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Abstract 

This project deals with the performance analysis of the Linux buffer cache while 

running an Oracle OLTP workload.  The Linux buffer cache was studied and tests were 

conducted to gather buffer cache hit rates and test run times.  The results of this analysis 

have lead to a better understanding of the complex operations of this system and may 

help to inspire further research on this topic. 
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Executive Summary 

 This report was prepared for EMC Corporation and WPI to provide better 

understanding for the performance of the Linux buffer cache while running an Oracle 

Online Transaction Processing (OLTP) workload.  Improved usage of the Linux buffer 

cache can lead to faster transaction processing.  System performance was tested and 

monitored by developing and using a micro-benchmark suite that simulates the workload 

of an actual OLTP server. 

 The motivation for concentrating on the Linux operating system is due to the 

desire expressed by EMC to learn more about the Linux buffer cache.  Also, Linux is 

governed by an open source policy, which permits direct modification of the kernel 

source code, thus providing a great deal of flexibility for project work.  The use of an 

Oracle OLTP database is motivated by the popularity of this type of system in industry, 

especially in EMC systems.    

The Linux buffer cache is used to store recently used data in RAM so that it can 

be quickly available again rather than needing to be reread from the hard drive.  Just as 

there is a buffer cache for Linux, Oracle uses its own buffer cache to store recently used 

data.   

 The workload that was used as a basis for analyzing system performance was 

generated by micro-benchmarks that were designed for this purpose.  These micro-

benchmarks consisted of the following five OLTP transactions: new-order, payment, 

check stock, check order, and delivery.  Each of these transactions acted upon separate 

tables in the database, with the new-order and payment transactions occurring ten times 

as often as the other three.  This design closely resembles the design of the TPC-C 

benchmark for OLTP systems.  Three separate databases of this design were created.  The 
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sizes of these were approximately half, equal, and double the size of the system RAM, 

which was 768MB.  A Linux kernel module and variables inserted into the source code 

were used to keep track of the frequency with which requested data was found in the 

buffer, thus providing the buffer cache hit ratio.   

The results of the performance analysis show that several factors can influence the 

Linux and Oracle buffer cache hit ratios.  The larger the database size, the greater the 

number of cache misses, and thus the lower the hit ratio.  The Oracle buffer cache hit 

ratio increases by increasing the size of the Oracle buffer cache.  However, this increase 

only slightly affects the Linux buffer cache hit ratio - decreasing slightly if the Oracle 

buffer cache is larger than the size of the physical memory.  The total completion time for 

100 transactions, as shown in Figure 4.9, indicates that the systems performs fastest when 

Oracle cache sizes between 256MB and 736MB are used. 

It was determined that Linux is able to swap part or all of the Oracle cache to 

swap space on disk if it is not being used.  This is undesirable because it causes additional 

delays to obtain data that is in the Oracle buffer cache.  Currently, the best way to 

alleviate this is to properly adjust the size of the Oracle buffer cache so that it is large 

enough to store as much data as possible, but still small enough that it does not cause the 

system to slow down while being swapped in and out of Linux swap space. 

The objective of this project was to conduct a performance analysis of the Linux 

buffer cache, and, in doing so, discover any Linux kernel changes or system 

configurations that would improve this performance.  This analysis has shown that 

properly adjusting the size of the Oracle buffer cache can improve the hit ratio for both 

caches as well as the time required to process transactions.  
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 Chapter I.  Introduction 

 There are many useful applications for Oracle including Online Transaction 

Processing (OLTP).  OLTP systems, which involves small, frequent transactions that are 

typical of an order-entry system, has become a very important function of database 

systems.  OLTP workloads are used in any application that calls for data entry and 

retrieval transactions such as e-commerce applications.  Oracle has become a popular 

database management software and can be used to run an OLTP workload.  Oracle needs 

an operating system to run on, and one of the leading operating systems for small servers 

is Linux.  The popularity of the Linux operating system is due in part to the open source 

policy that allows users to modify the operating system code and distribute it for free.  

This policy provides a great deal of flexibility and makes project work on Linux ideal.  

However, Linux is not extensively used as an operating system on leading OLTP servers, 

which motivates performance studies for use in this type of application. 

 The Linux buffer cache is of particular interest because reading and writing data 

to disk requires a greater deal of time than accessing data stored in the buffer cache.  

Whenever data can be found in cache, it is not necessary to read it from disk.  

Understanding the Linux buffer cache algorithm can help tune a system for optimal 

performance. 

 The goal of this project was to gain a better understanding of the Linux buffer 

cache through performance analysis of a system running an OLTP workload on Oracle.  

It was also of great interest to discover any means of modifying and improving the Linux 

buffer cache algorithms and the system configuration for improved performance. 

We built micro-benchmarks that simulated multiple simultaneous users of an 

Oracle OLTP system.  These benchmarks created large OLTP workloads and recorded 
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performance information pertaining to the Linux and Oracle buffer caches.  Several 

variables were used in order to better understand the results that were recorded including 

database size, number of transactions, and Oracle cache size.  The results from these tests 

were then graphed for comparison so that trends and optimum values could be 

determined. 

The results of this project include statistics that were gathered from both Oracle 

and the Linux kernel.  Hit ratios from the Linux and Oracle buffer caches are compared 

to show the effect of resizing the Oracle buffer cache.  Test run times are also used to 

help understand the Linux and Oracle buffer caches. 

This paper describes our methods of analyzing the performance of the Linux 

buffer cache while running an Oracle OLTP workload.  Chapter II, Background, 

discusses Oracle database systems, OLTP, micro-benchmarks, the TPC-C model for 

benchmarking OLTP, and the Linux buffer cache.  Chapter III, Approach, describes the 

steps used for developing the micro-benchmark suite and the databases used in the 

experiments, and also describes the process of running the experiments and modifying 

the buffer cache algorithm.  Chapter IV, Results and Analysis, presents the 

experimentation results in the form of graphs and describes any trends that were found.  

Chapter V, Conclusions, presents the conclusions drawn from the analysis of the results.  

Chapter VI, Future Work, discusses how the results of this project can be applied to 

further studies involving performance of Linux caching algorithms. 
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Chapter II.  Background 

 This section describes detailed information about the central topics of the project.  

The background begins by introducing Oracle database systems as well as some 

fundamental database concepts.  The second topic is online transaction processing 

(OLTP), which is a popular type of database transaction involving small, frequent 

transactions.  Next is an explanation of micro-benchmark programs to simulate a large 

load of OLTP transactions and recording performance information.  Fourth, there is a 

description of the TPC-C model for benchmarking OLTP systems.  Finally, this chapter 

presents a description of the buffer cache used by Linux for storing data in memory and 

writing it to disk.   

2.1 Oracle Database Systems 

 An Oracle database, like any database, allows for the storage, organization, 

retrieval, and protection of related information.  These databases organize related data for 

easy retrieval.  The two types of databases that currently dominate information systems 

are relational and object-oriented databases.  Relational databases store and present all 

information in tables and clearly define relations between data, making them very easy to 

conceptualize and use.  Object-oriented databases store data in objects that model real 

world entities, and data relations are controlled through methods that control which 

actions can be performed on the data.  Oracle databases support both of these models.  

However, this project exclusively uses relational databases because they have much more 

dominance in the business world [Bobrowski 2000]. 

 An Oracle database can only be accessed once an instance of the Oracle server is 

started up.  This server is responsible for making data accessible to users while 

maintaining security at the same time.  It must also ensure integrity and consistency of 
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data for multiple concurrent users and handle data backup and recovery features.  For a 

user to gain access to the database the user must run a client program such as “sqlplus”.  

The user must also have an account with adequate permissions to perform the desired 

operations.  This provides the user with a way to request, update, enter and delete 

information.  It also allows the user to alter, create, or drop tables in the database 

[Bobrowski 2000].  The select and update operations were used in this project to develop 

transactions, while the other operations were used for database administration. 

2.2 Online Transaction Processing (OTLP) and Decision Support 

Systems (DSS) 

 The two main types of transactions that can be performed on databases are online 

transaction processing (OLTP) and decision support systems (DSS).  OLTP is used in 

systems that process many small transactions of retrieving and updating data.  Examples 

of possible applications for this kind of system are banking, e-commerce, and airline 

reservations.  DSS are used by applications that generally make large queries for data that 

is used for data analysis.  These systems do not perform nearly as many write operations 

to the database as an OLTP.  Also, OLTP systems perform far more transactions than 

DSS [Keeton 1999]. 

 The Keeton thesis (1999) presents several major problems with studying database 

workload performance in OLTP and DSS systems.  The existing standardized 

benchmarks for these workloads, such as TPC described in Section 2.4, are complex and 

require the researcher to perform tedious tuning of the system.  Reporting results for 

these systems requires almost flawless system configuration and having a certified 

auditor audit the benchmark configuration.  Because of the cost involved in this, it is 

common for researchers to instead report results as being TPC-like in nature.  Also, 
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studying these systems can require large amounts of expensive equipment in order to 

accurately simulate systems that are used to process these workloads.  The quick growth 

in complexity of DSS workloads makes it difficult to design systems that have fast 

enough processors and enough storage capacity to support these tests. 

 This project exclusively uses OLTP transactions in order to measure the 

performance of the Linux buffer cache, however it is possible to also conduct a similar 

experiment using DSS instead.  Because of the difficulties associated with using 

standardized benchmarks, custom micro-benchmarks as described in the following 

section were used to monitor system performance. 

2.3 Micro-Benchmarks 

The purpose of the benchmarks in this project was to create a large OLTP 

workload on the Oracle server and monitor its performance.  Due to the numerous 

combinations of possible settings for each platform, it is nearly impossible for Oracle or 

any other software manufacturer to test every possible setting.  Instead, a database 

administrator can run a micro-benchmark to detect problems that the software 

manufacturer overlooked, and to configure the system for better performance. 

The micro-benchmarks used in this project were composed of a custom set of 

transactions to test the Linux buffer cache algorithm.  The tests conducted by          

micro-benchmark programs can be used for everything from mass reads and writes to the 

database as well as tasks such as logging in and out of the database and numerous other 

database interactions detailed in the Scaling Oracle8i™ book [Morle 2000].  In this 

project the benchmark design reflected the need to simulate as closely as possible how a 

database would operate with a real OLTP application. 

 



 11 

2.4 TPC-C Model for Benchmarking OLTP 

 The specifications for the TPC-C benchmark provide a guideline for 

implementing a benchmark to generate an OLTP workload.  TPC-C was designed by the 

Transaction Processing Performance Council (TPC) – one of the leading authorities on 

benchmarking systems running an OLTP workload on databases.  TPC-C is an OLTP 

benchmark that defines a set of functional requirements for a benchmark that can be run 

on any OLTP system, regardless of the hardware or operating system.  The TPC-C 

benchmark simulates a large number of terminal operators executing transactions against 

a database, thus generating a large OLTP workload. 

TPC-C models the principal transactions found in an order-entry system for any 

industry that must manage, sell or distribute a product or service.  However, it does not 

include less frequent transactions, which may be important to the functioning of an actual 

OLTP system, but do not have a large impact on the performance of the system.  The five 

transactions that are included in TPC-C are: entering new orders, delivering orders, 

recording customer payments, monitoring the stock level in a warehouse, and checking 

the status of an order.  The frequency of these transactions, like the transactions 

themselves, is also modeled after real world scenarios.  The new-order and payment 

transactions occur ten times as often as delivery, stock, and checking order status 

transactions.  The new-order transaction is the performance limiting transaction in this 

type of system.  The TPC-C database consists of nine different tables and a wide range of 

population and record sizes.   

The results recorded by the TPC-C benchmarks are most useful if they are 

reproducible and verifiable.  In order to report results of the TPC-C benchmark important 

system information must also be reported in order to make the results reproducible.   
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TPC-C permits any physical database design technique such, as partitioning data, in order 

to improve performance.  TPC-C’s performance metric, tpm-C, evaluates the number of 

complete business operations that can be processed within one minute on the system 

being evaluated [TPC 2001]. 

The TPC-C specification for benchmarking OLTP workloads served as a 

backbone for designing the micro-benchmarks that were used in this project.  The    

micro-benchmarks also followed the probability for most common transactions as 

specified by TPC-C. 

2.5 Linux Buffer Cache 

 The purpose of the buffer cache is to avoid having to perform slow disk accesses 

every time that data is modified or needs to be read by storing data in buffers in memory.  

The buffer cache keeps track of which data has been modified (has become dirty) in 

memory and needs to be written to disk, and writes pieces of that data at regular intervals.  

The buffer cache also provides a faster means of subsequent reads to the same data.  In 

this way, I/O operations produce minimal slowdowns on the system [Bovet 2001].   

The Linux buffer cache consists of two kinds of data structures: a set of buffer 

heads that describe the buffer in the cache; and a hash table that is used to quickly 

determine which buffer head describes the buffer described by a particular device and 

block number.  The buffer cache is implemented in the Linux kernel and is governed by 

several functions that are responsible for determining when to write data to and from 

memory to disk, where in memory to put data that is read from disk, and how to free up 

space by replacing used memory.  The source files “fs/buffer.c” and “include/linux/fs.h” 

contain many of these functions.  Some of these functions include: getblk(), brelse(), 
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refile_buffer(), bforget(), grow_buffers(), refill_freelist(), bdflush(), and kupdate() [Bovet 

2001].   

The getblk() function in buffer.c is called every time a block must be retrieved 

from memory.  If the desired block is already in the buffer cache (called a cache hit) then 

it can be quickly read from the memory.  If it is found that the block is not in the buffer 

cache (called a cache miss) then it must be read from disk and stored in a free buffer if 

any are available.  Cache misses are more time consuming than cache hits because the 

hard disk from which the block must be read has a much slower access time than the 

system memory. 

The methods in which modified (i.e. dirty) buffers are written to disk enable the 

system to operate much faster by avoiding constant disk operations.  There are three 

methods that are used to write dirty buffers to disk.  First, there are three system calls 

(synch, fsynch, and fdatasynch) that allow user applications to flush dirty buffers to disk.  

The synch call is the only function that flushes all dirty buffers to disk.  It is called 

periodically while the system is running and is usually called before shutting down the 

system.  Fsynch allows all buffers belonging to a particular file to be flushed to disk.  

Fdatasynch also flushes all buffers belonging to a particular file, but it does not flush the 

inode block of the file [Bovet 2001]. 

 The next method that allows buffers to be flushed to disk is the bdflush() kernel 

thread.  This kernel thread is responsible for selecting marked, dirty buffers from the 

buffer cache and forcing the corresponding blocks on disk to be updated.  Bdflush() is 

only called when the number of dirty buffers in the buffer cache exceeds the threshold 

value Nfract.  The parameters for bdflush() are located in /proc/sys/vm/bdflush in the 
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b_un and bdf_prm tables [Bovet 2001].  These parameters are described in table 2.1       

(1 tick corresponds to approximately 10 milliseconds). 

 

Parameter Default Min Max Description 

Age_buffer 3000 100 60,000 Time-out in ticks of a normal dirty buffer for 
being written to disk 

Age_super 500 100 60,000 Time-out in ticks of a superblock dirty buffer for 
being written to disk 

Interval 500 0 6,000 Delay in ticks between kupdate activations 

Ndirty 500 10 5,000 Maximum number of dirty buffers written to disk 
during an activation of bdflush 

Nfract 40 0 100 Threshold percentage of dirty buffers for waking 
up bdflush 

 
Table 2.1 Buffer Cache Tuning Parameters [Bovet 2001] 

 
 

 The kupdate() kernel thread is used to flush older dirty buffers which may not be 

flushed by bdflush because the threshold limit was not hit.  The parameter age_buffer 

defines the time that kupdate will wait to flush a dirty buffer to disk, with a default value 

of 30 seconds.  The kupdate thread runs at a frequency that is defined by the interval 

parameter.  Any buffers whose b_flushtime value is greater than or equal to the jiffies 

parameter (specified number of clock ticks) are written to disk by sync_old_buffers() 

which is called by kupdate().  Unlike bdflush(), synch_old_buffers() does not limit the 

number of buffers checked on each activation [Bovet 2001]. 



 15 

Chapter III.  Approach 

The approach chapter deals with the issues involved in setup, design, 

implementation, and experimentation of the test-data and the micro-benchmark suite for 

studying the performance of the Linux buffer cache.  In order to tune and gather results 

with the micro-benchmark suite, test databases were created.  Linux kernel modifications 

were made to enable keeping track of buffer cache hits and misses, and a module was 

developed to access the hit and miss counts in the kernel. 

The computer used for this project consisted of the following hardware, software, 

and configurations: Dual Pentium III Xeon 550 MHz, 768 MB RAM, 1536MB Linux 

swap space, 6 SCSI hard drives 80 GB total, SuSE Linux 7.2, 2.4.4-64GB-SMP kernel, 

and Oracle 9i Enterprise Edition. 

3.1 Database design 

 The databases used for testing the Linux buffer cache were composed of 

randomly generated data with preserved Primary and Foreign keys loaded into multiple 

tables.  A program was designed to create each table of the database to a specified size 

with randomly generated numbers and/or characters depending on the column.  The data 

for each table was stored in files formatted for input into Oracle.  Once the data was in a 

file, “sqlldr,” Oracle’s bulk database loader was used to load the data contained in the 

files into an Oracle SQL table.   

 Three databases of varying size were created relative to the system memory.  The 

smallest was approximately half the size of the system memory, the medium database 

was approximately equal to the system memory and the large database was 

approximately twice the system memory.  See Figure 3.1 for the database sizes.  Each 

database consisted of nine tables, each with several attributes.  See Figure 3.2 for tables 
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and attributes1.  Figure 3.3 lists the number of entries, or tuples per table in each sized 

database.   

 

System RAM 768 MB 
Small Database 350 MB 
Medium Database 700 MB 
Large Database 1400 MB 

Figure 3.1 System memory and physical size of each database 
 
 
 
 
 

Table Name Table attributes 
Customer accounts Account !customer information account number, balance 
Customer 
information 

Unique account number, customer name, address, telephone number, credit 

Deliveries Account !customer information account number, item number!stock 
item number, shipping number, estimated time of arrival, actual time of 
arrival, estimated time of departure, actual time of departure, address, name 

Items Item number!stock item number, item name, description, cost 
Orders Unique order number, Account !customer information account number, 

order date, ship date, item list and quantity 
Payment Account !customer information account number, amount, payment date 
Pending orders Account !customer information account number, total spent, current items, 

order date  
Stock Unique item number, quantity, manufacturers cost 
Transaction history Account !customer information account number, total spent, date of first 

order, date of last order 
Figure 3.2 Tables and table attributes 

 
 
 
 
 
 
 
 
 
 
 

                                                 
1 “Unique” indicates a Primary Key, “!” indicates a Foreign Key to specified table and Primary Key 
attribute. 
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Table Name Small Database Medium Database Large Database 
Customer accounts 2,500,000 5,000,000 10,000,000 
Customer information 2,500,000 5,000,000 10,000,000 
Deliveries 25,000 50,000 100,000 
Items 50,000 100,000 200,000 
Orders 25,000 50,000 100,000 
Payment 25,000 50,000 100,000 
Pending orders 25,000 50,000 100,000 
Stock 50,000 100,000 200,000 
Transaction history 2,500,000 5,000,000 10,000,000 

Figure 3.3 Number of entries per table in each test database 
 
 
 The database sizes in Figure 3.1 were chosen because a system is not able to 

cache more data than system memory.  A database size of half the memory can be 

completely cached in memory and only produce cache misses when data is first loaded 

into memory.  A database equal to the size of the system memory should mostly be 

cached but not completely as there are other processes using the system at the same time 

such as Oracle, which use system resources.  A database twice the size of the available 

system memory cannot all fit in the cache and should produce the most cache misses and 

cache replacements.  To reduce contention, the database files for the large database were 

placed on a different disk that those of the small and medium database and the Oracle 

install was on a third separate disk [Bobrowski 2000]. 

 
 
3.2 Micro-benchmark suite design 

 This section deals with the design and implementation of the micro-benchmark 

suite.  The micro-benchmarks were used to generate a simulated OLTP workload to 

measure the cache hit ratio on the Linux buffer cache. 
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3.2.1 OLTP Transactions 

 The micro-benchmarks for this project needed to closely simulate a real online 

transaction processing system.  To achieve this, the TPC-C model for online transaction 

processing benchmarking was used.   

 The primary user interface for Oracle databases is “sqlplus”.  Several 

programming languages and other programs have built-in features, which allow direct 

access to the database.  For this project, the scripting language Perl was selected.  Using 

the Perl DBI module, a simple script can perform queries on the database as easily as 

using SQL.  The scripts are also able to generate random search strings and run other Perl 

query scripts to better simulate OLTP.  Five common OLTP transactions as specified by 

TPC-C were designed to connect to the database and perform queries on the data.  These 

queries include “check order” which selects a random order number and retrieves the data 

associated with that order number from the table Orders; “deliveries” which inserts a new 

randomly generated delivery into the deliveries table; “new order” which selects a 

random customer account, retrieves the customer and account information, inserts a new 

order into table Pending, updates the customers transaction history, and returns the 

information on the item ordered; “payment” which inserts a payment into the table 

Payment from a random customer; and “stock” which returns information about a 

randomly selected stock number.  None of the returned data is actually printed out.  

These scripts are meant to simulate OLTP clients retrieving data from a warehouse. 

3.2.2 Cache hit rate monitoring 

 In order to monitor the number of cache hits and misses on the buffer cache while 

the scripts are running, kernel “hooks” were added.  These “hooks” were two variables 

placed in the Linux source code file “buffer.c”.  The first, emc_hits is incremented 
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whenever getblk() is called and the block requested is in the hash table.  The occurrence 

of this event represents a cache hit.  The emc_misses variable is incremented whenever 

the block is not in the hash table.  This represents a cache miss.  The hash table contains 

information about all of the blocks in the buffer cache.  To ensure that the cache hits and 

misses were caused due to the micro-benchmark, a device check was added to the 

getblk() function which only allowed the counters to be incremented if the cache hit or 

miss was on a block from one of the disks which contained the Oracle database files.  The 

cache hit ratio was then obtained by dividing the number of hits by the sum of the hits 

and misses. 

 Accessing the values of these variables posed a problem since user space 

programs cannot access kernel space variables directly.  The solution was to develop a 

kernel module, which can be loaded and unloaded by use of insmod and rmmod, to 

access the values of these variable counters.  The values were reset whenever the kernel 

module was loaded and printed when the kernel module was removed.  EMCmodule was 

the module developed as part of the micro-benchmark suite to print the hit and miss 

counts to the /var/log/messages log file where the statistics can be retrieved by an overall 

control script.     

3.2.3 Control program 

Rather than requiring the user to run several programs to gain statistics out of the 

micro-benchmark suite, an overall control script was created.  This Perl script, control.pl, 

allows the user to execute all of the scripts and data gathering tools sequentially through 

one command. 

When a user runs the control script, they are prompted for the number of 

transactions to run and how many times they want to run tests with this number of 
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transactions.  The kernel statistics module is loaded, one of the nine transaction scripts is 

chosen at random and run in series with the TPC-C probability (as mentioned in     

Chapter II Background) of most common transactions, the kernel statistics module is 

removed, and the statistics are printed to the screen.  The specified number of tests is run 

and results are printed out each time.  The script can also be configured to run the scripts 

in parallel, however in series was chosen because in parallel, the time to run one test 

cannot be monitored. 

3.3 Experiments 

 Experiments were run with several different sized Oracle caches.  The Oracle 

cache size is specified in 2 files as the value of “db_cache_size” in “initmqp1.ora” and 

“spfilemqp1.ora”.  The values of this variable must be the same in each file to ensure the 

correct cache size is used.  The cache size can be a minimum of 16 megabytes up to a 

maximum size of the Linux swap space. 

 A typical run of an experiment goes as follows.  The cache size is set and the 

database is started by using the command “dbstart”.  Inside SQLplus, “@tune” is run 

which executes the query in the file “tune.sql” which returns information about the 

Oracle buffer cache and hit rate generated during the startup of the database.  Next the 

test is executed by running “control.pl” which executes the micro-benchmark on a 

database.  The micro-benchmark returns information about the Linux buffer cache and 

the running time while running “@tune” in SQLplus again will return information about 

the Oracle buffer cache.  At this point the two values can be computed and compared. 

 These tests were run three times on each of the databases with each of the Oracle 

buffer cache sizes.  The averaged value of the results was then calculated to give more 

accurate statistics.  
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3.4 Buffer cache algorithm modifications 

 An additional aspect of this project was to determine the effects of a change to the 

buffer cache algorithm.  The changes tested for this project were to the bdflush_param 

structure which controls how often kupdate and bdflush run.   

 
Bdflush_param 
Parameters 

Description 

nfract Percentage of buffer cache dirty to activate bdflush 
ndirty Maximum number of dirty blocks to write out per wake-cycle 
nrefill Number of clean buffers to try to obtain each time refill is called 
dummy1 Unused 
interval Clock tick delay between kupdate flushes 
age_buffer Time for normal buffer to age before flushing it 
nfract_sync Percentage of buffer cache dirty to activate bdflush synchronously 
dummy2 Unused 
dummy3 Unused 

Figure 3.4 bdflush_param parameters in buffer.c 
 
 
 Tests were run with changes to the interval, making it longer so that kupdate runs 

less frequently, making bdflush write out dirty buffers only when it needs to.  Nfract and 

nfract_sync percentages were changed to cause them to let the buffer cache fill up more 

before writing out to disk and ndirty was increased to write out more to disk when 

bdflush is called.  It was believed that since disk access is much slower than RAM access 

and requires much overhead that can slow down system performance, making disk access 

occur less often, overall system performance would increase. 

 
3.5 Getblk() Walkthrough 

The following code is the Linux source code for the getblk() function.  This code 

also contains the code that was added to monitor buffer cache hits and misses and 

comments to help describe the code that was added. 
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struct buffer_head * getblk(kdev_t dev, int block, int size){ 
 struct buffer_head * bh; 
 int isize; 
 int major, minor; 
 
repeat: 

major = (dev >> 8); 
minor = (dev & 0xff); 

 
 spin_lock(&lru_list_lock); 
 write_lock(&hash_table_lock); 
 bh = __get_hash_table(dev, block, size); 
 if (bh){ 
     // Increment cache hit variable here 
     if ((major == 8) && ((minor == 49) || 
     (minor == 65))){ 
  if ((buffer_uptodate(bh)) && (buffer_mapped(bh))) 
      emcmqp_hits++; 
  else{ 
      // count this as a miss because it will have  
      // to be retrieved from disk 
      emcmqp_misses++; 
  } 
     } 
     goto out; 
 } 
 // Increment cache_miss variable here 
 if ((major == 8) && ((minor == 49) || 
        (minor == 65))){ 
     emcmqp_misses++; 
 } 
 isize = BUFSIZE_INDEX(size); 
 spin_lock(&free_list[isize].lock); 
 bh = free_list[isize].list; 
 if (bh) { 
  __remove_from_free_list(bh, isize); 
  atomic_set(&bh->b_count, 1); 
 } 
 spin_unlock(&free_list[isize].lock); 
 /* 
  * OK, FINALLY we know that this buffer is the only one of 
  * its kind, we hold a reference (b_count>0), it is unlocked, 
  * and it is clean. 
  */ 
 if (bh) { 
  init_buffer(bh, NULL, NULL); 
  bh->b_dev = dev; 
  bh->b_blocknr = block; 
  bh->b_state = 1 << BH_Mapped; 
 
  /* Insert the buffer into the regular lists */ 
  __insert_into_queues(bh); 
 out: 
  write_unlock(&hash_table_lock); 
  spin_unlock(&lru_list_lock); 
  touch_buffer(bh); 
  return bh; 
 } 
 /* 
  * If we block while refilling the free list, somebody may 
  * create the buffer first ... search the hashes again. 
  */ 
 write_unlock(&hash_table_lock); 
 spin_unlock(&lru_list_lock); 
 refill_freelist(size); 
 goto repeat; 
} 
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The getblk() function takes in as parameters a device number, block number and 

block size.  It checks to see if the function is in the hash table of blocks currently in the 

buffer cache.  If the block with the specified size is in the buffer cache, the function 

returns the buffer_head structure for the block, which contains information about the 

block, the buffer state, and the location in RAM.  If it is not in the hash table, it takes a 

buffer_head from the list of free buffer_heads.  If a buffer_head is acquired, it fills in the 

device number, block, and state of the buffer_head and returns it.  Otherwise it refills the 

list of free buffers and repeats the process. 

 The code in bold font is the code added for this project to measure buffer cache 

hits and misses and the checks to make sure only hits and misses to the disks the database 

files are located on are recorded. 
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Chapter IV.  Results and Analysis 

 This chapter describes the data that was gathered from the numerous tests runs on 

the databases.  This data is then analyzed, and some conclusions are drawn based upon 

the trends in the results.  Each subsection displays graphs broken down by database size 

and are followed by a detailed analysis of each graph. 

4.1 Database Size 

 This section describes the effect on performance of using different database sizes.  

In order to evaluate each database, 4 different Oracle cache sizes were used for tests.  The 

tests utilized the micro-benchmarks that are described in the Approach chapter.  Each test 

consisted of 100 transactions, chosen based upon the frequency of each transaction as 

specified by TPC-C.  The average number of queries per transaction is approximately 

2.74 – this accounts for the probability and number of queries for each specific 

transaction. 
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Figure 4.1. Oracle Buffer Cache Hit Ratio for Small Database 
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Figure 4.2. Oracle Buffer Cache Hit Ratio for Medium Database 
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Figure 4.3. Oracle Buffer Cache Hit Ratio for Large Database 

 
 
 Tests run using the small database shown in Figure 4.1 result in the same Oracle 

hit rate for all Oracle cache sizes except the smallest (64M).  This is because the database 

is small enough to be able to have almost all of the data loaded into the Oracle cache at 

the same time.  The medium size database (Figure 4.2) also can be loaded almost entirely 

into the Oracle cache for the 512M and 768M cache sizes, and thus the Oracle hit rates do 

not change for any higher Oracle cache sizes.  Using the large database, as shown in 

Figure 4.3, it is not possible to entirely cache the database into RAM.  Because of this, 

the test results using the large database more clearly show a trend of higher Oracle hit 

rates for larger Oracle cache sizes.  If, on the other hand, the database were small enough 
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to fit entirely into the Oracle buffer cache, then all of the data could be loaded into it and 

the Oracle buffer cache would have very few cache misses.  This would not allow useful 

data to be extracted from the tests.  For this reason, all of the subsequent tests were 

conducted using the large database. 

4.2 Oracle Buffer Cache 

Figure 4.4 shows the Oracle buffer cache hit ratio, as reported by Oracle, for tests 

that were run using the large database and cache sizes ranging from 64MB to 1536MB 

(compared to the physical memory size of 768MB and approximately 1536MB of swap 

space).  The graph clearly shows a trend of increasing hit ratio as the cache size used 

increased.  Oracle recommends using an Oracle buffer cache size that results in a hit ratio 

of 90 percent or greater [Bobrowski 2000].  The results in Figure 4.4 show that the hit 

ratio exceeds 90 percent for every Oracle cache size that is greater than or equal to 

672MB. 
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Figure 4.4. Oracle Buffer Cache Hit Ratio 

 
 
 The average number of Oracle buffer cache misses occurring per query is 

displayed in Figure 4.5.  These numbers were obtained by dividing the total number of 
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cache misses by the average number of queries in a test with 100 transactions.  As the 

size of the buffer cache increased there was more space allotted to store the data.  This 

resulted in a lower number of cache misses for tests that used a larger buffer cache size. 
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Figure 4.5. Oracle Buffer Cache Misses Occurring per Query 

 
 
4.3 Linux Buffer Cache 

 The Linux buffer cache hit ratio as measured by the kernel hooks added to 

buffer.c, shown in Figure 4.6, exceeds 99% for every test that was run regardless of the 

size of the Oracle buffer cache.  This fact shows that there is little performance change in 

Linux based upon this variance in size.  However, it is important to note that there is a 

slight decrease in the Linux hit ratio if the Oracle buffer cache size is near or exceeds the 

size of the system RAM (ie. For all cache sizes greater than or equal to 736MB).  This is 

most likely due to the fact that the Oracle cache could not entirely fit into RAM and must 

therefore be swapped in and out. 
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Figure 4.6. Linux Buffer Cache Hit Ratio 

 
 
 Figure 4.7 shows that the number of cache misses per transaction in the Linux 

buffer cache is mostly consistent regardless of the size of the Oracle buffer cache.  The 

Oracle buffer cache size does not have a large effect on the number of misses in the 

Linux buffer cache and there is a very low number of misses per query.  These could both 

be a result of the usage of the Linux page cache and the swap space.  The entire database 

could be stored in swap space and then swapped in from disk once it is detected that it is 

not in memory.  Any subsequent requests for data would result in buffer cache hits rather 

than misses.  This is also the reason that the Linux buffer cache hit ratio is so high. 
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Figure 4.7. Linux Buffer Cache Misses Occurring per Query 

 
 
4.4 Balancing the Linux and Oracle Buffer Caches 

 Figure 4.8 shows the number of Oracle buffer caches misses that occur for every 

Linux buffer cache miss.  A possible ideal situation would be for an approximately equal 

number of misses to occur in each buffer cache rather than having one or the other 

thrashing to retrieve all of the data from disk.  It is also important to minimize the number 

of Oracle and Linux buffer cache misses as shown in Figures 4.5 and 4.7 respectively.  

This graph shows that small Oracle cache sizes cause too many cache misses, whereas 

large Oracle cache sizes perform about equally well.  However, to obtain the best 

performance, it is also important to consider the run time as described in 4.5. 
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Figure 4.8. Oracle Misses Occurring per Linux Miss 

 
4.5 Test Run Time 

The actual run time for completing an equal number of transactions using 

different sizes for the Oracle buffer cache can be see in Figure 4.9.  In some cases, this 

information is ultimately the most important result because database system users are 

only concerned with the speed with which their transactions are processed.  The run times 

that are shown in this graph are an average of three test runs for each size buffer cache, 

and the standard deviation for these was approximately 200 seconds.  Because of the 

random selection of transactions – some of which take longer to   complete – these results 

would be impossible to reproduce exactly, however, the intent is to show the trend that 

results from using different size Oracle caches. 
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Figure 4.9. Test Run Time 
 

 
As can be seen in the graph, if the Oracle buffer cache is too small or too large 

then it will take more time to complete the tests.  The reason that more time is required 

for a very large Oracle cache (larger than memory) is because the entire buffer cache will 

not fit into memory at once.  Thus, more data more must be copied into and out of swap 

space.  Also, too small of an Oracle buffer cache takes more time because data must be 

shuffled in and out of Oracle’s buffer cache because it fills up very quickly.  The fastest 

test time occurs when the Oracle buffer cache is small enough to fit into RAM, but not so 

small that it cannot hold a significant portion of the database. 

4.6 Linux Page Cache and Swap Space 

 The Linux page cache and swap space were found to be the cause of low Linux 

buffer cache hit rates in Section 4.3 Linux Buffer Cache.  /proc/meminfo was used to 

monitor the memory and swap usage during several tests.  It became evident that Linux 

does not keep the Oracle buffer cache in memory – it swaps part or all of it out to the 

swap space onto disk.  In an attempt to prevent Linux from swapping out the Oracle 
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cache, the Linux swap space was turned off.  It was determined that the Oracle cache size 

must be less than or equal to the size of the Linux swap space.  Therefore, if you turn off 

the Linux swap space then you cannot run Oracle.  Linux must be able to swap the entire 

Oracle buffer cache out disk.  The user is also unable to make the Oracle buffer cache 

larger than the size of the swap space and run Oracle.  Swapping the Oracle buffer cache 

decreases system performance because Oracle buffer cache data that is supposedly loaded 

into RAM was actually swapped out to disk and requires additional overhead to swap it 

back into RAM. 

4.7 Buffer Cache Algorithm Modifications 

 In this project, several modifications to the Linux buffer cache algorithm, as 

mentioned in Chapter III section 3.4, resulted in tests taking as much as 15 minutes 

longer to complete.  The modifications adjusted the conditions required to run bdflush() 

and kupdate() which write out dirty buffers to disk.  Do to time constraints an exhaustive 

study of the effects of changing these variables could not be completed, however this 

shows that there is a performance impact and leads to the belief that these variables can 

be tuned to specific server applications. 
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Chapter V.  Conclusions 

The goal for this project was to test the performance of an OLTP system on the 

Linux operating system.  OLTP has become a very important function of database 

systems and the Linux operating system has gained popularity as a server operating 

system because of its open source policy.  Because of the time involved with reading and 

writing data to and from disk, understanding the Linux buffer cache presents an ideal 

opportunity to better the performance of the entire system for OLTP applications. 

Performance analysis of the system was performed using a micro-benchmark suite 

that generated a large OLTP workload on the Oracle database.  The Oracle buffer cache 

hit ratio was obtained from Oracle while the Linux buffer cache hit ratio was gathered 

using kernel variables and a kernel module that recorded the number of cache hits and 

misses.  Tests were run on three different sized databases using several different Oracle 

buffer cache sizes. 

 In order to achieve optimal Oracle performance, a large enough Oracle buffer 

cache must be used.  As the size of the oracle buffer cache approaches the size of 

physical memory, the Oracle buffer cache hit ratio exceeds 90 percent, which is 

considered optimal by Oracle.  Once the Oracle buffer cache size reaches or exceeds the 

size of physical memory, the hit ratio levels off however the time to run each test 

increased because Linux had to use swap space to store parts of the Oracle buffer cache 

and other kernel data in memory.  This swapping in and out of swap space required more 

reads and writes to disk by the kernel, which slowed down system performance and 

forced Oracle to wait until data was back into physical memory before it could access it.  

It was also discovered that the Oracle buffer cache size cannot exceed the size of the 

Linux swap space. 
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 With any sized Oracle buffer cache, the Linux buffer cache hit ratio was found to 

be over 99 percent but drops off 0.25 percent when the Oracle buffer cache approaches 

and exceeds the size of the physical memory.  This suggests that the data for the database 

is being completely loaded into RAM and swap space and then accessed by Oracle.  The 

slight drop in hit ratio around the size of physical memory suggests that more misses 

occur in the Linux buffer cache when data is in swap space and not in physical memory 

because it has to be brought back into physical memory.   

 The Linux buffer cache can be adjusted and tuned to the application of the Linux 

server.  The modified kernel code for this project offers a way to gather statistics to help 

tune a system for optimal performance under any application.  Micro-benchmarks such as 

those developed for this project are also useful to further understand how the system is 

behaving.   
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Chapter VI.  Future Work  

This chapter discuses further research and testing that can be done to help better 

understand the inner workings of the Linux kernel and how to tune it to optimal 

performance for large-scale servers. 

 Further testing is required to determine all of the effects of adjusting the 

parameters of bdflush_param.  In database applications where far more reads occur to the 

database than writes, the bdflush_param parameters may be able to be tuned for better 

performance.  Likewise these parameters may be tuned to a database system with far 

more writes than reads or and equal number of both.  For example, a system with more 

reads may be tuned to have the flushes out to disk occur less often, or even only if the 

buffer cache contains too many dirty buffers.   

Testing of the Linux page cache and Linux swap space may also discover further 

system tuning.  As shown in this report, the Linux page cache and swap space greatly 

affect the performance of the OLTP transactions.  Modifying parts of the Linux kernel 

might lead to a more efficient buffer cache algorithm or reduce the need for the buffer 

cache all together.  There are many possible ways to alter Linux to be more efficient for 

large-scale servers.   
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Appendix A.  TPC-C Results 

 
Source: www.tpc.org (November, 2001) 

Database 
Hardware 
Vendor System tpmC 

Price/ 
tpmC 

System 
availability OS 

TP 
Monitor 

Date 
Submitted 

Oracle 8i 
Enterprise 
Edition v. 

8.1.7   

Bull   
Bull Escala 

Epc 810 c/s   66,750  
37.57 US 

$  
05/28/01  

IBM AIX 
4.3.3   

Webshpere 
App. 

Server Ent. 
Edition 
V.3.0  

05/28/01  

Oracle 8i 
Enterprise 
Edition v. 

8.1.7   

Bull   
Bull Escala 

EPC2450 c/s 
  

220,807  
34.67 US 

$  
05/28/01  

IBM AIX 
4.3.3   

Webshpere 
App. 

Server Ent. 
Edition 
V.3.0  

05/28/01  

Oracle 8i 
Enterprise 
Edition v. 

8.1.7   

Compaq   

Compaq 
AlphaServer 

GS320 
Model 6/731 

  

155,179  
52.88 US 

$  02/02/01  

Compaq 
Tru64 
UNIX 
V5.1   

Compaq 
DB Web 

Connector   
04/03/01  

Oracle 9i 
Database 
Enterprise 
Ed. 9.0.1   

Bull   
Bull Escala 
PL800R   105,025  

25.41 US 
$  09/26/01  

IBM AIX 
4.3.3   

Websphere 
App. 

Server Ent. 
Edition V 

3.0  

09/26/01  

Oracle 9i 
Database 
Enterprise 
Ed. 9.0.1   

IBM   

IBM eServer 
pSeries 660 
Model 6M1 

  

105,025  
25.33 US 

$  09/21/01  
IBM AIX 
4.3.3   

Websphere 
App. 

Server Ent. 
Edition V 

3.0  

09/10/01  

Oracle 9i 
Database 
Enterprise 
Edition   

HP   

HP 9000 
Superdome 
Enterprise 
Server   

389,434  
21.24 US 

$  
05/15/02  

HP UX 
11.i 64-

bit   

BEA 
Tuxedo 6.4 

  
11/19/01  

Oracle 9i 
Database 
Enterprise 
Edition   

Compaq   
Compaq 

AlphaServer 
GS320   

230,533  
44.62 US 

$  07/30/01  

Compaq 
Tru64 
UNIX 
V5.1   

Compaq 
DB Web 

Connector 
V1.1   

06/18/01  
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Appendix B.  Sample code 

This section contains sample code of the files created for this project. 
 
Kernel module emcModule.c 
 
#include <linux/kernel.h> 
#include <linux/module.h> 
#include <stdio.h> 
#include "/usr/include/linux/emcCache.h" 
#include <linux/modversions.h> 
 
/*EMCMQP cach hit count variable */ 
extern int emcmqp_hits; 
extern int emcmqp_misses; 
 
int init_module() 
{ 
        printk("----------------TEST STARTED-------------------\n"); 
        printk("Cache hits %d \n",emcmqp_hits); 
        printk("Cache misses %d \n",emcmqp_misses); 
        emcmqp_hits = 0; 
        emcmqp_misses = 0; 
        return 0; 
} 
 
void cleanup_module() 
{ 
        printk("----------------TEST DONE----------------------\n"); 
        printk("Cache hits %d \n",emcmqp_hits); 
        printk("Cache misses %d \n",emcmqp_misses); 
 
} 
 

emcCache.h 
 
/*EMCMQP cach hit count variable */ 
int emcmqp_hits; 
int emcmqp_misses; 
 

Sample transaction script: payment 
 
#!/usr/bin/perl -w 
 
use DBI; 
use strict; 
use DBI qw(:sql_types); 
 
my $dbh = DBI->connect("dbi:Oracle:mqp1.emcmqp.wpi.edu", <oracle user>, <password>, { 
RaiseError => 1, PrintError => 1 } ) or die $DBI::errstr; 
 
my $numcustomers = 2500000; # 2.5 Million customers 
 
#---------- insert payment into table 
my $account = rand($numcustomers) % $numcustomers; 
my $amount = rand(5000) % 5000; 
my $paydate = rand(10000) % 10000; 
 
my $sql = qq{ INSERT INTO payment_small VALUES ($account,$amount,$paydate)}; 
$dbh->do($sql); 
 
$dbh->disconnect; 
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Control.pl 
# File: control.pl 
# Authors: Michael Narris, Joshua Obal 
# Description:  This program randomly selects which microbenchmarks to run.  Neworder and 
# payment occur 10 times as often as the other microbenchmarks. 
# Run Instructions:     "> ./control.pl" 
 
print "Number of repetitions:"; 
my $repetitions = <STDIN>; 
print "Number of sets:"; 
my $numsets = <STDIN>; 
 
  open (FILE, "more /proc/meminfo|grep Cached |"); 
  while ($line = <FILE>){ 
    print "$line"; 
  } 
  close FILE; 
 
  open (FILE, "more /proc/meminfo|grep SwapFree |"); 
  while ($line = <FILE>){ 
    print "$line"; 
  } 
  close FILE; 
 
  open (FILE, "more /proc/meminfo|grep MemFree |"); 
  while ($line = <FILE>){ 
    print "$line"; 
  } 
  close FILE; 
 
 
for ($j=0; $j<$numsets; $j++){ 
 
`insmod emcModule.o`; 
open (FILE, "tail -15 /var/log/messages |"); 
while ($line = <FILE>){ 
   print "$line"; 
} 
close FILE; 
 
my $queries = 0; 
for ($i=0;$i< $repetitions; $i++){ 
    $transaction = rand(24) % 24; 
 
    if ($transaction < 10){ 
 $queries = $queries + 5; 
 $returnval = fork; 
 if ($returnval == 0){ # child 
     `./neworder.pl`; 
     exit; 
 } 
  
    } 
    elsif ($transaction < 20){ 
 $queries++; 
 $returnval = fork; 
 if ($returnval == 0){ # child 
     `./payment.pl`; 
     exit; 
 } 
 
    } 
    elsif ($transaction == 20){ 
 $queries++; 
 $returnval = fork; 
 if ($returnval == 0){ # child 
     `./checkorder.pl`; 
     exit; 
 } 
    } 
 
    elsif ($transaction == 21){ 
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 $queries++; 
 $returnval = fork; 
 if ($returnval == 0){ # child 
     `./deliveries.pl`; 
     exit; 
 } 
 
    } 
    elsif ($transaction == 22){ 
 $queries++; 
 $returnval = fork; 
 if ($returnval == 0){ # child 
     `./stock.pl`; 
     exit; 
 } 
 
    } 
 
if ($i % 100 == 0){     
  open (FILE, "more /proc/meminfo|grep Cached |"); 
  while ($line = <FILE>){ 
    print "$line"; 
  } 
  close FILE; 
 
  open (FILE, "more /proc/meminfo|grep SwapFree |"); 
  while ($line = <FILE>){ 
    print "$line"; 
  } 
  close FILE; 
 
  open (FILE, "more /proc/meminfo|grep MemFree |"); 
  while ($line = <FILE>){ 
    print "$line"; 
  } 
  close FILE; 
  } 
 
  wait(); 
 
} 
 
print "========================================\n"; 
print "Finished transactions.\n"; 
`rmmod emcModule`; 
print "Number of total transactions = $repetitions\n"; 
print "Number of total queries = $queries\n"; 
 
sleep(2); 
open (FILE, "tail -20 /var/log/messages |"); 
while ($line = <FILE>){ 
   print "$line"; 
} 
 
 if ($j < $numsets-1){ 
    sleep $repetitions * 2; 
 } 
} 
 
 
close FILE; 

 


