Dynamic Adaptive Streaming over HTTP – Design Principles and Standards

Thomas Stockhammer, Qualcomm
Internazionale vs Bayern München

Frustration!
User Frustration in Internet Video

- Video not accessible
 - Behind a firewall
 - Plugin not available
 - Bandwidth not sufficient
 - Wrong/non-trusted device
 - Wrong format
- Fragmentation
 - Devices
 - Content Formats
 - DRMs
- Low quality of experience
 - Long start-up delay
 - Frequent Rebuffering
 - Low playback quality
 - No lip-sync
 - No DVD quality (language, subtitle)
- Expensive
 - Sucks my bandwidth
 - Need a dedicated device
 - Other costs …
One way to build confidence - Open Standards
DASH: Standardization History and Status

- HTTP Live Streaming
- IIS Smooth Streaming
- Mobile Companies
Why in 3GPP?
The Mobile Video Streaming Challenge

- **The mobile video landscape**
 - Mobile Internet use is dramatically expanding
 - Video traffic is growing exponentially & is a large fraction of the usage

- **The challenges**
 - Mobile users expect high quality video experience
 - Network operators need to offer quality experience affordably

Figure 1. Cisco Forecasts 3.6 Exabytes per Month of Mobile Data Traffic by 2014

Figure 2. Video Will Account for 66 Percent of Global Mobile Data Traffic by 2014

39 times growth of mobile data

66% mobile video by 2014

TB per Month

<table>
<thead>
<tr>
<th>Year</th>
<th>Mobile VoIP</th>
<th>Mobile Gaming</th>
<th>Mobile P2P</th>
<th>Mobile Web/Data</th>
<th>Mobile Video</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>17%</td>
<td>17%</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

108% CAGR 2009-2014

Figure 2
Standardization History and Status

- **Sept 2010**: Dynamic Adaptive Streaming over HTTP (DASH)
- **March 2010**: Adaptive HTTP Streaming (AHS)

- **Mobile Companies**
 - 3GPP
 - A GLOBAL INITIATIVE

- **CE Vendors**
 - IIS Smooth Streaming

- **HTTP Adaptive Streaming (HAS)** (Sept 2010)
 - Liaison relationship

- **HTTP Live Streaming**

- **Publish**

- **Contribution & Liaison** relationship

- **MPEG - ISO/IEC JTC1/SC29 WG11**

- **14496-12 ISO Base Media File Format**
 - Draft Amendment - February 2011
MPEG DASH ISO/IEC 23001-6

- MPEG DASH ISO/IEC 23001-6 is now the master specification
- Provides a superset for system specifications
 - 3GPP Release-9 AHS
 - Open IPTV Forum HTTP Adaptive Streaming
 - 3GPP Release-10 DASH (completion target July 2011)
 - System specifications may define more: codecs, DRM, etc.

- Timeline and Activities
 - Draft International Standard (DIS) 23001-6 available publicly
 - 5 months balloting period until July 2011
 - Parallel approval process for extensions to ISO base media FF to support DASH
 - Continuous coordination with 3GPP and other organizations (DECE, OIPF, etc.)
 - Conformance and Reference Software activities kicked off (see WD 23001-7)

- The good news: Converging standard for adaptive streaming on the way

Convergence = Confidence
DASH Design Principles
(Some) DASH Design Principles

- **DASH is not:**
 - system, protocol, presentation, codec, interactivity, client specification
- **DASH is an enabler**
 - It provides formats to enable efficient and high-quality delivery of streaming services over the Internet
 - It is considered as one component in an e2e service
 - System definition left to other organizations (SDOs, Fora, Companies, etc.)

- **It attempts to be very good in what is to be addressed by the standard**
 - Enable reuse of existing technologies (containers, codecs, DRM etc.)
 - Enable deployment on top of HTTP-CDNs (Web Infrastructures, caching)
 - Enable very high user-experience (low start-up, no rebuffering, trick modes)
 - Enable selection based on network and device capability, user preferences
 - Enable seamless switching
 - Enable live and DVD-kind of experiences
 - Move intelligence from network to client, enable client differentiation
 - Enable deployment flexibility (e.g., live, on-demand, time-shift viewing)
 - Provide simple interoperability points (profiles)
DASH Specification Insights
What is specified – and what is not?

Media Presentation on HTTP Server

- Segment
- Resources located by HTTP-URLs

HTTP/1.1

DASH Client

- DASH Control Engine
- on-time http requests to segments
- HTTP Access Client
- Media Engines
Information Classification

- MPD and Index Information for DASH Access client
 - Core specification aspects of DASH
- Initialisation and Media Segments for Media engine
 - Reuse of existing container formats and easy conversion
 - Small adaptations may be necessary for usage in DASH
Media Presentation Data Model

- Media Presentation Description (MPD) describes accessible Segments and corresponding timing.
MPD Information

- Redundant information of Media Streams for the purpose to initially select or reject Groups or Representations
 - Examples: Codec, DRM, language, resolution, bandwidth

- Access and Timing Information
 - the HTTP-URL(s) and byte range for each accessible Segment
 - the earliest next update of the MPD on the server
 - the segment availability start and end time in wall-clock time
 - the approximated media start time and duration of a Media Segment in the media presentation timeline
 - for live service, instructions on starting playout such that media segments will be available in time for fluent playout in the future

- Switching and splicing relationships across Representations
- Relatively little other information
Segment Indexing

- Provides binary information in ISO box structure on
 - Accessible units of data in a media segment
 - Each unit is described by
 - Byte range in the segments (easy access through HTTP partial GET)
 - Accurate presentation duration (seamless switching)
 - Presence of representation access positions, e.g. IDR frames
- Provides a compact bitrate-over-time profile to client
 - Can be used for intelligent request scheduling
- Generic Data Structure usable for any media segment format, e.g. ISO BMFF, MPEG-2 TS, etc.
- Hierarchical structuring for efficient access
- May be combined with media segment or may be separate
Media Segment with Segment Index

- Simple
 - S1
 - F1
 - F2
 - F3
 - F4
 - F5
 - F6

- Hierarchical
 - S1
 - S2
 - F1
 - F2
 - S3
 - F3
 - F4
 - S4
 - F5
 - F6

- Daisy-Chain
 - S1
 - F1
 - F2
 - S3
 - F3
 - F4
 - S5
 - F5
 - F6
Media Segments

- Contain information to map segment into media presentation timeline for switching and synchronous presentation with other Representations
- For ISO BMFF, contains one or more movie fragments
- Can be short (≈1-10 sec) and long (≈10sec – 2h)

<table>
<thead>
<tr>
<th>Segment duration</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Short | • Commonality with Live
 • High switching granularity on segment level | • Large number of files
 • Large number of URLs
 • Fixed request size
 • switching granularity on segment level |
| Long | • Small number of files
 • Small number of URLs
 • High switching granularity
 • Flexible request sizes
 • Improved cache performance | • Need for Segment Index
 • Difference from Live |
DASH Selected Features
DASH Selected Feature list

- Live, On-Demand and Time-shift services
- Independency of request size and segment size (byte range requests)
- Segment formats
 - ISO base media FF and MPEG-2 TS
 - Guidelines for integrating any other format
 - Are codec independent
- Support for server and client-side component synchronization (e.g., separate and multiplexed audio and video)
- Support for efficient trick mode
- Simple splicing and (targeted) ad insertion
- Definition of quality metrics
- Profile: restriction of DASH and system features (claim & permission)
- Content Descriptors for Protection, Accessibility, Rating, etc.
 - Enables common encryption, but different DRM (DECE-like)
Forward looking

- Do the homework
 - Specification completion in the next few months
 - Conformance, interoperability and reference software
- DASH is rich and simple at the same time
 - Understand more detailed market needs
 - Create profiles as considered necessary
 - Collaborate with system creators on how to integrate DASH
- Integrate it into the web – what is necessary?
- Get it deployed
- Everyone is invited - get involved in and excited about DASH
Confident?

Or more Chocolate?
Thank you

Comments – Questions - Feedback