Impact of Quality Adaptation in SVCbased P2P Video-on-Demand Systems

Osama Abboud, Thomas Zinner, Konstantin Pussep, Sabah Al-Sabea, and Ralf Steinmetz

httc –
 Hessian Telemedia Technology
 Competence-Center e.V - www.httc.de

KOM - Multimedia Communications Lab Prof. Dr.-Ing. Ralf Steinmetz (Director) Dept. of Electrical Engineering and Information Technology Dept. of Computer Science (adjunct Professor) TUD – Technische Universität Darmstadt Rundeturmstr. 10, D-64283 Darmstadt, Germany Tel.+49 6151 166150, Fax. +49 6151 166152 www.KOM.tu-darmstadt.de

Carsten Griwodz Osama Abboud

abboud@KOM.tu-darmstadt.de Tel.+49 6151 166151

MMsys_Abboud___2011.02.25.ppt

© 2010 author(s) of these slides including research results from the KOM research network and TU Darmstadt. Otherwise it is specified at the respective slide

February 22, 2011

Introduction

Video is a major part of Internet traffic [1]

By 2014 almost 90% of Internet traffic

Peer-assisted solution

- Reduce server load by making use of client-side resources
- System is more scalable

But how to overcome weak peer contributions and heterogeneity?

 Scalable Video Coding (SVC) can relieve and solve many issues and problems

This paper

... is about

 Designing and evaluating a P2P VoD system that uses SVC to overcome resource heterogeneity and weak peer contributions

... addresses the questions

- Does SVC really help in systems with heterogeneous resources?
- How to measure the quality of an SVC-based VoD system?
- How should the SVC layer selection algorithm be configured?
- How often should these algorithms be executed?

Outline

Introduction

Scalable Video Coding

The Quality Adaptive VoD System

- Quality Adaptation Algorithms
- Peer Selection
- Connection Management
- Block Selection

Evaluation Metrics and Setup

Evaluation Results

Conclusion

Scalable Video Coding (SVC)

Video file encoded only once but with different quality levels

Can be requested independently

14

L3

12

11

Enables quality adaptation

 Video quality adjustable according to static and dynamic resources

Scalability in 3 dimensions

- Temporal: Frames per second
- Spatial: Resolution of the picture
- Quality: Quantization levels, sharpness

The P2P Video-on-Demand System

Peer-assisted architecture

- Mesh-based pull approach
- Hybrid server/P2P solution
 - Servers with modest resources are deployed
 - Inject the initial content, guarantee QoS
- Tracker with contact information of the peers

Video streaming

- Video divided into chunks (time domain)
- Chunks divided into blocks (SVC 3D cube)

Content delivery

Quality Adaptation Algorithms

Select SVC layer according to

- Peer resources and network dynamics
- Different strategy depending on the stage of the streaming session

Initial Quality Adaptation (IQA)

Determines stream-able SVC layers

- Based on static peer resources
- Invoked at the beginning of video playback

Goal

- Avoid long startup times
- Match resources at session start

Uses static peer resources

Stages

- Spatial adaptation
- Bit-rate adaptation
- Complexity adaptation

Progressive Quality Adaptation (PQA)

Adapt to real time changes of the network

- Activated periodically (every T seconds)
- Based on real time network information

Goal

- Predict possible stalls before they happen
- Avoid stalls by temporary switching the layer

Uses real time information

Stages

- Net-status adaptation
- Bitrate adaptation
- Complexity adaptation

PQA Stages

Net-status Adaptation

- Only request layers that are available within local neighborhood
 - Determine the highest supported SVC layer
 - Avoid waiting for rare blocks by temporary switching the layer

Bit-rate Adaptation

- Adjust layer according to throughput of high priority set
- Throughput observed through the fullness of the high priority set
- Avoid buffer under run by switching down the layer when throughput is low
- Switch layer up in case throughput high enough

Complexity Adaptation

Use models that estimate required processing speed for decoding each layer

Peer Selection and Neighbor Management

Tracker manages: active peers and layers they currently stream

Important in order to connect correct providers and consumers

Peers advertise currently streamed SVC layers

- After successful IQA/PQA to the tracker and neighbors
- During connection establishment phase with neighbors
- Buffer maps are extended to support SVC

The mechanism is bi-directional

- Peers are eventually clustered according to their resources
- Seeders/caches support both weak and strong peers.

Connection Management

- Sender peer set
- Receiver peer set

Sender peer set

- Rank peers
 - Trace their contribution
 - Drop bad ones

Receiver peer set

- Limit the number according to upload bandwidth
- Assign upload slots according to how urgent a request is.

technische

DARMSTADT

Block Selection

High priority set

 Sliding buffer window, updated with playback position

Download task dispatching

- Parallel download from multiple peers
- Keep all peers as busy as possible

Priority calculation

- High priority set: use greedy approach
 - Chunks close to playback position and base layer get highest priority
- Low priority zone: use non-greedy approach
 - Download blocks "soon most wanted" by receiver set

Outline

Introduction

Scalable Video Coding

The Quality Adaptive VoD System

- Quality Adaptation Algorithms
- Peer Selection
- Connection Management
- Block Selection

Evaluation Metrics and Setup

Evaluation Results

Conclusion

Evaluation Metrics

Session Quality

Relative playback delay

$$Relative_{delay} = \frac{Delay_{init} + \sum_{i=1}^{n} Stall_{i}}{Time_{playback}}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Video Quality

- Number of layer changes
- Relative received layer

$$Quality_{rel}(d, t, q) = \frac{d + t + q}{D_{init} + T_{init} + Q_{init}}$$

 Less layer changes or higher relative received layer → Better user experience

Evaluation Setup

Simulation Parameters

Parameter	Value
Simulation duration	200 minutes
Number of peers	90
Peer arrival pattern	Exponential
Number of servers	4
Server upload capacity	6 Mbps
Play-out buffer size	7 seconds
Neighborhood size	10

Peers divided into three sets according to resources

	Set 1	Set 2	Set 3
Number	30	30	30
Screen size	176×144	352×288	704×576
Upload speed	$128 { m ~Kbps}$	$320 { m ~Kbps}$	$800 { m ~Kbps}$
Download speed	$256 { m ~Kbps}$	$560 { m ~Kbps}$	$1200 { m ~Kbps}$

Video length

5 minutes

Impact of Quality Adaptation: Session Quality

KOM – Multimedia Communications Lab 17

Impact of PQA Frequency: Visualization

The darker, the higher is the layer. White indicates a stall

Impact of PQA Frequency on Session Quality Relative Playback Delay

Impact of PQA Frequency on Video Quality Number of Layer Changes

Impact of PQA Frequency on Video Quality Relative Received Layer

Evaluation Conclusions

IQA and PQA help in achieving

- Better session quality
- More homogeneous performance across heterogeneous peers

PQA invocation interval exhibits a performance trade-off

PQA interval 🖊 Session quality 🔪 Video quality 🖊

Best PQA interval depends on application scenario and user expectation

Conclusions and Next Steps

P2P Video streaming is envisioned to have more importance

- SVC is needed to
 - Support high quality streaming
 - Achieve homogenous performance at heterogeneous peers

Advanced adaptation algorithms were developed

- To enable an efficient provisioning of resources
- Performance, tradeoffs, and impact of adaptation were explored

Possible optimizations

- Adaptive PQA interval
- Prediction-based layer selection
- Map session and SVC quality metrics to Quality-of-Experience metrics

That's all folks Thank you for your attention. Questions?

SVC: Block-based Quality Scalability

Three-dimensional scalability

SVC Cube-Model

- Each GOP is modeled by a 3D-cube
- Block-combinations form layers
- Base layer is the most important

Must consider

- Interdependencies of blocks
- Deadline of blocks
- User preference

Evaluation Scenario

SVC Video File

Used traces from a real nature video clip with medium activity

SVC layer	Picture	Frame	Partial	Total
(d,t,q)	size	rate (fps)	Bit-rate	Bit-rate
			(Kbps)	(Kbps)
0,0,0	176×144	3.75	60	60
0,1,0	176×144	7.5	30	90
0,2,0	176×144	15	30	120
$0,\!3,\!0$	176×144	30	30	150
1,0,0	352×288	3.75	180	240
$1,\!1,\!0$	352 imes 288	7.5	90	330
$1,\!2,\!0$	352 imes 288	15	60	390
$1,\!3,\!0$	352 imes 288	30	60	450
$2,\!0,\!0$	704×576	3.75	270	510
$2,\!1,\!0$	704×576	7.5	150	660
$2,\!2,\!0$	704 imes 576	15	180	840
$2,\!3,\!0$	704×576	30	160	1000