

Adaptive Encoding of Zoomable Video Streams based on User Access Pattern

Ngo Quang Minh Khiem Guntur Ravindra Wei Tsang Ooi

National University of Singapore

Zoomable Video

Zoomable Video with Bitstream Switching

GOAL: Minimize bandwidth to transmit Rols

Dynamic Cropping of ROI

Encode video once Support any Rol cropping

Tiled Streaming (TS)

Monolithic Streaming (MS)

Encode each tile as independently decodable video streams

Tiled Streaming

Single monolithic video

Monolithic Streaming

Trade-offs with TS and MS

Rol Access Pattern

Reduce bandwidth further, given RoI access statistics?

Questions in this paper

- Tiled Streaming
 - Different tile size in the same frame?
- Monolithic Streaming
 - Different motion search range?
- How?

Adaptive Encoding

Given RoI access statistics, adapt the encoding parameters such that the *expected bandwidth E* needed to transmit a RoI is minimized

$$E = \sum_{r \in R} c(r) p(r)$$

c(r): compressed size of RoI r p(r): access probability of RoI r

Encoded Video

Log user selection of Rol

(Online)

Rol Access Pattern

Adaptive **Encoded Video**

Adaptive Encoding & Re-encode video (Offline)

Adaptive Tiling (AT)

Monolithic Streaming with Rol-aware Coding (MS-PB)

Adaptive Tiling

Given Rol access pattern, tile the video such that E is minimized

$$E = \sum_{t \in T} c(t) p(t)$$

c(t): compressed size of tile t p(t): access probability of tile t

Intuition

Allowing tiles of different sizes can reduce bandwidth

Greedy Heuristic Tiling

- Start with regular 1x1 tiles
- Merge a tile with its neighbors if expected bandwidth is reduced
- Merge newly-formed tile with its neighbors bandwidth is reduced

$$t_1$$
 t_2 $c(t_1) = 9$ $c(t_2) = 6$ $p(t_1) = 0.8$ $p(t_2) = 0.8$

$$t_{12}$$
 $c(t_{12}) = 11$
 $p(t_{12}) = 1$

$$p(t_1)c(t_1) + p(t_2)c(t_2) \ge p(t_{12})c(t_{12})$$

Rol Access Pattern

Resulting tile map

Monolithic Streaming with Rol-aware Coding

Referenced MBs form large region outside Rol

- Short motion vector: less bandwidth efficient
- Probabilistic boxing motion vector (MS-PB)

Intuition

P(A), P(B): sending A, B

P(AB): A and B in same Rol

P(A) – P(AB): sending A independent of B

- P(A) P(AB) > P(B)
 - Increase in size of A when sending R2 is marginal
- P(A) P(AB) < P(B)
 - Increase in size of A when sending R2 is higher
- [P(A)-P(AB)] S(A) > P(B) S(B)

Motion Vector Spread after MS-PB

Evaluation

- Evaluate AT and MS-PB in terms of
 - Bandwidth efficiency
 - Compression efficiency
- Benchmark methods
 - Per-Rol
 - Tiled Streaming
 - Monolithic Streaming

Video Sequences

Rush-Hour (500 frames)

Bball (200 frames)

Tractor (688 frames)

Rainbow (350 frames)

Experiment Setup

- Rol size: 320x192 pel
- Video resolution 1920x1080 pel
- Evaluation is conducted by a training-testing framework
 - Training and test sets have the same distribution
- One training and test set for each GoP

Expected Data Rate for Different Videoswithout B-Frames

Expected Data Rate for Different Videoswith 2 B-Frames

Compressed Video File Size with 2 B-Frames

Compressed Video File Size without B-Frames

Presence of B-frame

Without B-frame

MS-PB < MS

With B-frame

MS-PB ≈ MS

Motion Vector Spread without B-frame

Motion Vector Spread with 2 B-frame

Conclusion & Future Work

- Propose an adaptive encoding approach based on user access patterns
- Reduce bandwidth by 21% (MS-PB) and 27% (AT)
- Limiting motion vector is beneficial to zoomable video with wide spread of dependency
- Future work:
 - Computational complexity
 - Diverse user interest of Rol
 - Frequency of Adaptation

Thank you

- Questions?
- Feedback/Suggesetion?