
1 

Proj Code: DMO- 4167 

DEMON DISSENSION 

A Major Qualifying Project Report:  

Submitted to the Faculty  

of  

WORCESTER POLYTECHNIC INSTITUTE  

In partial fulfillment of the requirements for the  

Degree of Bachelor of Science  

by  

 

Anthony Sessa 

Nick Konstantino 

Brian Seney 

Michael Metzler 

 

Professor Dean O'Donnell, Major Advisor 

    Professor Mark Claypool, Co-Advisor 

Date: April 25th, 2013 



2 

Abstract 
Demon Dissension provides a strategic twist on the traditional fighting game experience 

to players and showcases complex game logic, networking, and fighting game design principles.  

Built entirely in the Unity engine and programmed in C#, Demon Dissension pits two players 

against one another in a battle for glory, challenging them to not only fight against the character 

in game, but the strategies being employed by the actual opponent.  A team of two artists and 

two programmers took four terms to create a deep multiplayer battle experience. 
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1. Introduction 
Fighting games are games where 2 players battle to the death utilizing a roster of 

characters with different abilities.  Demon Dissension is a fighting game with RPG elements, 

meaning that it introduced the concept of a player being able to customize their character’s battle 

attributes, in order to make it a more personal experience. Demon Dissension features single 

player versus an adaptive AI, local multiplayer play, and network play that has both manual and 

matchmaking methods of connecting players.  The players have four characters to choose from, 

each with a unique skill set, but all share similar traits such as special and super techniques, 

dashing, jumping, and eleven separate basic attacks.  The goal of the game is to simply reduce 

the opponent’s Hit-points (HP) to 0, or just have more HP when the timer runs out. 

Two programmers and two artists worked on the project for four terms.  Anthony Sessa 

was assigned the roles of producer, sound design, and stage design and modeling.  He kept the 

schedule of all the meetings and deadlines, as well as recording sound effects and implementing 

them for the characters and stages.  He was also responsible with making sure the stages fit 

aesthetically with the characters, and were not so filled with detail that it caused the game to 

slow down in any way.  Nicholas Konstantino was the lead game designer and lead artist.  Nick 

created all the assets for all four of the characters, from concept art to finished, rigged models 

with full sets of animations, as well as made all the final design and balance decisions.  Brian 

Seney was the lead programmer, and coded much of the game logic, menu systems, and useful 

in-game extras we did not even plan for, such as the debug attack editor, the adaptive AI, and the 

achievement system.  Michael Metzler was the main network programmer, who over the course 

of the project created a playable online mode with a central, hosted server that cut down on lag 
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time fairly effectively.  For a term, Breeze Grigas of Becker College designed a character and did 

some texture work to help the characters and the world come together more solidly. 

1.1 Concept Development 

 The original idea we had pitched was combining a “beat’em up” game similar to Streets 

of Rage, where players would fight their way to the center of the level, collecting stat boosts 

along the way, and then finish the level by fighting each other like in a normal fighting game.  

The problem with this idea was not that the scope was too large, but rather that the entire idea of 

having to play a mini-game in order to play the main game was flawed.  Playing that mini-game 

would eventually become a chore for the players who just want to start fighting right away, and 

then giving them the option to skip it will end up making all the work to make that “pre-fight” 

game wasted.  We cut that feature in favor of using a stat menu. 

1.2 Conceptualization 

The fighting game genre has been really successful since their reintroduction to the 

mainstream with the release of Street Fighter IV, and each series has its own unique systems for 

combos, techniques, or gameplay.  We tried to find a feature that those games had not yet done, a 

feature that could take the limited character pool we were forced into due to time and artist 

constraints, and retain the strategic depth that fighting games are known for. That solution ended 

up taking a customizable stat system and applying it to various fighting game stats. 

We created a story stating that the players themselves are demons who summon these 

fighters out of their respective worlds and pit them in battle against one another for 

entertainment. 
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1.3 Gameplay Description 

 Demon Dissension is a fighting game, and a fighting game is a genre that is centered on 

executing a player character’s attacks and skills more effectively than the opponent in order to 

reduce their HP to 0, or lower than the player’s own HP before the time runs out.  

 

Fig 1.1 A sample game screenshot  

The players have 3 ‘bars’ they need to pay attention to on the user interface: their HP 

(yellow), their Energy Meter (green), and their experience (EXP) Meter(blue).  HP is reduced by 

attacks, but the other two meters are slowly filled when landing or receiving hits.  The red area of 

the HP meter is health that is retained by blocking, which slowly regains over time. 

While in combat, each player has 1 super move, 2 special moves, and 11 normal attacks - 

4 standing, 4 aerial, and 3 crouching.  The super skill can only be used while the player’s energy 

meter is full, and it is used by pressing the button combination A+B.  Special moves are used by 

doing a combination of directional inputs and either A, B, or C buttons.  The rest of the moves 

are done by pressing on of the A, B, C, or D buttons either while standing, while jumping, or 
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during a crouch.  The weakest and lowest priority moves, the “A” moves, can be canceled into B 

moves, and B into C, and so on, in order to create combo strings.  Combo strings are attacks 

done in quick succession one after the next which is guaranteed to work on the opponent if the 

player has consistent timing. 

Each character has similar defensive options, as well.  Most importantly is the ability to 

block, which is done by holding back when the player is being attacked.  Doing so will reduce 

the damage the player take and leave some “red health” that will slowly regain over time, unless 

the player gets hit.  If the player blocks within a small frame window of being struck with an 

attack, the player does a “perfect” block that allows the player to do a quick counter attack if 

they were ready for it.  The player can also press an attack button when an attack collides with 

their block to do a “push block”, moving their opponent back out of range, in order to get more 

space to reset to a neutral position.  Other defensive and movement options include walking by 

holding left or right, dashing by double tapping left or right, jumping by pressing up, air dashing 

by double tapping left or right while airborne, and crouching by holding down.  The more 

advanced hybrid offense-defense option is the “Omni-Cancel”, which is performed by pressing 

A+B+C buttons.  For a cost of some of the player’s meter, it will take them out of any attack or 

animation their character is currently performing, making it useful for unorthodox combos or 

getting out of dangerous situations. 

Finally, the main attraction to our game is the level up system.  When the player’s EXP 

meter fills up, it prompts the player to level up by pressing A+B+C+D.  Doing so will imbue the 

character with the bonuses the player had selected before the battle began, at the menu shown in 

Fig 1.3. The player will instantly heal any red health they have, as well as UI and character 
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specific aesthetic changes to make it visually apparent to the player and their opponent what 

level the characters are, as shown in Fig 1.2. 

 

Fig 1.2 Screenshot showing the level-up mechanic in action 

 

Fig 1.3 The stat select screen 
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The six stats the player has to choose from are: 

○ HP: Increasing this stat increases the character’s overall health. 

○ Energy: Increasing this stat increases how quickly the character gains energy in 

battle. 

○ Attack: Increasing this stat increases how much damage the character’s attacks 

deal. 

○ Defense: Increasing this stat increases the amount of health the character retains 

on block. 

○ Speed: Increasing this stat increases how quickly the character moves around the 

stage. 

○ Weight: Increasing this stat increases the amount of damage the character can take 

before dizzying. 

1.4 Production 

 Our producer, Anthony, was in charge of keeping the group organized.  He was 

responsible for scheduling all of the meetings as well as facilitating communication between the 

group and advisors. He was also responsible for ensuring the group was kept on task so 

milestones could be completed on time. Three major components went into ensuring a quality 

production job was achieved. These components included the scheduling of meetings, what 

actually happened at each of these meetings, as well as the production documentation. 

Anthony scheduled an average of three meetings a week for the duration of the project. 

Once at the beginning at the week to discuss what had been done the last week, where that left us 

in our schedule, and what was projected to be done by the meeting with the advisors by the end 

of the week. The second meeting of the week was dubbed a “working meeting”. Here, we all 

convened in the IMGD lab and spent an hour working on the project together. This facilitated 
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high productivity since we were all together and able to answer any questions that may have 

cropped up with ease. At the third and final meeting of the week, we met with our advisors Dean 

O’Donnell and Mark Claypool to present them with that progress and discuss our plans moving 

forward. These meetings were instrumental in determining whether or not we were developing a 

quality game.  

All of our work was tracked on various Google Documents and weekly Tumblr blog posts were 

made to summarize our progress as a group. Some of these documents included a daily time sheet so we 

could track how many hours each of us was putting into the project, various design documents for 

characters or stages, as well as a to do list which had tasks we had to complete listed in order of difficulty 

and importance. Each of these was updated daily so Anthony could easily stay informed on the rest of the 

group activities and make any adjustments to milestones that may have been needed. Anthony also 

updated the Tumblr blog every Friday to provide an update to people outside of the project team on the 

progress of the game. These ranged in length from a paragraph or two to a much more substantial post if 

an entire term was being recapped. 
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2. Artistic Methodology 
This section discusses the methods the artists went about to plan out, create, and 

eventually implement each of the art assets, so that one can observe the various thought 

processes, design decisions, and workflows experimented with, broken down by each major 

asset, and furthermore by character or stage when necessary. 

2.1 Art Direction 

The art favors simplistic models, colors, and textures, taking reference from such games 

as Jet Set Radio Future (Fig 2.1), Dragon Ball Z: Budokai, The Legend Of Zelda: The Wind 

Waker. These games all make use of a toon shader in order to make the assets appear more like a 

cartoon.  The decision to utilize toon or cel shaders in Demon Dissension was not made until 

Unity3D’s lighting made it difficult to use other shaders to properly light the assets in a similar 

style. 

.  

Fig 2.1 A sample of characters from Jet Set Radio Future, as they appear in game. 
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2.2 Character Design 

2.2.1 Concept Art 

Ellsee’s character design Fig(2.2) was inspired by the idea of creating a strong, 

empowered female character who can stand up to any man in the fighting arena.  The idea of her 

being a “heart breaker” was taken to the next level by giving her a weapon in the shape of a 

locket, for the sole purpose of breaking her opponents.  Some of her style and demeanor were 

taken from strong female characters in gaming, like Tifa of Final Fantasy 7 and Laura Croft of 

Tomb Raider. 

     

Fig 2.2 Finalized Concept Art for Ellsee. 
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Velle’s character design (Fig 2.3) was inspired by fighting game characters like Ky 

Kisuke of the Guilty Gear series and Jin Kisaragi of the BlazBlue series, and then given a 

futuristic vibe.  His weapons were designed to make his playstyle drastically different than 

Ellsee’s.  Not many of the decisions made about Velle’s visual design were made during the 

concept art stages, and mostly made during modeling phases. 

 

Fig 2.3 Velle’s ‘Final’ concept art. 
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Penguin’s design (Fig 2.4) was simple.  What started out as a joke character gained 

popularity, so the team decided that in order to make it more over the top, the best way to make a 

penguin into a fighting game character would be to give him samurai armor, Heihachi-inspired 

hair, and a sword.  He is designed to be a battle-worn and fearsome penguin warrior named 

Penguin, and has since become a mascot for the game. 

 

Fig 2.4 Penguin’s Final Concept Art 
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Korin’s design (Fig 2.5) was inspired by the desire to create a second female character 

that would stand as an opposite to Ellsee.  The goal was to make a character who was colorful, 

friendly, and lively.  Her weapon and move set were inspired by the rhythmic gymnastics during 

the summer Olympics.  Due to time constraints, Korin’s concept artwork was tasked out to a 

student (Breeze Grigas) doing work for independent study project credit. 

 

Fig 2.5 Korin’s Final Concept Art 
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2.2.2 Character Modeling & Texturing 

The modeling pipeline for the characters changed as we scoped down the assets required 

for a finished character.  Ellsee and Velle had the most complex modeling process, which was 

done in order to create usable normal and texture maps during the modeling process. 

1 Create a low poly base mesh in Maya, roughly shaped like the character in the concept 

art. 

 

Fig 2.6 An example of a low poly base mesh 
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2 Import the low poly base into ZBrush, and sculpt in the fine details, work the 

proportions, and export the high poly mesh. 

 

Fig 2.7 Ellsee’s model, finished in ZBrush. 
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3 Bring the high poly mesh into Topogun and retopologize a new low poly mesh at about 

15,000 polygons. 

 

Fig 2.8: Ellsee’s model undergoing the retopology process in Topogun. 
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4 UV Map the low poly mesh in Maya, then then create the textures for it in photoshop. 

 

Fig 2.9: Ellsee’s UV Unwrap and Texture. 
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5 Put all of it together in Maya, and get ready to begin rigging. 

 

Fig 2.10: Ellsee’s model, rigged and textured.                                 

 

 

This process, although it afforded us a great deal of detail, took too long.  Especially 

when there were at least 2 more characters that needed to be made, and several other animation, 

rig, and texture assets on top of all that.  We had also decided that because of Unity’s bug-prone 
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lighting, we were going to abandon the use of normal maps and begin the use of hand-painted 

textures.  So when it came time to model Penguin and Korin, the process had been simplified to: 

1 In Maya, create the low-poly mesh to total between 6,000 and 15,000 polys, essentially 

skipping all the steps in ZBrush from the previous method, and just working to make a 

more usable base model. 

2 Use Face mode to select a region you want as a separate UV island, and go to Mesh -> 

Extract to make it into its own object, and much easier to UV.  Do this as many times as 

you need to create a usable UV map. 

3 Export UV map into Photoshop and begin texturing. 

 After creating Penguin and Korin in this method, it was determined that Ellsee and Velle 

stood out from them because of the differences in their model structure, and so they were 

revisited and touched up to be more like the newest models.  Ellsee was also given planar hair 

maps by creating a single rectangular plane, assigning it a hair texture, and duplicated and 

resized and shaped over her head as necessary to get the desired hair style. 

2.2.3 Character Rigging 

 This portion of the character creation process was by far the most difficult, but the most 

important thing to remember while rigging is that the more simple one can make the rig while 

still performing all the functions it is required to do, the easier it is to start creating the 

animations and easier to import into the engine. 

Ellsee’s rig required the most revision, due entirely to her weapon.  After just giving it a 

12 joint FK skeleton, it was determined that getting a realistic and fluid motion out of that set up 

took far too long than we had to spend per animation.  The first real rig attempted to use the 
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“maya hair” physics to animate the middle sections of the chain between her arm and the end of 

the locket, but that functionality was removed in Maya 2013, so we had to move onto different 

options, eventually settling on SplineIK calculations.  This way, we could just set a path using 

controls, and the locket would travel along that path.  It did not give it a fully chain-like feel, but 

it was the best average we could manage with limited time and rigging knowledge. 

Every character’s rig used a simple, but versatile IK foot rig setup, allowing for ball roll 

and consistent floor contact.  This was important because without IK functionality, it becomes 

harder to animate high speed movements in the legs and feet.

 

Fig 2.11: ikFoot Rig setup 

Everyone else’s weapons were either applied to them in game for functional reasons 

(Penguin, Velle) or just parented to a bone specifically for them (Korin), and worked right the 

first time. 
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2.2.4 Character Animations 

The final, and most important, assets for the characters were their animations. There were 

roughly 35 animations per character, varying in length from 3 to 100 frames.  Offensively, each 

character had 4 standing attacks, 3 crouching attacks, 4 aerial attacks, and a super.  The stronger 

the attack, the more time it takes for the move to strike, so greater windup or bigger action was 

required.  There were also all the mobility and defensive animations, like blocks, flinches, idles, 

dashes, walks, jumps, and more.  For this portion a lot of reference was gathered from widely 

available fighting games and their frame data, such as Street Fighter, Marvel vs Capcom, and 

Soul Calibur series. 

All the animation work was done in Maya, and special attention was paid to the 

perspective of the scene camera, viewing the animations from the same perspective that the in-

game camera would be.  If there was not enough time to tweak the animation to look good from 

all angles, then priority went to that camera angle.  Unfortunately, with this being a 3d game, the 

camera in the actual game would shift slightly depending on the locations of the characters, and 

sometimes deform with the carefully crafted silhouettes, such as Ellsee’s standing C attack (Fig 

2.12). 
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Fig 2.12: Ellsee in her “Standing C” attack. 

2.3 Stage Design 

  The stages for the game were designed to be diverse as well as fun to play on. In the final 

version of the game, we ended up with five different stages. These stages were “Arctic”, 

“Urban”, “Disco Floor”, “Dungeon”, and “Training Room”. With the exception of “Training 

Room”, each stage has a character associated with it. 
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Fig 2.13: Screenshot of Arctic in its final form 

Arctic, the home of Penguin, was the stage that was started first. As a result, it was also the first 

stage completed for the game. It also went through the most revisions before getting to its final 

form. The stage features a main platform made of ice that is surrounded by smaller ice chunks as 

well as two small ice platforms with penguins and snowmen on them for added life. These 

inhabitants move around the stage as the fight is going on. Bigger icebergs float behind these 

smaller platforms as well. 
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 Fig 2.14: Screenshot of Urban in its final form 

Velle’s stage, Urban, saw 2 major revisions over the course of the project. The original 

and first revisions of the stage were on the ground and took place on a streetside basketball court 

with cars whizzing by and pedestrians taking in the fight. The second revision brought the stage 

to completion. The revision ended up being necessary due to the fact that having a busy, bustling 

city down below caused our game to slow down whenever it ran on the stage. This final big 

change saw the fight moved to the top of a skyscraper with a city skyline in the background. 
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Fig 2.15: Screenshot of Dungeon in its final form 

Ellsee takes up residence in the Dungeon stage. Since the title of our game has the word 

“demon” in it, we needed a stage that had a demonic vibe to it. This was the third stage that was 

completed for the game. Composed completely of brick, the stage is lit only by the torches that 

line its walls and pillars. The walls are decorated with swords & spikes and a mysterious fog 

rises from the ground to give the stage a dark and dreary feel. 
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Fig 2.16: Screenshot of Disco Floor in its final form 

The Disco Floor is the final main stage in the game. We were not entirely sure what the 

stage was when it was first started since it initially consisted of just a few tables and chairs. The 

stage now consists of a bar with stools, a dance floor that lights up (playing the game of life in 

the process), and a set of lights with a disco ball hanging from the ceiling. It is the most colorful 

stage in the entire game. 



33 

 

Fig 2.17: Screenshot of Training Room in its final form 

After the four character stages, Demon Dissension also has a training room. While this 

“stage” can be selected to actually fight on, its main purpose is for our training modes. Whenever 

the player goes through a tutorial mode or a training mode, the gameplay takes place on this 

stage. As for the design, this stage is extremely simple. We created an old looking dojo texture 

and just repeated it several times.    

2.3.1 Stage Modeling 

 The modeling process for the stages was pretty straightforward. After coming up with the 

initial concepts for a stage, the art team determined which objects would have to be modeled and 

made a list. All of the modeling was done in Autodesk’s Maya software since the detail that 

Zbrush provides was not necessary. 
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2.3.2 Stage Animation 

In order to breathe a little bit of life into some of the stages, some animation work was 

done to add another layer to each of them. The only examples of this that made it into the final 

game include the smaller penguins and snowmen in the Arctic stage. At different points in 

development, cars, helicopters, spectators, and even skeletons were animated with the intention 

of adding them to the stages. In the end, optimization was more important so these animations 

were scrapped in favor of making sure the game ran well. 

2.4 Sound Design 

2.4.1 Music 

Music is one of the first things a player encounters that sets the tone of the game.  All of 

the music in Demon Dissension was composed by the project team, and was created in Anvil 

Studio, a free MIDI creation tool.  The music was composed for an ensemble of drums, electric 

guitar, bass guitar, and piano, and has a heavy rock feel.  The rock style was selected as it 

meshes well with the nominally dark subject matter of Demon Dissension.  Five music tracks 

were prepared for the game: one for each stage (the menu music is shared with the dungeon 

stage).   

2.4.2 Effects 

 Sound effects play a very important role in a fighting game. Demon Dissension is no 

different. When it came to recording sound effects for the game, various punches, kicks, and 

particles sound effects were recorded using a microphone. This was accomplished by punching 

and kicking various pieces of furniture. After the initial recording process, the sound effects were 

brought into Pro Tools where they were mixed and mastered to sound more like the sound we 

intended them to before being brought into the game. Once in game, the punches and kick 

sounds are randomly chosen and played whenever a punch or kick lands on an opponent. 
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2.4.3 Voice Acting 

 The voice acting was a very necessary process for added a lot of life to the game and to 

the characters.  First we would write up a small script consisting of all the different instances that 

a character would be speaking or making a noise, then we would send them off to the voice 

actors or actresses to review.  Then we would meet in the recording room with the , record their 

lines, and then after a little remastering of the voices in Pro-Tools, the voice acting clips were 

ready to be brought into the game. 

2.5 Asset Integration 

 Thanks to Unity3D’s convenient art asset pipeline, the process of bringing in all the art 

assets was as simple as dragging and dropping.  All of the character art was placed in folders to 

make navigation to specific assets easy.  After it was loaded into the project, it was just a matter 

of letting the programmers write the necessary code and set up the prefabs for the characters so 

they had all their textures, hit-boxes, and physics controllers so that the characters were then 

usable in game. 
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3. Technical Methodology 
This section of the paper discusses the technical implementation of our game.  It is 

broken down by major subsections of the game, such as the control system, menu system, 

and the fight mechanics.  Future MQP teams working on fighting-based games may find it 

useful to understand how the game was programmed and developed. 

3.1 Engine Choice 

Demon Dissension was developed in Unity, version 3.5.  Unity is a modern, 3D engine 

that provides many capabilities vital to the game.  Unity excels at importing art assets and 

animations, and as fighting games often have hundreds of animations, this was a benefit to the 

engine.  Unity also has support for networking, which forms the underpinnings of our online 

system.  Unity is also extensively documented, and both of the programmers on the project team 

had used the engine before.  Having used the engine for four terms, it seems suitable for 

producing fighting games. 

3.2 Controls / Input 

Unity provides a simple and easy way to check for input, however, fighting games 

require additional controller support.  For example, in many fighting games, there may be an 

attack that only activates if you sweep a quarter-circle around the control stick, or hold ‘back’ for 

a certain number frames.  In addition, it is important for the controller to know the difference 

between whether a button is held down during a frame, or pressed on that frame.  A Controls 

class was designed for the game that solves the above problems in a simple way.  The next 

section refers to fighting game notation; described as follows: 

● 1 - Press down and away from opponent. 

● 2 - Press down. 
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● 3 - Press down and towards opponent. 

● 4 - Press away from opponent. 

● 5 - Idle (do not move the control stick). 

● 6 - Press towards opponent. 

● 7 - Press up and away from opponent. 

● 8 - Press up. 

● 9 - Press up and towards opponent. 

● A - Light attack. 

● B - Medium attack. 

● C - Strong attack. 

● D - Special attack. 

● , - Used to separate frames: “8A” means press up and light attack at the same time; “8,A” 

means press up, and then light attack. 

Any combination of the above is possible.  For example, “6A” means press light attack 

while moving towards the opponent; “6,5,6” means tap towards your opponent twice, and 

“2,3,6,A” means a quarter circle towards your opponent, followed by a light attack.   

3.2.1 Searching for Input 

In the game, each character has a list of attacks, and each attack has an associated input 

string.  For example, an attack might have “A” as an input, meaning when the light attack button 

is pressed, the attack is activated.  Every frame, every attack in the characters move-list is 

examined; if a given attack’s input string was pressed, that attack is performed.  This works 

perfectly well for input strings that consist of only a single button press, but for more 

complicated input strings, such as “2,3,6,A”, which span multiple frames of gameplay, a search 

algorithm is needed. 
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During each frame of the fight, input is polled and stored in an array - generally, about 

0.5 seconds of input data is stored at any given time for both players.  Each frame, the 

character’s entire move-list is searched to determine which action, if any, was performed.  

During that algorithm, when the game requests a certain input string (“Did the player just press 

‘2,3,6,A’ ”?), the input manager searches through previous input.  To do this, it checks through 

the input log to ensure A was pressed that frame.  If A was pressed, it checks to see if 6 was 

pressed a few frames before pressing 6.  If 6 was pressed, it checks for 3, and so on, until either 

the whole string was found to be pressed, in which case the function returns true, or a different 

string was found, when the function returns false.  This capability makes other tasks easier: for 

example double tapping right has the player dash to the right.  Instead of checking if the player 

was recently walking right for a dash, the input can be checked for the string “6,5,6” (right, 

center, right), which represents the same action, but can be done in a single line of code.  

Although there is overhead with searching for every available action every frame, the algorithm 

minimizes it by returning false cases quickly.  For example, if checking input for ‘2,3,6,A,’ the 

algorithm first checks to see if A was pressed that frame; if A was not pressed, the function 

returns false, and continues onto the next input string without checking any other input. 
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3.3 Gamepad Controllers 

  

Fig 3.1: Examples of Fight Stick and Gamepad input devices. 

Fight games traditionally use arcade sticks to control the onscreen characters.  They consist of a 

large ball handled joystick that can fit into a palm instead of just a finger, along with a few larger 

buttons for the other hand.  Arcade sticks are relatively expensive, so we don’t expect everyone 

to have one.  Instead we decided to focus on support for game controllers.  We tested and 

developed the support with Microsoft Xbox 360 Controllers for Windows. 

Unity returns input from axis on a scale from -1 to 1.  Having two axes on each stick, we 

are able to determine the angle the stick is pointing.  This angle can be mapped to the 9 number 

grid systems we developed.  We are able to set flags this way about what directions the stick is 

pointing, as well as mark if they input direction has changed from the last check. 

Unity provides built in support for joysticks, but we encountered a few issues.  First, 

when the controllers are plugged into the PC, Windows will recognize them and install the 

proper drivers.  Windows then assigns the controllers a number based off the order they were 

plugged in.  However, Unity does not seem to recognize Windows’ ordering.  The solution we 

came up with was to assign out own decision of who was first player and second player, 
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independent of both Unity and Windows.  On the title screen, the first controller to select a menu 

option would become who we considered to be first player. 

3.4 Fight Mechanics 

Even though fighting games only consist of two characters fighting, they often have very 

complex and deep mechanics, and Demon Dissension is no exception.  This section describes the 

technical capabilities of the game that bring the fights to life. 

3.4.1 Movement 

Movement in our game is accomplished through the use of kinematic rigid bodies - a 

Unity feature that can make objects affected by gravity, but not directly affected by external 

collisions.  This is useful, as the amount of knock-back an attack provides should be able to be 

set by a designer, as opposed to being inferred by the physics system.  Constraints were placed 

on the character rigid bodies - they are only free to move in the X-Y plane, and their rotations are 

fixed.  This is to prevent a character from being knocked in the Z direction by an errant 

projectile, and therefore no longer facing their opponent.  In addition, if rotation was not fixed, a 

character could be spun around or knocked on their back like a turtle, and since this is not an 

intentional state, the character would be unable to get back up.  Lastly, for a large portion of the 

design process, characters could collide with each other, however, this behavior proved 

unsuitable, as the characters could get stuck on one another, or jitter back and forth every frame 

as the collisions attempted to resolve.  To solve the problem, we prevented characters from 

colliding with each other at all (a helpful Unity feature), and manually determined that if 

characters were taking up the same space, to push them apart until the distance was adequate. 

3.4.2 Hit-boxes 

In video games, collision checks are often processing-intensive.  It would be impractical 

to check for a collision on each of a character’s thousands of vertices, especially as the character 
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is animated and constantly moving.  A common workaround is to place hit-boxes - collision 

boxes that follow the general shape of the character but do not match entirely - on each of the 

joints of the character.  For example, a character might have a cube covering each hand that 

determines collisions as a helpful approximation.  Characters in Demon Dissension have four 

types of hit-boxes that perform different actions.  In the following diagrams, the green boxes 

surrounding hit-boxes designate which hit-boxes fit in the given category. 

● Attack Hit-box - these hit-boxes are attacked to ‘attacking’ joints, such as fists, feet, 

weapons, etc.  These hit-boxes can be turned on and off (see Attack Implementation); 

when they are on, they do damage to opponents they touch. 

 

Fig 3.2: Examples of attack hit-boxes on Ellsee. 

● Collision Hit-box - these hit-boxes take collisions.  They are attached to parts of the body 

that absorb damage, such as the body, head, and legs.  When they are hit by an active 

attack hit-box, they inform the character that it was hit. 
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Fig 3.3: Examples of collision hit-boxes on Ellsee. 

● Push-box - these hit-boxes are large, and encompass the whole character.  When two 

push-boxes collide with each other, the characters are pushed away, thus preventing two 

characters from occupying the same space. 

 

Fig 3.4: Examples of push-boxes on Ellsee. 

● Bounding Box - these hit-boxes are small, and are placed at the feet of each character.  

The bounding box prevents characters from falling through the floor. 

 

Fig 3.5: Examples of bounding boxes on Ellsee. 

3.4.3 Attack Implementation 

No fighting game would be complete without a wide array of attacks and capabilities for 

each character.  Since attacks can vary wildly between characters, a system was needed to create 

all sorts of different attacks, many of which were not known when the system was designed.  In 

Demon Dissension, attacks are represented as a linked list of Attack Events, which represent 

different occurrences that take place during an attack.  Each attack event has a frame 
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representing the time it activates, and the action to take.  For example, a sample attack might be 

this: 

● Frame 15: Activate hit-box on right hand with a damage of 15. 

● Frame 30: Deactivate hit-box on right hand. 

● Frame 45: Null event. 

When the attack activates, it begins on frame 0.  For every frame it increments by one, 

until it reaches the given time of the next event, 15.  On frame 15, it pops the first event off, and 

performs the action (activates the hit-box).  It then continues on until frame 30, when it pops the 

next event off and disables the hit-box.  It then continues until frame 45, when the last event is 

popped off, and the character is free to attempt another action.  The purpose of the null event is 

to lengthen the attack; once a character attacks, they cannot move until the attack finishes or they 

cancel out of it.  The null event therefore lengthens the time until they can move again, which 

synchronizes with the animation; for example retracting the player’s fist from a punch attack. 

There are several kinds of attack events possible in the game, as follows: 

● Hit-box Event - enabling or disabling a hit-box with a certain damage and knockback 

value. 

● Projectile Event - spawn a projectile at the given relative position and velocity. 

● Throw Start Event - put the hit-box in the throw state (any character that is hit by it will 

be thrown). 

● Throw Check Event - if the character attempted a throw and the throw did not connect, 

prematurely end the attack, since there is nothing to throw. 

● Throw End Event - put the hit-box out of the throw state. 
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● Knockdown Event - put the hit-box in the knockdown state (any character that is hit by it 

will be knocked down). 

● Special Event - an event that uses C# delegates (similar to function pointers) to determine 

the action to take.  This could run any code, which makes Special Events a catch-all for 

special abilities only one attack will have, such as Velle’s Dagger Return attack, which 

informs all daggers on-screen to return to him. 

● Null Event - an event that has no behavior, but can extend the length of an attack as 

mentioned above. 

3.4.4 Finite State Machine 

In fighting games, the actions a character can take depend on their current state.  For 

example, a character in the air cannot perform ground-based attacks, and a character who is 

stunned cannot move or block.  Therefore, a system needs to be in place to keep track of a 

character’s current state, and the actions they can perform.  A finite state machine was used for 

this purpose.  Each character has a current state which updates the character, and methods to 

change the current state of the character.  For example, in the idle state, the code might look like 

the following: 

if( pressed jump button ){ 

 Transition to State (aerial state) 

} 

The full list of states and their utility is as follows: 
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● Active Block State: the player goes into the active block state for a few frames any time 

they block - for example crouch block, reverse block, or aerial block.  If they are hit in 

this state, it counts as an active block, and does no damage.  

● Aerial Attack State : same as attack state, but in the air. 

● Aerial Block State: same as reverse block state, but in the air.  

● Aerial Dash State: same as dash state, but in the air. 

● Aerial Knockdown State: same as knockdown state, but in the air. 

● Aerial State: analogue to the idle state, but in the air.  From this state the player can move 

forwards or back, use aerial attacks, or block.  

● Attack State: when the player is using a ground attack.  The player can only cancel into 

other attacks in this state.  

● Crouch Attack State: same capabilities as the attack state, but for crouch attacks. 

● Crouch Block State: when a player presses down to crouch.  The player can perform 

ground attacks in this state, or release down to return to the idle state. 

● Dash State: when the player double taps left or right on the ground, they enter the dash 

state.  Same capabilities as idle state.  

● Dizzy State: when the player is dizzied.  The player can only cancel out of this state, or 

wait for it to end automatically.  

● Hitstun State: similar to the dizzy state, the player cannot move for several frames after 

they get hit, unless they cancel out of it. 

● Idle State: when the player is on the ground, or walking forwards.  Allows the player to 

jump, crouch, move, or attack.  

● Knockdown State: when the player is knocked down; same capabilities as dizzy state. 
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● Null State: before the match starts the player is in this state.  This state automatically 

loops the idle animation, and cannot be cancelled out of. 

● Reverse Block State: when the player holds back from the opponent.  Same capabilities 

as idle state, but the player takes reduced damage. 

● Super Null State: when a player is defeated, they are knocked down, and go into the super 

null state.  This state has the same capabilities as the null state, but the idle animation is 

not played. 

3.5 Networking 

Networking was one of the first features we had wanted to tackle when making our game.  

Games have been online for many years, but only recently has the fighting genre moved to 

support networked play.  GGPO is used for a few commercial games, so we started examining 

that library.  After understanding how the system worked, we decided it might be a little too 

complex for the needs of our game. GGPO does predictions about the opponent’s moves, but we 

decided that this was unnecessary for our game and decided to focus on some of the other 

aspects. 

3.5.1 Connection Methods 

 Networking in Unity is done by clients connecting to one instance of the game acting as a 

server.  By entering the IP of a player who has started a server, another user is able to start a 

networked match.  This however, is tedious, and requires that two players know how to look up 

their IP addresses.  The alternate method is to use a master server.   The master server is always 

running on a remote computer and has a static IP address.  When a player starts a server, it 

registers the game to a centralized server.  It stores the IP address and port of the server, as well 

as the name from the active profile from our account system.  When a person requests a list of 

open games from the server, they are presented with a list of games that have open spots.  The 
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player can then select the game with the name of the person they want to play against.  When a 

connection is made, both the client and server can start selecting characters and level, and then 

they are loaded at the same time. 

3.5.2 Level Loading 

Loading into a different scene across all networked clients in Unity requires one library 

function call.  However, to do this properly requires that each client stop processing messages 

while the level is being loaded.  New messages that interact with game objects should not travel 

across the network. These problems were solved two ways. First, levelprefixes are used to 

prevent old updates from being sent objects into a newly loaded scene.  Each time, the objects 

have a level prefix, and they will only receive updates if the incoming message prefix matches 

the objects levelprefix.  Second, each message is locked into a group.  We set all the logic for the 

game message to be in one group, and we could use a second group for other messages.  This 

would allow us to still communicate between clients during loading, but not allow any message 

that affect game logic to be mixed in. 

3.5.3 Keeping Games in Sync 

Unity transmits information using Networkviews.  Each Networkview has a 

corresponding NetworkviewID.  Unique IDs are constant across all instances of the clients.  Each 

time the Networkview syncs, variables that we chose are synced across the network.  When 

sending, the variables are just passed through and assigned directly without modification.  When 

received serialized data from the transmitted BitStream, all the variables except the transforms 

are passed through.  Instead, the transforms are added to a queue.  At this time, the current 

position of the remote player is interpolated to a point between the current and previous locations 

in order to keep the game looking smooth instead of teleporting.  If we have not received any 
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new information, the location of the remote play is extrapolated based off previous data that has 

been collected. 

3.5.4 Reducing Total Network Traffic 

UDP is used on the back end for sending network messages.  Unity provides two 

different settings for the way updates are pushed across the network.  The first is the delta 

reliable compression.    This method uses ACKs and NACKs to enforce packet reliability and 

order.  It also looks at the previous information was sent, and only sends changes since the last 

time.  The other method is the unreliable method.  This sends the entire packet each time and 

does not force packet order or if the packet is even received.  We decided to use the unreliable 

method since forcing packet order could cause a small bit of delay. The position of the players 

changes quickly enough that missing a packet is not a large enough problem. 

 Our program uses about 25kb/s.  For our program, the difference in unreliable and delta 

compressed is negligible when comparing how much data is sent during a game.  Animations are 

being synced across the network, and this uses the most network traffic in our game.  The 

sendrate for our packets is 20, so a new packet is send every 50 milliseconds. 

3.6 Artificial Intelligence 

3.6.1 Overview 

Fighting games excel in multiplayer gameplay – pitting human opponents together to 

determine who is superior.  However, there are frequently times when a player would want to 

play the game by themselves, and Demon Dissension provides an AI to play against.  

Unfortunately, an AI with one level of skill may be too easy for some players and too hard for 

others.  Therefore, multiple skill levels of the game AI would need to be created, however, this 

would be a large coding problem.  It is not intuitively obvious what changes to an AI would 
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make it function better or worse, and the algorithm would be split among several large files, 

which would be hard to change.  To circumvent this problem, a learning algorithm was devised 

that would enable the AI to improve over time.  The algorithm keeps track of which tactics and 

moves would work best in certain situations, and can perform those more often overall.  In 

addition, an AI could be tweaked in code to perform the best action all the time, or generally 

strong actions, or generally weak actions.  Therefore, with the learned AI data, several different 

skill levels of the AI are implicitly created. 

3.6.2 Learning Methodology 

In order to create an AI that learns without human intervention, we needed to create a 

way for the AI to learn new information, and a format to store that information.  For the AI to 

learn, it has a concept of what state it is in.  The state of the AI is based on what state the 

character is in (ground, crouch, or air), what state the opponent is in (attacking, idle, or 

blocking), and how far away the opponent is in both the X and Y directions.  Each state is 

mapped to a four digit number, for example State 0135 refers to a state where the player is on the 

ground (0), the opponent is attacking (1), the opponent is 3 units away in the X direction, and 5 

units away in the Y direction.  Each state also has a list of associated actions it can take, and the 

expected utility of that action.  For example, the AI for state 0012 for Ellsee is as follows: 

State:0012 

Attack A#A#56.2201 

Attack C#C#18.66991 

Attack B#B#10.16989 

Double 6#6,5,6#7.501622 

6 20#6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6#7.308132 

Attack D#D#-3.902193 

7 20#7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7#-3.936279 

QCF Special A#2,3,6,A#-4.084016 

4 20#4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4#-4.156428 

QCF Special C#2,3,6,C#-4.404858 

Special Test#2,3,6,AB#-4.411794 

Temp Throw Attack#6C#-4.415959 
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9 20#9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9#-4.827996 

QCF Special B#2,3,6,B#-4.878638 

8 20#8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8#-5.028845 

Double 4#4,5,4#-5.318102 

2 20#2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2#-6.672045 

Each line besides the first corresponds to an action name, the input string for that action, 

and the expected utility of that action, with the ‘#’ character as a separator.  Therefore, the line 

“QCF Special A#2,3,6,A#-4.084016” means that the action is called QCF Special A, that to 

perform the attack the player presses “2,3,6,A”, and that the action is currently rated -4.084016.  

Since the rating is not positive, it means the action was generally not beneficial for Ellsee in that 

state.  The list of actions is ordered by utility; actions towards the top of the list are generally 

better actions.  It should be noted that input strings with a large amount of numbers (for example, 

“2,2,2,2,2,2,2,2…”),  have  the AI press that button  for the given amount of frames.  In this case, 

that tells the AI to crouch for 20 frames before deciding the next action. 

 For the AI to learn, it performs the following algorithm.  First, based on what the 

opponent is doing and how far away it is, it determines what state it is in.  It also records what 

the health of the two players are before the attack.  Then, it picks a random action from the 

state’s list of possible actions, and performs it.  After the action completes, the AI determines the 

utility of that action.  The utility function is based on the health of both players (if the opponent 

took damage the action was good; if the player took damage the action was bad), and the total 

utility of the new state.  For example, moving backwards could cause the character to switch 

states, and if that state was not as useful (for a short-range character), the algorithm would pick 

up on that.  The algorithm would then update the utility of the given action to reflect the new 

data.  Therefore, as the AI plays, it gradually learns which actions work better in each state, and 

can learn to perform those better actions more often. 



51 

 Once the AI learns which actions are generally beneficial, it is removed from learning 

mode.  In this mode, instead of picking a random action to test, it picks actions with high 

utilities, to make a challenging opponent.  Additionally, in this mode obtained data is discarded, 

to keep the AI at the same skill level for players.  This is to prevent players who play the game 

constantly from accidentally developing an AI they cannot beat, which would be frustrating. 

 An interesting problem was encountered in designing the AI systems relating to the 

number of states to use.  In the final version, there are three possibilities for player state, three for 

opponent state, ten for x distance, and five for y distance.  Therefore, there are 3 x 3 x 10 x 5 

states, for a total of 450 states.  In addition, each state has about 15 actions, for a total of 6750 

actions.  For the AI to be effective, it would need to reach each of those actions several times to 

refine how successful each action is.  Assuming each action can be attempted in one second, and 

three iterations on each action would be necessary to refine the AI, it would take over five and a 

half hours minimum to train the AI for a given character.  Although this is not unreasonable, 

increasing the state space slightly would increase the training time drastically.  For example, 

increasing the number of player states from 3 to 5 would increase the total number of states to 

750, and the training time to over nine hours.  Other state types were considered, such as a state 

for player health and opponent health.  However, even with just three discrete values for health 

(high, medium, low), the total number of states would be 1350, with a minimum training time of 

almost seventeen hours.  This was considered to be unreasonable, and since the goal of the AI is 

to perform the most damage over time, having different behavior at different health levels was 

superfluous.  The number of states was minimized to have the AI perform better actions with less 

training, instead of having a longer training time but more flexibility.  After the AI finished 

learning, the data files were finalized and baked into the game. 
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3.6.3 Evaluation 

 A procedure was developed to test the effectiveness of the Learning AI.  First, the AI for 

each character was created, and trained for between 7 and 8 hours against multiple characters.  

Each hour, the training was stopped, and a time-slice of the AI at that point was saved.  

Therefore, multiple versions of Ellsee’s AI were saved from different levels of training.  Then, a 

scene was created that would play the trained AI against a control, to see how much damage it 

would do over a period of ten minutes.  Every fifteen seconds, the amount of damage the AI took 

and received would be printed to a file, which was then brought into Excel for analysis.  For 

evaluation, five versions of Ellsee’s AI were tested (0, 2, 4, 6, 8 hours of training) against Velle, 

with a controlled 0 hours of training.  The given characters we tested were not important, as the 

AI should work equally well for every character.  A graph was then created which plots the 

effectiveness of each AI (ratio of damage given to damage received) over time. 

 

Fig 3.6: Graph of AI effectiveness over time. 

In the above graph, the value at each point represents the ratio of damage given to damage 

received; higher values indicate a stronger AI, since they will generally do more damage and 

receive less.  After the values level out, there is a clear ordering for the AI; the control performed 

the worse, with a ratio of 2.58.  The AI with six hours of training had a ratio of 3.85; four hours 
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had 4.46; two hours had 4.88, and eight hours had 5.12.  The AI with the most training 

performed the best, but the middle three came out of order – therefore more training did not 

always lead to a stronger AI.  This could be for several reasons.  Since all of the trained AI 

performed better than the control, it could be the case that training AI works well for a few 

hours, but fails to continually improve with more training.  Also, since both AI’s behaved 

according to random chance, different runs of the testing scene would result in different data.  As 

the ratios tended to level off around the five minute mark, the effect of random chance was 

diminished, and running the simulation for longer would create more definitive results.  Overall, 

as all forms of training were stronger than the control (ratio of 3.85 for weakest trained AI; 2.58 

for the control), the algorithm was successful. 

 

3.7 Attack Editor 

3.7.1 Rationale 

During initial development of the game, attacks were created solely in code.  The move-

list initialization function would create all of the attacks, denote when hit-boxes turn on or off, 

and describe how much damage and knockback each attack does.  However, this approach was 

quickly found to be unsatisfactory, since in order to modify an attack, the game had to be shut 

down, edited, recompiled, and restarted.  The time spent restarting the game quickly added up, 

and small modifications to attacks, such as changing what frame a hit-box activates on, took 

much longer than necessary.  In addition, programming attacks in code made them harder to 

change, especially for the artists on the team.  Lastly, as the amount of attacks on each character 

grew, the amount of code for each character became large - several hundred lines, which is 
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generally not a good design practice.  To solve these problems, a tool was designed in the Unity 

engine to dynamically create and modify attacks in real-time. 

3.7.2 Implementation 

 

Fig 3.6: An example of the Attack Editor in action 

In the above screenshot, Penguin and Ellsee are fighting in the Attack Editor.  The red 

and white boxes that cover the characters are the hit-boxes that turn on and off during attacks.  

The arrows coming off of Ellsee’s chain represent what direction Penguin will fly if he is hit by 

them.  The four horizontal lines near the top of the screen represent a timeline of the attack; the 

timing of hit-boxes can be adjusted there.  The Attack Editor provides capability to edit attacks 

in real time and view the consequences.  The sequence of events on each attack can be adjusted: 

the length of the attack can be lengthened or shortened, or individual attack events can be placed 

on different frames.  The amount of damage each attack does can be adjusted, as well as the 

amount of knockback each attack does.  In order to implement this system, data from attacks had 

to be stored somewhere separate from code.  To do this, the data from all attacks was saved in 
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XML.  This solved two design problems with the game.  First, it prevented each class file from 

becoming too large.  Second, it allowed real-time editing of attacks.  After the attack editor tool 

is used, the character’s new move-list is saved back into an XML file.  Then, when characters are 

initialized, they obtain the new, updated move-list from the XML. 

 

3.7.3 Utilization 

The Attack Editor system was used extensively in character creation.  When the 

animation files for each character were created, the character was brought into the Attack Editor 

for initial placement of hit-boxes, knockback, and damage.  Later in development, the tool was 

used to balance each character’s move lists, so no character was drastically more powerful than 

any other. 

3.8 Camera System 

There are two different camera systems that were implemented in the game.  The first 

camera system is used on the menus.  For each collection of menu buttons, there is a camera 

point that points to each collection.  When the camera gets a camera point to move to, it lerps 

position and actives the correct button collection. 

The other camera system is the fight camera during a match.  The camera adjusts itself 

dynamically during the fight.  While fighters move away from each other, the camera zooms out 

to keep both characters inside the visible area.  At a point, the camera locks and prevents any 

more backwards movement of the characters.  The camera also has a minimum distance, and 

pans with the fighters, but does not zoom in any closer. 
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3.9 Menu System 

The menu system in Demon Dissension went through several iterations.  Initially, the 

menu system was created in code using statically-sized boxes; however, the approach was not 

very flexible.  For example, a 400x200 button on the screen would be a fifth of the size of a large 

1920x1080 monitor, but would take up more than half of the screen on a 800x600 monitor.  

Since the initial approach does not work well for monitors of different sizes, an addition was 

made that scales the buttons and text of the menu system based on the current screen size.  For 

example, instead of saying “make a 200x100 button”, one could say “make a button that is 0.2 

times the width of the screen x 0.1 times the height of the screen.”  The second approach, while 

more flexible, is also hard to change, as any edits to the placement or size of buttons must be 

done by editing raw C# code.  To solve the problem, the creation and placement of buttons was 

done in the game world, instead of in code.  This allowed the artists in the group to adjust the 

positions, sizes, and colors of the buttons in an easy way, and code was only used to determine 

what happens when each button is selected. 

There are several types of menu buttons in the game.  The first allows the player to move 

up and down to different items in a list, such as in the main menu screen.  The second allows the 

player to move in any direction; each button may have buttons to the left, right, top, or bottom.  

This type of button is used for the character select screen.  The last type of button is a slider, and 

allows the player to move back and forth between two set amounts.  Slider buttons are used in 

stat allocation, and selection of game options.  Buttons generally use C# delegates to accomplish 

tasks; each button has a delegate associated with it that is called when the button is selected.  For 

example, pressing the “Vs. AI” button in the menu calls a delegate function that brings the player 

to the character selection screen.  
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4. Playtesting 
 Throughout the project, we held unofficial testing sessions to make sure the fight engine 

and menus behaved as they should.  This would happen whenever we added a new character, 

modified hit-boxes, damage, animations, or anything else.  When testers from outside the team 

played Demon Dissension, they were shown the controls and encouraged to experiment with 

different characters, different moves, and different stat spreads after each round.  This was 

effective for finding bugs because the players tended to just try to do everything, because they 

effectively had no idea what they were doing, and therefore were not playing very carefully.  

There was largest demo of Demon Dissension over the entire PAX East weekend, allowing over 

200 unique players to get their hands on the game and test how easy it was to pick up and play, 

and gauge how fun they felt the game was. 

However, playtesting could never be effective for balancing the game, due to issues with 

the varying levels of character asset integration and difficulty getting physics to work in a 

playable state.  The issues with the physics did not make the game unplayable, but how far it was 

from where it needed to be would change how the game plays completely.  In addition to that, 

when we finally our testers tended to not understand how to play our game on a basic level, or 

just not have any fighting game experience.  One common problem we observed during the 

demo periods was when a player who is constantly walking into their opponent’s weakest attack 

for the entire match complains that their opponent’s character is broken; the data isn’t all that 

useful.  The second problem was that our characters were not ever completely finished, 

especially as we added more animation slots to characters later, the previously ‘done’ characters 

now needed more animations or attacks to match up, or there were outstanding bugs that had yet 

to be repaired.  Most commonly was the problem that a portion of the fighting engine was not 
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available or complete yet, and so any balance data based play tests before its addition had the 

possibility of being rendered inaccurate by the increased amount of options a player had. 

5. Post-Mortem 
 In a year-long, collaborative project, there are plenty of opportunities for unexpected 

challenges to arise.  This section describes the successes and challenges of Demon Dissension’s 

production, and contains suggestions on how to make future MQPs run smoother. 

5.1 What Went Right 

 

Fig 5.1: An early (May 2012) Screenshot of Demon Dissension 

A major reason for our success was the amount of work we did over the summer before 

A-term.  A test character model was created that could move, jump, and attack, and was 

implemented in the game before the MQP officially started.  In addition, we had a playable 

version of the game during A-term – placeholder characters could move around and use a simple 

punch attack to damage each other (Fig 5.1).  Since the game was playable so quickly, we were 

able to quickly add features every week, which contributed to the overall content of the game.  

Similarly, we scoped the game well (decided on four characters in A term, which was met 

exactly), which allowed us to easily evaluate our own progress towards milestones.  Therefore, 
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when a milestone was easier than expected to complete, we could work on extra, unplanned 

features in the extra time (this allowed us to create the attack editor, and other features). 

Unity was also a success for the project.  The entire project team had used Unity in some 

capacity for the project, so the tool was familiar, and there was no learning curve necessary to 

get up to speed.  In addition, Unity worked well with art integration; with the exception of a few 

hiccups, all the models, textures, and animations were imported seamlessly. 

Our team also worked well together.  Three of the team members had worked together on 

an IQP, and as a result the group dynamic started out in the right direction.  Since we were 

comfortable working with each other, we were not afraid to mention things we did not like about 

the project, which overall improved the quality of the project.  We communicated very well - a 

Facebook message chain was created in April-May of 2012, and any time we needed a quick 

response, a message could be posted there.  As of April 2013, over 10,000 messages were posted 

to the chain, thus emphasizing the amount of communication present in our group. 

5.2 What Went Wrong 

There were several challenges, both technical and artistic, that came up over the course of 

the project.  The physics system in the game was difficult to implement - we desired a system 

where players could quickly change the direction of their characters, but would also be affected 

by knockback.  Early attempts at this resulted in characters that were too ‘floaty’, and that 

jittered back and forth when close to their opponent.  In addition, since hitboxes were tied 

directly to the animations, the attacking joints needed to be directly lined up along the Z-axis, or 

they would miss the opponent.  For example, if a player punches to the right of their opponent’s 

head, the attack would miss, but from the perspective of the camera, the attack should hit.  

Several animations needed to be fixed to solve this problem.  Collision detection was a big 
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problem during the first couple terms of the project as well - without a hack solution, player one 

could hit player two, but player two could never hit player one.  The hack solution was 

eventually replaced by a more robust solution during C-term, when the correct way to handle 

collisions was found.  Lastly, networking was a major part of our project, but deadlines tended to 

slip, and overall it took much longer than we anticipated.  Since the networking fight was built 

on top of local fight, local fight had to be completed before networking could be started, which 

extended the time it took to complete. 

Artistically, there were several problems that occurred during development.  Ellsee’s 

chain was difficult to animate, and took several iterations to get right.  Additionally, her air C 

attack refused to work, and was not fixed until D-term.  Penguin’s sword would also occasionally 

get detached from the joint, and would end up outside his hand.  To fix the issue, we imported a 

separate model of the sword, and attached that to the joint in Unity.  From a design standpoint, it 

was determined in C-term that the stage artwork and the character artwork looked like it was 

done by two separate artists, which it was.  To unify the art, a toon shader was placed on both the 

stages and the characters to give them a similar feel and brightness.  In addition, the toon shaded 

characters had outlines which made them pop out of the background on all of the stages. 

5.3 Lessons Learned 

In a large project such as an MQP, scoping is vitally important.  It is generally a more 

enjoyable and satisfying experience to add extra features to a smaller project than to take features 

away from a big project.  In addition, planning is key; even though deadlines will not be met 

exactly as specified in the plan, it is a great organizational tool.  Overall, it was useful to have a 

working prototype in A-term, as it helped us to find the ‘fun’ in the game. Other teams may find 

it helpful to have a prototype of their game done early for similar reasons. 
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6. Conclusion 
 The Demon Dissension team accomplished an effectively deep fighting game, a game 

where two players enter in combat with one another and battle to reduce their opponent’s HP to 

0.  The development process was iterative on our early prototype, adding in character assets as 

they were completed and implemented. In the end, we had a fighting game with a unique and 

fully functional stat system, arcade mode, local and online versus modes. 

Demon Dissension is playable with Keyboard or Xbox 360 controllers on its download 

page, www.demondissensiongame.com.  There are always more characters to add, more 

animations to be made, sharper models and textures to create, and physics to rein in, at the 

current state this MQP is an entertaining competitive multiplayer experience that showcases what 

is possible with a balanced set of skills and team synergy. 

  

http://www.demondissensiongame.com/
http://www.demondissensiongame.com/
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Appendix A: Vision Document 
 

Super Special Awesome Untitled Fighter 2013 

 

Game: A 2 ½ D fighting game with a twist. Instead of just choosing a fighter and duking it out 

with your opponent, players have the ability to change their fighter’s attributes before the battle, 

potentially altering the entire course of the match! 

 

Mini-Game concept: Streets of Rage style level that each player starts on the opposite end of, 

and reaching each other as the “boss” in the center.  SHORT.  45 Seconds long MAX.  Needs to 

be fast paces, lots of explosions, fun to look at, or else we’re just wasting the time of the people 

who want to play a fighting game.  Minigame should be made LAST.  Until then we’ll have a 

placeholder screen for placing the attribute points. 

 

Possible Engine 1: XNA 

 

Pros: XBLA Port/Controller Support super easy.  Net play might even be easier with it. 

 

Cons: You programmers will have to work super hard and have a bare-bones engine ready by the time we're back in 

the fall or at least have a playable engine by B term if we'll have any hope of finishing the project in a satisfactory 

way.  We don't know how difficult it will be to get models/animations/etc into it. 

 

Info: http://msdn.microsoft.com/en-us/library/bb200104.aspx 

 

 

Possible Engine 2: Unity ←←←←←←←←← 

 

Pros: Engine base is done.  We just need to fill in all the scripts, physics, features, etc. 

 

http://msdn.microsoft.com/en-us/library/bb200104.aspx
http://msdn.microsoft.com/en-us/library/bb200104.aspx
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Cons: Some things like to act up.  But I'll try to work with importing animations and stuff over the summer so I 

figure out what makes it go crazy and what doesn't.  Net play COULD be easy with this, plus web browser 

integration is always a plus.  Has incoming PS3/360 support, iOS/Android Support.  For 360 support we need 

Microsoft to sign off on it, but I could TRY to use the GDC's Microsoft contacts to get that permission. 

 

Info:  Net Play- http://unity3d.com/unity/engine/networking 

          Microsoft Support: http://unity3d.com/unity/publishing/xbox 

 

 

Coding Language: C/C++/C# (I’ll leave this up to Brian and Mike) 

Good article (thanks Nick) about making balanced AND DIVERSE gameplay in fighters, which we will stick to like 

white on rice as the backbone of our basic game mechanics to minimize the frustration of wild character imbalance. 

http://www.sirlin.net/articles/fail-safes-in-competitive-game-design-a-detailed-example.html 

 

EVERYONE WATCH THIS VIDEO AND AUTOMATICALLY UNDERSTAND MORE ABOUT [GOOD] 

FIGHTING GAMES THAN YOU EVER DID BEFORE: 

http://www.youtube.com/watch?v=2I83GsQGg6U&feature=iv&annotation_id=annotation_585242 

 

HOLY SHOOT NUMBERS ARE AWESOME: 

http://dustloop.com/guides/ggac/data/ac/select.html 

 

SCOPE: 

 

NEED TO HAVE: 

● Basic Fighter Engine 

○ HP Bars 

○ Timer 

○ “Rounds” 

○ Stat Distribution Screen 

○ Hit Box system. 

○ Offense Meter 

http://unity3d.com/unity/engine/networking
http://unity3d.com/unity/engine/networking
http://unity3d.com/unity/publishing/xbox
http://unity3d.com/unity/publishing/xbox
http://www.sirlin.net/articles/fail-safes-in-competitive-game-design-a-detailed-example.html
http://www.youtube.com/watch?v=2I83GsQGg6U&feature=iv&annotation_id=annotation_585242
http://www.youtube.com/watch?v=2I83GsQGg6U&feature=iv&annotation_id=annotation_585242
http://dustloop.com/guides/ggac/data/ac/select.html
http://dustloop.com/guides/ggac/data/ac/select.html
http://dustloop.com/guides/ggac/data/ac/select.html
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○ Defense Meter 

○ Character Select Screen 

■ Character Name/Portrait 

■ Random 

○ Stage Select Screen 

○ On-Hit Particle effects. 

  

● Two (2) Characters with full move sets, animations, sounds, etc. 

○ States: Idle, Walk, Run/Dash, Jump, Knocked Down (ground / air)/ hitstun, Blocking 

○ “Full moveset” size to be determined after determining controls.  Estimated ~15 moves. 

● 1 Stage for characters to do battle in. 

● Multiplayer 

○ Support for Fightsticks/360 Controllers 

WOULD LIKE TO HAVE: 

● Netplay 

○ Leaderboards/rankings/Win-Loss records 

● Human Vs. AI 

● 3-5 Characters 

● 2-4 Stages 

● Warm-up/stat grabbing  minigame 

IF THERE IS TIME: 

● More characters and stages? 

● 360 Support? 
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Appendix B: Sample Work Timeline 
 

 

Fig 6.1: The timeline for C-Term 
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Appendix C: Blog 
 

The developer’s blog for Demon Dissension can be found online at 

www.handsomedevilstudio.tumblr.com 

http://www.handsomedevilstudio.tumblr.com/

