
Efficient Data Transmission Between Multimedia
Web Services via Aspect-Oriented Programming

Dominik Seiler1,2, Ernst Juhnke2, Ralph Ewerth2,

Manfred Grauer1, Bernd Freisleben2

1 Information Systems Institute, University of Siegen, Germany
2 Dept. of Math. and Comp. Science, University of Marburg, Germany

MMSys 2011, San Jose

Motivation

• Plethora of multimedia web services in WWW
–  Image and video data sources

•  Flickr, YouTube etc.

–  Data processing
•  Image/video OCR, transcoding, face detection…

• Goal: Create new applications by service composition
–  Compose a value-added workflow
–  Easier development & integration

Problem Statement

•  Assume you want to have a workflow of multimedia web services with
–  secure data transmission, and/or
–  reliable data transmission, and/or
–  metadata management, and/or
–  workflow modeling support (BPEL), and other features

•  SOAP services offer tool support for such requirements
–  in contrast to RESTful web services
–  but multimedia web services potentially deal with large data

•  Problem
–  Data transmission between SOAP web services
–  Workflow engine can become a bottleneck

Our Approach

• Consider data transmission as a cross-cutting concern in workflows

–  Data handling has to be addressed in many/all components
–  Address this issue by Aspect-Oriented Programming

• Reference technique optimizes data transmission

• Solution

 Aspect-oriented framework for efficient data transmission

Introduction – What is Aspect-Oriented Programming?

• Aspect-oriented programming (AOP)

–  Aims at increasing modularity of software systems
–  Encapsulates cross-cutting concerns into advice

•  Integration into existing applications via join points

• An aspect combines

–  Point cuts: description of a set of join points

–  Advice: code to be executed at specific join points

Intro – BPEL Workflows

• Business Process Execution
Language (BPEL)

• Standard for service composition
• General purpose workflow language

–  Turing-complete
–  Exposed as a web service
–  Basic/structured Activities

• Explicit modeling of control flow
• Excellent tool support

Introduction – Flex-SwA

• Flexible handling of bulk data

–  Service-oriented environment
• Reference builder

–  Creates XML description

• Reference handling

–  Transparent for the workflow provider

• Avoid bottlenecks due to file transfers

Request/Response Aspects

• Adapting data transmission requires modifications
–  On both, client and server side
–  Code must be aware of modifications
–  Adaption across different administrative domains

• Solution: Weave request/response aspects at message level
• Examples for non-functional requirements in web services

–  Data transmission
–  Security
–  Reliable messaging

Design

• Remain independent of web
service implementation

• Client-side at BPEL engine
(or any other client)

• Server-side at application server
(heterogeneous administration
domains)

Design – Client-side

•  Invoke activities are annotated
to use the Aspect-InvokeHandler
(AIH)

• AIH weaves request/response-
aspects into services

–  Ensures atomic behavior

• Unchanged implementation

• Transparent for the workflow

Design – Server-side

• Aspect Configurator

–  Add, remove, check
• Security Manager

–  PKI-based

• AspectProvider

–  Weaving component

–  Based on AspectJ

Implementation (server-side)

• AspectProvider

–  Woven into the Axis handler chain
–  Applies request/response on SOAP messages

Implementation (client-side)

• Schema-type of an request/response aspect

<complexType name="Aspect">
 <sequence>

 <element name="portType" type="xsd:QName" />
 <element name="operationName" type="xsd:string" />
 <element name="field" type="xsd:string" />
 <element name="mode" type="xsd:string" />
 <element name="aspectPlugIn" type="xsd:string" />
 <element name="aspectData" type="tns1:HashMap" minOccurs="0"/>
 </sequence>

</complexType>

Experimental Setup – Testbed

• Web services

–  MPEG decoder, face detector, MPEG-7 converter

• Web service environment

–  Tomcat 6, Axis 1.4, ActiveBPEL

• Computational environment: Amazon EC2

–  High-CPU Medium Instances

Experimental Setup – Test Scenarios

Test scenario I Test scenario II

• AOP / Flex-SwA-Aspect

• 3 EC2 machines
–  BPEL engine

–  MPEG decoder

–  Face detector, MPEG-7
converter

• Plain SOAP

• 2 EC2 machines
–  BPEL engine
–  Service container

Experimental Setup – Request/Response Aspects

Aspect serviceAspect = new Aspect(
 new QName(

 "http://fb12.de/MpegDecoderService",

 "MpegDecoder"),

 "getNextFrame",

 "/0/imageData",

 Aspect.AOP_RESPONSE_MODE,

 "FlexSwAPlugIn")

• void setVideo()
• DataBean getMetaData(…)
• ImageBean getNextFrame(…)
• ImageBean getFrameNumber(…)

ImageData
+ frameNumber

+ imageData

+ …

Experimental Setup – Results

• Comparison of the two
test scenarios

• Impact
–  Large improvement
–  Negligible overhead

Conclusion

• Aspect-oriented framework for SOAP multimedia web services

–  Message based
–  Efficient data transmission between web services

• Reference-based multimedia data transmission

• Reduced development efforts

–  Benefit easily from rich tool support of SOAP web services

• Future work: integration of more sophisticated AOP mechanisms

Thank you for your attention!

Any questions or remarks

