Proj Code: DMO- 4167

DEMON DISSENSION

A Major Qualifying Project Report:

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Anthony Sessa

Nick Konstantino

Brian Seney

Michael Metzler

Professor Dean O'Donnell, Major Advisor

Professor Mark Claypool, Co-Advisor

Date: April 25th, 2013

1

Abstract
Demon Dissension provides a strategic twist on the traditional fighting game experience

to players and showcases complex game logic, networking, and fighting game design principles.
Built entirely in the Unity engine and programmed in C#, Demon Dissension pits two players
against one another in a battle for glory, challenging them to not only fight against the character
in game, but the strategies being employed by the actual opponent. A team of two artists and

two programmers took four terms to create a deep multiplayer battle experience.

Table of Contents

Y 1 1 ot OO 2
LIST Of FIGUIES ..ttt ettt ettt ses s sse s s AR s R e bbb s 5
SPECIAL TRANKS .uvvtieeriisesceseiss s ssssss s s s s s s s s R R e e 7
B 01 4101 L (ot () o N 8
1.1 CONCEPL DEVEIOPIMIENT...corieuieriereteeereeseesseessee et ssessesssssesses s ses bbb s bbb bbb et 9
B 000) 4 To1=y 0 b =1 /= Ui (o) s PR 9
1.3 GAMEPLAY DESCIIPLION . ..cuieeiteeeeeecereesretse e sesetsse s bbb esse b ses bbb s s s bbb 10
R o 0T UL (o L) o LT 13

2. ArtiStIC MethOAOIOZY cocoueeureerereerserreiseessece et esssss s ss bbb s s bbb bbb 15
208 B2 o D) (=T o) o PP 15
B O 0T U Lo () gl D 1E) 4 o O PP PP 16
20 O 010 Lal=3 o) 2V o TSP 16
2.2.2 Character Modeling & TEXEUIINE ... eeeeeeseeseesseesssesssesssessseesssesssesssessssesssssssesssesssessssesssesssesssessssssssees 20
2.2.3 Character RIGEING ...t sessse s ssse s ssesss s ssss s sss e s s s ssse s 25
2.2.4 Character ANIMALIONS ...eeeeeeereesreesseeseesseesssseesssessesssessseesseesssssssssssessssssssssssessseessessssssssesssesssssssssssees 27

G BN VoL BT ¥ o PPN 28
2.3.1 StAZE MOAEIING ...t s s bbb 33
2.3.2 STAGE ANIMATION wouveerrreerreeerees e s s p e a s 34

2.4 SOUNA DESIZIN coouveureueereeurereesseeees s es s sss s s s s b s s R s R R e R e bbb 34
0 D (o 34
S 2 § (= o 3PP 34
2.4.3 VOICE ACHIIIG ...euiereeereeeeseesree et sssesesssessesss et sessse e sss bt s s s s R R AR R st e 35

SIS C3ST= o 0L =T o3 o L) o U PP 35

3. Technical MEthOAOIOZYoieerrerreesseereeeseeseesseeseesssesssess s sessse s s e sssess s s s ssse s s ssesssesssseeas 36
3.1 ENGINE CHOICE oottt s s s s s s bR bR 36

R T 0100 0L /] ER A 10 o1 PP 36
3.2.1 Searching fOr INPUL......o ettt sess e esse s s s sas bbb bbb 37

3.3 GAMEPAA CONEIOIIETS. ...ceueeeeceereeeeeeeeee et seesseeseesseessesse e s esse s ss b s s s bbb a s 39
T 1 o (=Tl 1 ot PN 40
2R 1 (015 0 <) | 40
342 HIL-DOXES oreereeueemseesseereesssesssesssesssessssesssesssessses s sssasssess e sss s s R R R AR R 40
RIS -\t e=Tod @ 030101 (=3 00 =) oL U o) o 0UTO PP 42

3.4.4 FiNite State MaACKINE et s bbb s b bbb s e 44

3.5 NEEWOTKINE ccutuueusieueereeureteessteeesse st seesse e es s s bbb s R s R R bR bbbt 46
TR T00 000 o Vo (=Tt o) o TG =] o o T 13T 46
3.5.2 LEVEL LOAAING ... uuiiueerrirriesreesseeeseeessessssasssssssssesssesssesssssssssssss s s s s sass s sssses s e sanes 47
3.5.3 KEEPING GAMES 11N SYIIC.cuieurieieerieeeereeseseisesseessessesssesssssesssesss s ssssssssssssssss s bsse bbb ssssas 47
3.5.4 Reducing Total NetWOTK TTAffIC ...coveereerrerreerseeeseeeseesessessssesssssssesssssssesssssssssssssssssssssssssssssssssssssssasesanes 48

3.6 Artificial INTEIIIETIICE ..courveeeeeeeeceeeeeese ettt sees et s e s ss b s s bbb 48
T O 0T) 74 = P 48
3.6.2 Learning MethOAOIOZYcoueeeienieeerneeisesseessesssessssessssssessssssssssssssssss s sssssssssssss s sssassssssssssasssssesanes 49
R JE TN 20 A7 1L U o) o TP 52

R TN s =T @ X)L) PP 53
00 S U 0 3 - 1 - 53
I/ 01301 (=3 00 =) oL U o) o N0 54
T8 U 01 /- o [) ¢ U P 55

IR I 06 1 4 1S = B £ =) WP 55

TR0 LY =) 0L BN] 1<) 4o VPP 56

4. PlAYEESTING cooueereeceereererseessee et ss s s es s s s s R AR R AR AR AR 57
RS T o0 13 2 1Y o) o) DT 58

5.1 What WENt RIGIT ...t eeeeseesees s s sesssssss s s s sssess s s e s s sssess s sssssssssssessssssaesanes 58

5.2 WHAt WENE WIONG ... ceuriueeueereesresseseessesseessessessssssesssesssessssssessssssssssssss s essesssssssssssssssssessssssssssssssssessssssessssssesssessesas 59

5.3 LESSOMNS LEATTIEA. ... cuuceuerureesreesseersseeseessesssesssesssesssees s sssssss s s s sess s s s s sssessssssses s saesanes 60

LT 010) o Tol 1D] (o) PN 61
BIDIIOGIAPNY w.eueeeeecereieeeee ettt ee e s s R R R R R R R 62
AppendixX A: ViSION DOCUIMENT.ccureeereeseesseerseesseesseesseesssesssssssesssesssesssesssessssssssssssssssessssssssesssesssessssssssesssesssesssessssees 64
Appendix B: Sample WOrk TimeElNe. esseeees s sssesssssessssss s ssssssssssssssssssssssssessssssessees 67
APPENAIX C: BLOZ . reurremriereerrersseesseesseeseeessesssesssessseesssesssesssesssessssssssesssessssesssesssesssesssessssssssesssesssessssesssesssessssesssesssasssesssssssees 68

List of Figures

1.1 A sample game SCreeNnSNOL. ..ot 10
1.2 Screenshot showing the level-up mechanic inaction. ..., 12
1.3 The Stat SEIECE SCIEEN. et e e 12
2.1 A sample of characters from Jet Set Radio Future, as they appear ingame. 15
2.2 Finalized concept art for ENISEe.oominrii 16
2.3 Velle’s “final’ CONCEPL Art.o.uiieiiit e e e e e aeeeaeeas 17
2.4 Penguin’s final CONCEPL AIt.uinuiieiit it et anaes 18
2.5 Korin’s final concept art, with color options by Breeze Grigas.............ccoooviveiiiininnnn.. 19
2.6 An example of alow poly base mesh. ... 20
2.7 Ellsee’s model, finished in ZBrush. ..o, 21
2.8 Ellsee’s model undergoing the retopology process in Topogun.cocevvvviiinnian.n.. 22
2.9 Ellsee’s UV Unwrap and TeXtUIe.oiuiintitiit ittt et eeeeaaaans 23
2.10 Ellsee’s model, rigged and teXtured.cooiuiiniiiiiiiii i e 24
2.11 TKFOOE RIQ SBUUP. vttt ettt e e e et e e e et e e e e aaaa 26
2.12 Ellsee in her “Standing C” attack.ooiiiiiiiiii 28
2.13 Screenshot of Arctic initsfinal form. 29
2.14 Screenshot of Urban inits final form. 30
2.15 Screenshot of Dungeon inits final form., 31
2.16 Screenshot of Disco Floor inits final form. ... 32
2.17 Screenshot of Training Room inits final form. ..., 33
3.1 Examples of Fight Stick and Gamepad input deviCes.cceviiiiiiiiiiiiiieiea, 39
3.2 Examples of attack hit-boxes on Ellsee. ..., 41
3.3 Examples of collision hit-boxes onEllsee. ... 41
3.4 Examples of push-boxes on ENISee.ooriiiiii 42

3.5 Examples of bounding boxes on EHISee.o 42

3.6 Graph of Al effectiveness OVeT tIME.o.uiiieiiit it e e e, 52
3.7 An example of the attack editor in action.oooiiiiiiiiii e, 54
5.1 An early (May 2012) screenshot of Demon DisSension............ocvvveeiininiineiieninnennnn. 58
6.1 The timeline for C-Term.o e, 67

Special Thanks
The Demon Dissension team would like to thank Professors Dean O’Donnell and Mark

Claypool for all of their advice and guidance over the course of the school year. This project
would not have achieved the high level of quality it did without them. We would also like to

thank Breeze Grigas for the art that he worked on for the game

1. Introduction
Fighting games are games where 2 players battle to the death utilizing a roster of

characters with different abilities. Demon Dissension is a fighting game with RPG elements,
meaning that it introduced the concept of a player being able to customize their character’s battle
attributes, in order to make it a more personal experience. Demon Dissension features single
player versus an adaptive Al, local multiplayer play, and network play that has both manual and
matchmaking methods of connecting players. The players have four characters to choose from,
each with a unique skill set, but all share similar traits such as special and super techniques,
dashing, jumping, and eleven separate basic attacks. The goal of the game is to simply reduce

the opponent’s Hit-points (HP) to 0, or just have more HP when the timer runs out.

Two programmers and two artists worked on the project for four terms. Anthony Sessa
was assigned the roles of producer, sound design, and stage design and modeling. He kept the
schedule of all the meetings and deadlines, as well as recording sound effects and implementing
them for the characters and stages. He was also responsible with making sure the stages fit
aesthetically with the characters, and were not so filled with detail that it caused the game to
slow down in any way. Nicholas Konstantino was the lead game designer and lead artist. Nick
created all the assets for all four of the characters, from concept art to finished, rigged models
with full sets of animations, as well as made all the final design and balance decisions. Brian
Seney was the lead programmer, and coded much of the game logic, menu systems, and useful
in-game extras we did not even plan for, such as the debug attack editor, the adaptive Al, and the
achievement system. Michael Metzler was the main network programmer, who over the course

of the project created a playable online mode with a central, hosted server that cut down on lag

time fairly effectively. For a term, Breeze Grigas of Becker College designed a character and did
some texture work to help the characters and the world come together more solidly.
1.1 Concept Development

The original idea we had pitched was combining a “beat’em up” game similar to Streets
of Rage, where players would fight their way to the center of the level, collecting stat boosts
along the way, and then finish the level by fighting each other like in a normal fighting game.
The problem with this idea was not that the scope was too large, but rather that the entire idea of
having to play a mini-game in order to play the main game was flawed. Playing that mini-game
would eventually become a chore for the players who just want to start fighting right away, and
then giving them the option to skip it will end up making all the work to make that “pre-fight”
game wasted. We cut that feature in favor of using a stat menu.
1.2 Conceptualization

The fighting game genre has been really successful since their reintroduction to the
mainstream with the release of Street Fighter 1V, and each series has its own unique systems for
combos, techniques, or gameplay. We tried to find a feature that those games had not yet done, a
feature that could take the limited character pool we were forced into due to time and artist
constraints, and retain the strategic depth that fighting games are known for. That solution ended

up taking a customizable stat system and applying it to various fighting game stats.

We created a story stating that the players themselves are demons who summon these
fighters out of their respective worlds and pit them in battle against one another for

entertainment.

1.3 Gameplay Description
Demon Dissension is a fighting game, and a fighting game is a genre that is centered on

executing a player character’s attacks and skills more effectively than the opponent in order to

reduce their HP to 0, or lower than the player’s own HP before the time runs out.

Fig 1.1 A sample game screenshot

The players have 3 ‘bars’ they need to pay attention to on the user interface: their HP
(yellow), their Energy Meter (green), and their experience (EXP) Meter(blue). HP is reduced by
attacks, but the other two meters are slowly filled when landing or receiving hits. The red area of

the HP meter is health that is retained by blocking, which slowly regains over time.

While in combat, each player has 1 super move, 2 special moves, and 11 normal attacks -
4 standing, 4 aerial, and 3 crouching. The super skill can only be used while the player’s energy
meter is full, and it is used by pressing the button combination A+B. Special moves are used by
doing a combination of directional inputs and either A, B, or C buttons. The rest of the moves

are done by pressing on of the A, B, C, or D buttons either while standing, while jumping, or

10

during a crouch. The weakest and lowest priority moves, the “A” moves, can be canceled into B
moves, and B into C, and so on, in order to create combo strings. Combo strings are attacks
done in quick succession one after the next which is guaranteed to work on the opponent if the

player has consistent timing.

Each character has similar defensive options, as well. Most importantly is the ability to
block, which is done by holding back when the player is being attacked. Doing so will reduce
the damage the player take and leave some “red health” that will slowly regain over time, unless
the player gets hit. If the player blocks within a small frame window of being struck with an
attack, the player does a “perfect” block that allows the player to do a quick counter attack if
they were ready for it. The player can also press an attack button when an attack collides with
their block to do a “push block”, moving their opponent back out of range, in order to get more
space to reset to a neutral position. Other defensive and movement options include walking by
holding left or right, dashing by double tapping left or right, jJumping by pressing up, air dashing
by double tapping left or right while airborne, and crouching by holding down. The more
advanced hybrid offense-defense option is the “Omni-Cancel”, which is performed by pressing
A+B+C buttons. For a cost of some of the player’s meter, it will take them out of any attack or
animation their character is currently performing, making it useful for unorthodox combos or

getting out of dangerous situations.

Finally, the main attraction to our game is the level up system. When the player’s EXP
meter fills up, it prompts the player to level up by pressing A+B+C+D. Doing so will imbue the
character with the bonuses the player had selected before the battle began, at the menu shown in

Fig 1.3. The player will instantly heal any red health they have, as well as Ul and character

11

specific aesthetic changes to make it visually apparent to the player and their opponent what

level the characters are, as shown in Fig 1.2.

Fig 1.3 The stat select screen

12

The six stats the player has to choose from are:

o HP: Increasing this stat increases the character’s overall health.

o Energy: Increasing this stat increases how quickly the character gains energy in
battle.

o Attack: Increasing this stat increases how much damage the character’s attacks
deal.

o Defense: Increasing this stat increases the amount of health the character retains
on block.

o Speed: Increasing this stat increases how quickly the character moves around the
stage.

o Weight: Increasing this stat increases the amount of damage the character can take
before dizzying.

1.4 Production
Our producer, Anthony, was in charge of keeping the group organized. He was

responsible for scheduling all of the meetings as well as facilitating communication between the
group and advisors. He was also responsible for ensuring the group was kept on task so
milestones could be completed on time. Three major components went into ensuring a quality
production job was achieved. These components included the scheduling of meetings, what

actually happened at each of these meetings, as well as the production documentation.

Anthony scheduled an average of three meetings a week for the duration of the project.
Once at the beginning at the week to discuss what had been done the last week, where that left us
in our schedule, and what was projected to be done by the meeting with the advisors by the end
of the week. The second meeting of the week was dubbed a “working meeting”. Here, we all
convened in the IMGD lab and spent an hour working on the project together. This facilitated

13

high productivity since we were all together and able to answer any questions that may have
cropped up with ease. At the third and final meeting of the week, we met with our advisors Dean
O’Donnell and Mark Claypool to present them with that progress and discuss our plans moving
forward. These meetings were instrumental in determining whether or not we were developing a

quality game.

All of our work was tracked on various Google Documents and weekly Tumblr blog posts were
made to summarize our progress as a group. Some of these documents included a daily time sheet so we
could track how many hours each of us was putting into the project, various design documents for
characters or stages, as well as a to do list which had tasks we had to complete listed in order of difficulty
and importance. Each of these was updated daily so Anthony could easily stay informed on the rest of the
group activities and make any adjustments to milestones that may have been needed. Anthony also
updated the Tumblr blog every Friday to provide an update to people outside of the project team on the
progress of the game. These ranged in length from a paragraph or two to a much more substantial post if

an entire term was being recapped.

14

2. Artistic Methodology
This section discusses the methods the artists went about to plan out, create, and

eventually implement each of the art assets, so that one can observe the various thought
processes, design decisions, and workflows experimented with, broken down by each major
asset, and furthermore by character or stage when necessary.
2.1 Art Direction

The art favors simplistic models, colors, and textures, taking reference from such games
as Jet Set Radio Future (Fig 2.1), Dragon Ball Z: Budokai, The Legend Of Zelda: The Wind
Waker. These games all make use of a toon shader in order to make the assets appear more like a
cartoon. The decision to utilize toon or cel shaders in Demon Dissension was not made until
Unity3D’s lighting made it difficult to use other shaders to properly light the assets in a similar

style.

4~

A

1\

]

Fig 2.1 A sample of characters from Jet Set Radio Future, as they appear in game.

15

2.2 Character Design

2.2.1 Concept Art
Ellsee’s character design Fig(2.2) was inspired by the idea of creating a strong,

empowered female character who can stand up to any man in the fighting arena. The idea of her
being a “heart breaker” was taken to the next level by giving her a weapon in the shape of a
locket, for the sole purpose of breaking her opponents. Some of her style and demeanor were
taken from strong female characters in gaming, like Tifa of Final Fantasy 7 and Laura Croft of

Tomb Raider.

Fig 2.2 Finalized Concept Art for Ellsee.

16

Velle’s character design (Fig 2.3) was inspired by fighting game characters like Ky
Kisuke of the Guilty Gear series and Jin Kisaragi of the BlazBlue series, and then given a
futuristic vibe. His weapons were designed to make his playstyle drastically different than
Ellsee’s. Not many of the decisions made about Velle’s visual design were made during the

concept art stages, and mostly made during modeling phases.

Fig 2.3 Velle’s ‘Final’ concept art.

17

Penguin’s design (Fig 2.4) was simple. What started out as a joke character gained
popularity, so the team decided that in order to make it more over the top, the best way to make a
penguin into a fighting game character would be to give him samurai armor, Heihachi-inspired
hair, and a sword. He is designed to be a battle-worn and fearsome penguin warrior named

Penguin, and has since become a mascot for the game.

Fig 2.4 Penguin’s Final Concept Art

18

Korin’s design (Fig 2.5) was inspired by the desire to create a second female character
that would stand as an opposite to Ellsee. The goal was to make a character who was colorful,
friendly, and lively. Her weapon and move set were inspired by the rhythmic gymnastics during
the summer Olympics. Due to time constraints, Korin’s concept artwork was tasked out to a

student (Breeze Grigas) doing work for independent study project credit.

Fig 2.5 Korin’s Final Concept Art

19

2.2.2 Character Modeling & Texturing
The modeling pipeline for the characters changed as we scoped down the assets required

for a finished character. Ellsee and Velle had the most complex modeling process, which was

done in order to create usable normal and texture maps during the modeling process.

1 Create a low poly base mesh in Maya, roughly shaped like the character in the concept
art.

Fig 2.6 An example of a low poly base mesh

20

2 Import the low poly base into ZBrush, and sculpt in the fine details, work the
proportions, and export the high poly mesh.

Fig 2.7 Elisee’s model, finished in ZBrush.

21

3 Bring the high poly mesh into Topogun and retopologize a new low poly mesh at about
15,000 polygons.

Fig 2.8: Ellsee’s model undergoing the retopology process in Topogun.

22

4 UV Map the low poly mesh in Maya, then then create the textures for it in photoshop.

Fig 2.9: Ellsee’s UV Unwrap and Texture.

23

5 Putall of it together in Maya, and get ready to begin rigging.

Fig 2.10: Ellsee’s model, rigged and textured.

This process, although it afforded us a great deal of detail, took too long. Especially
when there were at least 2 more characters that needed to be made, and several other animation,

rig, and texture assets on top of all that. We had also decided that because of Unity’s bug-prone

24

lighting, we were going to abandon the use of normal maps and begin the use of hand-painted

textures. So when it came time to model Penguin and Korin, the process had been simplified to:

1 In Maya, create the low-poly mesh to total between 6,000 and 15,000 polys, essentially
skipping all the steps in ZBrush from the previous method, and just working to make a

more usable base model.

2 Use Face mode to select a region you want as a separate UV island, and go to Mesh ->
Extract to make it into its own object, and much easier to UV. Do this as many times as

you need to create a usable UV map.
3 Export UV map into Photoshop and begin texturing.

After creating Penguin and Korin in this method, it was determined that Ellsee and Velle
stood out from them because of the differences in their model structure, and so they were
revisited and touched up to be more like the newest models. Ellsee was also given planar hair
maps by creating a single rectangular plane, assigning it a hair texture, and duplicated and

resized and shaped over her head as necessary to get the desired hair style.

2.2.3 Character Rigging
This portion of the character creation process was by far the most difficult, but the most

important thing to remember while rigging is that the more simple one can make the rig while
still performing all the functions it is required to do, the easier it is to start creating the

animations and easier to import into the engine.

Ellsee’s rig required the most revision, due entirely to her weapon. After just giving it a
12 joint FK skeleton, it was determined that getting a realistic and fluid motion out of that set up

took far too long than we had to spend per animation. The first real rig attempted to use the

25

“maya hair” physics to animate the middle sections of the chain between her arm and the end of
the locket, but that functionality was removed in Maya 2013, so we had to move onto different
options, eventually settling on SplinelK calculations. This way, we could just set a path using
controls, and the locket would travel along that path. It did not give it a fully chain-like feel, but

it was the best average we could manage with limited time and rigging knowledge.

Every character’s rig used a simple, but versatile IK foot rig setup, allowing for ball roll

and consistent floor contact. This was important because without IK functionality, it becomes

harder to animate high speed movements in the legs and feet.

Fig 2.11: ikFoot Rig setup

Everyone else’s weapons were either applied to them in game for functional reasons
(Penguin, Velle) or just parented to a bone specifically for them (Korin), and worked right the

first time.

26

2.2.4 Character Animations
The final, and most important, assets for the characters were their animations. There were

roughly 35 animations per character, varying in length from 3 to 100 frames. Offensively, each
character had 4 standing attacks, 3 crouching attacks, 4 aerial attacks, and a super. The stronger
the attack, the more time it takes for the move to strike, so greater windup or bigger action was
required. There were also all the mobility and defensive animations, like blocks, flinches, idles,
dashes, walks, jumps, and more. For this portion a lot of reference was gathered from widely
available fighting games and their frame data, such as Street Fighter, Marvel vs Capcom, and

Soul Calibur series.

All the animation work was done in Maya, and special attention was paid to the
perspective of the scene camera, viewing the animations from the same perspective that the in-
game camera would be. If there was not enough time to tweak the animation to look good from
all angles, then priority went to that camera angle. Unfortunately, with this being a 3d game, the
camera in the actual game would shift slightly depending on the locations of the characters, and
sometimes deform with the carefully crafted silhouettes, such as Ellsee’s standing C attack (Fig

2.12).

27

Fig 2.12: Ellsee in her “Standing C” attack.

2.3 Stage Design
The stages for the game were designed to be diverse as well as fun to play on. In the final

version of the game, we ended up with five different stages. These stages were “Arctic”,
“Urban”, “Disco Floor”, “Dungeon”, and “Training Room”. With the exception of “Training

Room”, each stage has a character associated with it.

28

Fig 2.13: Screenshot of Arctic in its final form

Arctic, the home of Penguin, was the stage that was started first. As a result, it was also the first
stage completed for the game. It also went through the most revisions before getting to its final
form. The stage features a main platform made of ice that is surrounded by smaller ice chunks as
well as two small ice platforms with penguins and snowmen on them for added life. These
inhabitants move around the stage as the fight is going on. Bigger icebergs float behind these

smaller platforms as well.

29

Fig 2.14: Screenshot of Urban in its final form

Velle’s stage, Urban, saw 2 major revisions over the course of the project. The original
and first revisions of the stage were on the ground and took place on a streetside basketball court
with cars whizzing by and pedestrians taking in the fight. The second revision brought the stage
to completion. The revision ended up being necessary due to the fact that having a busy, bustling
city down below caused our game to slow down whenever it ran on the stage. This final big

change saw the fight moved to the top of a skyscraper with a city skyline in the background.

30

Fig 2.15: Screenshot of Dungeon in its final form

Ellsee takes up residence in the Dungeon stage. Since the title of our game has the word
“demon” in it, we needed a stage that had a demonic vibe to it. This was the third stage that was
completed for the game. Composed completely of brick, the stage is lit only by the torches that
line its walls and pillars. The walls are decorated with swords & spikes and a mysterious fog

rises from the ground to give the stage a dark and dreary feel.

31

Fig 2.16: Screenshot of Disco Floor in its final form

The Disco Floor is the final main stage in the game. We were not entirely sure what the
stage was when it was first started since it initially consisted of just a few tables and chairs. The
stage now consists of a bar with stools, a dance floor that lights up (playing the game of life in
the process), and a set of lights with a disco ball hanging from the ceiling. It is the most colorful

stage in the entire game.

32

Fig 2.17: Screenshot of Training Room in its final form

After the four character stages, Demon Dissension also has a training room. While this
“stage” can be selected to actually fight on, its main purpose is for our training modes. Whenever
the player goes through a tutorial mode or a training mode, the gameplay takes place on this
stage. As for the design, this stage is extremely simple. We created an old looking dojo texture

and just repeated it several times.

2.3.1 Stage Modeling
The modeling process for the stages was pretty straightforward. After coming up with the

initial concepts for a stage, the art team determined which objects would have to be modeled and
made a list. All of the modeling was done in Autodesk’s Maya software since the detail that

Zbrush provides was not necessary.

33

2.3.2 Stage Animation
In order to breathe a little bit of life into some of the stages, some animation work was

done to add another layer to each of them. The only examples of this that made it into the final
game include the smaller penguins and snowmen in the Arctic stage. At different points in
development, cars, helicopters, spectators, and even skeletons were animated with the intention
of adding them to the stages. In the end, optimization was more important so these animations

were scrapped in favor of making sure the game ran well.

2.4 Sound Design

2.4.1 Music
Music is one of the first things a player encounters that sets the tone of the game. All of

the music in Demon Dissension was composed by the project team, and was created in Anvil
Studio, a free MIDI creation tool. The music was composed for an ensemble of drums, electric
guitar, bass guitar, and piano, and has a heavy rock feel. The rock style was selected as it
meshes well with the nominally dark subject matter of Demon Dissension. Five music tracks
were prepared for the game: one for each stage (the menu music is shared with the dungeon
stage).
2.4.2 Effects

Sound effects play a very important role in a fighting game. Demon Dissension is no
different. When it came to recording sound effects for the game, various punches, kicks, and
particles sound effects were recorded using a microphone. This was accomplished by punching
and kicking various pieces of furniture. After the initial recording process, the sound effects were
brought into Pro Tools where they were mixed and mastered to sound more like the sound we
intended them to before being brought into the game. Once in game, the punches and kick

sounds are randomly chosen and played whenever a punch or kick lands on an opponent.

34

2.4.3 Voice Acting
The voice acting was a very necessary process for added a lot of life to the game and to

the characters. First we would write up a small script consisting of all the different instances that
a character would be speaking or making a noise, then we would send them off to the voice
actors or actresses to review. Then we would meet in the recording room with the , record their
lines, and then after a little remastering of the voices in Pro-Tools, the voice acting clips were
ready to be brought into the game.
2.5 Asset Integration

Thanks to Unity3D’s convenient art asset pipeline, the process of bringing in all the art
assets was as simple as dragging and dropping. All of the character art was placed in folders to
make navigation to specific assets easy. After it was loaded into the project, it was just a matter
of letting the programmers write the necessary code and set up the prefabs for the characters so
they had all their textures, hit-boxes, and physics controllers so that the characters were then

usable in game.

35

3. Technical Methodology
This section of the paper discusses the technical implementation of our game. Itis

broken down by major subsections of the game, such as the control system, menu system,
and the fight mechanics. Future MQP teams working on fighting-based games may find it
useful to understand how the game was programmed and developed.
3.1 Engine Choice
Demon Dissension was developed in Unity, version 3.5. Unity is a modern, 3D engine
that provides many capabilities vital to the game. Unity excels at importing art assets and
animations, and as fighting games often have hundreds of animations, this was a benefit to the
engine. Unity also has support for networking, which forms the underpinnings of our online
system. Unity is also extensively documented, and both of the programmers on the project team
had used the engine before. Having used the engine for four terms, it seems suitable for
producing fighting games.
3.2 Controls / Input
Unity provides a simple and easy way to check for input, however, fighting games
require additional controller support. For example, in many fighting games, there may be an
attack that only activates if you sweep a quarter-circle around the control stick, or hold ‘back’ for
a certain number frames. In addition, it is important for the controller to know the difference
between whether a button is held down during a frame, or pressed on that frame. A Controls
class was designed for the game that solves the above problems in a simple way. The next

section refers to fighting game notation; described as follows:

e 1 - Press down and away from opponent.

e 2 -Press down.

36

e 3 - Press down and towards opponent.

e 4 - Press away from opponent.

e 5 - Idle (do not move the control stick).

e 6 - Press towards opponent.

e 7 -Press up and away from opponent.

e 8- Pressup.

e 9 - Press up and towards opponent.

e A - Light attack.

e B - Medium attack.

e C - Strong attack.

e D - Special attack.

e - Used to separate frames: “8A” means press up and light attack at the same time; “8,A”
means press up, and then light attack.
Any combination of the above is possible. For example, “6A” means press light attack

while moving towards the opponent; “6,5,6” means tap towards your opponent twice, and

“2,3,6,A” means a quarter circle towards your opponent, followed by a light attack.

3.2.1 Searching for Input
In the game, each character has a list of attacks, and each attack has an associated input

string. For example, an attack might have “A” as an input, meaning when the light attack button
is pressed, the attack is activated. Every frame, every attack in the characters move-list is
examined; if a given attack’s input string was pressed, that attack is performed. This works
perfectly well for input strings that consist of only a single button press, but for more
complicated input strings, such as “2,3,6,A”, which span multiple frames of gameplay, a search

algorithm is needed.

37

During each frame of the fight, input is polled and stored in an array - generally, about
0.5 seconds of input data is stored at any given time for both players. Each frame, the
character’s entire move-list is searched to determine which action, if any, was performed.
During that algorithm, when the game requests a certain input string (“Did the player just press
2,3,6,A’ ”?), the input manager searches through previous input. To do this, it checks through
the input log to ensure A was pressed that frame. If A was pressed, it checks to see if 6 was
pressed a few frames before pressing 6. If 6 was pressed, it checks for 3, and so on, until either
the whole string was found to be pressed, in which case the function returns true, or a different
string was found, when the function returns false. This capability makes other tasks easier: for
example double tapping right has the player dash to the right. Instead of checking if the player
was recently walking right for a dash, the input can be checked for the string “6,5,6” (right,
center, right), which represents the same action, but can be done in a single line of code.
Although there is overhead with searching for every available action every frame, the algorithm
minimizes it by returning false cases quickly. For example, if checking input for ‘2,3,6,A,” the
algorithm first checks to see if A was pressed that frame; if A was not pressed, the function

returns false, and continues onto the next input string without checking any other input.

38

3.3 Gamepad Controllers

Fig 3.1: Examples of Fight Stick and Gamepad input devices.

Fight games traditionally use arcade sticks to control the onscreen characters. They consist of a
large ball handled joystick that can fit into a palm instead of just a finger, along with a few larger
buttons for the other hand. Arcade sticks are relatively expensive, so we don’t expect everyone
to have one. Instead we decided to focus on support for game controllers. We tested and

developed the support with Microsoft Xbox 360 Controllers for Windows.

Unity returns input from axis on a scale from -1 to 1. Having two axes on each stick, we
are able to determine the angle the stick is pointing. This angle can be mapped to the 9 number
grid systems we developed. We are able to set flags this way about what directions the stick is

pointing, as well as mark if they input direction has changed from the last check.

Unity provides built in support for joysticks, but we encountered a few issues. First,
when the controllers are plugged into the PC, Windows will recognize them and install the
proper drivers. Windows then assigns the controllers a number based off the order they were
plugged in. However, Unity does not seem to recognize Windows’ ordering. The solution we

came up with was to assign out own decision of who was first player and second player,

39

independent of both Unity and Windows. On the title screen, the first controller to select a menu
option would become who we considered to be first player.
3.4 Fight Mechanics

Even though fighting games only consist of two characters fighting, they often have very
complex and deep mechanics, and Demon Dissension is no exception. This section describes the

technical capabilities of the game that bring the fights to life.

3.4.1 Movement
Movement in our game is accomplished through the use of kinematic rigid bodies - a

Unity feature that can make objects affected by gravity, but not directly affected by external
collisions. This is useful, as the amount of knock-back an attack provides should be able to be
set by a designer, as opposed to being inferred by the physics system. Constraints were placed
on the character rigid bodies - they are only free to move in the X-Y plane, and their rotations are
fixed. This is to prevent a character from being knocked in the Z direction by an errant
projectile, and therefore no longer facing their opponent. In addition, if rotation was not fixed, a
character could be spun around or knocked on their back like a turtle, and since this is not an
intentional state, the character would be unable to get back up. Lastly, for a large portion of the
design process, characters could collide with each other, however, this behavior proved
unsuitable, as the characters could get stuck on one another, or jitter back and forth every frame
as the collisions attempted to resolve. To solve the problem, we prevented characters from
colliding with each other at all (a helpful Unity feature), and manually determined that if

characters were taking up the same space, to push them apart until the distance was adequate.

3.4.2 Hit-boxes
In video games, collision checks are often processing-intensive. It would be impractical

to check for a collision on each of a character’s thousands of vertices, especially as the character

40

is animated and constantly moving. A common workaround is to place hit-boxes - collision
boxes that follow the general shape of the character but do not match entirely - on each of the
joints of the character. For example, a character might have a cube covering each hand that
determines collisions as a helpful approximation. Characters in Demon Dissension have four
types of hit-boxes that perform different actions. In the following diagrams, the green boxes

surrounding hit-boxes designate which hit-boxes fit in the given category.

e Attack Hit-box - these hit-boxes are attacked to ‘attacking’ joints, such as fists, feet,
weapons, etc. These hit-boxes can be turned on and off (see Attack Implementation);

when they are on, they do damage to opponents they touch.

Fig 3.2: Examples of attack hit-boxes on Ellsee.

e Collision Hit-box - these hit-boxes take collisions. They are attached to parts of the body
that absorb damage, such as the body, head, and legs. When they are hit by an active

attack hit-box, they inform the character that it was hit.

41

Fig 3.3: Examples of collision hit-boxes on Ellsee.

e Push-box - these hit-boxes are large, and encompass the whole charact