput[i] = (((double)(nBytes[i]))*8/ m nterval)/1000000;
}
fprintf(fdTCP, "% \t", niline);
/* Print Actual Bandw dth */
fprintf(fdTCP, "% \t", mThruput[EVT_RCV]);
/* Print TCP-Friendly Bandwi dth */

t ot Qut
totDrp

= mrhruput [EVT_DRP] + niThruput [EVT_RCV] ;

= niThruput [EVT_DRP] ;

totQutSim += totQut; // Keep track of total RCVs throughout the
mul ati on

totDrpSim += totDrp; // Keep track of total DRPs throughout the
mul ati on

if(totQut > 0.0)
dropRate = totDrp/totQut;
el se
dropRate = 0.0;

128

avgDly = aryAvgDel ay[intlnterval |l dx];

if(avgDly > 0.0 && dropRate > 0.0)
Tfrd = (1.5 * sqrt(2.0/3.0) * maxPktSize) / (2.0 * avgD'y *
sqrt(dropRate));
el se
Tfrd = maxBandwi dt h;

fprintf(fdTCP, "% f\n", Tfrd);

/***/

[* Print Tfrd Average Over Whole Sinulation To The Screen */

/***/

if(totQutSim> 0.0)

dropRate = totDrpSimtotQutSim
el se

dropRate = 0.0;

avgDly = nDlyTotal Sim/ nDlyCnt Sim

if(avgDly > 0.0 && dropRate > 0.0)
Tfrd = (1.5 * sqrt(2.0/3.0) * maxPktSize) / (2.0 * avgDy *
sqrt(dropRate));
el se
Tfrd = maxBandwi dt h;

printf("Tfrd Over Entire Simulation = %f\n\n", Tfrd);
/* Close file pointers */
fcl ose(fdTCP);

fclose(fdTRC);
fcl ose(fdDLY);

}

129

