Network Traces of Virtual Worlds: Measurements and Applications

Yichuan Wang*^, Cheng-hsin Hsu*, Jatinder Pal Singh*, and Xin Liu^

*Deustche Telekom R&D Lab USA

^University of California, Davis

Life is for sharing.

Virtual Worlds

Virtual worlds enable interesting applications.

Popular ones: Second Life, Habbo Hotel, Sony Playstation Home

Challenges

- High volume: peak requirement 1.4Mbps vs 20kbps for Starcraft.
- Dynamic: Traffic pattern is hard to predict and accommodate.
- Diversified: 3D meshes, texture, audio, video, and game logic.
- UGC: user generated content, uplink traffic, third party data.

· · · Ţ

Second Life

- Virtual World developed by Linden research
 - Region: about 30000 regions
 - Resident, Avatar: up to 40-60 avatars per regions
 - Object, primitive: up to 15000 per region
- Client/Server
 - Viewer, snowglobe
 - Server (Grid): one server for one region
- Actions
 - Stand, Yaw, Walk, Run, Fly, Teleport
 - Programmable via Liden Scripting Language (LSL)

National Geography of Second Life

- What to collect?
 - Avatar mobility
 - Object count: region and local
 - Network packet traces
- Where to collect?
 - Network crawler
 - Region classes
- How to collect?
 - Modified viewer
 - Avatar script injection

Meet Bot Mirror

Fully automated testbed

 $oldsymbol{\cdot} oldsymbol{\cdot}$

Testbed Implementation

- Crawler: Command line tool, fast and lightweight
- Bot: Modified GUI viewer
 - Official GUI client, genuine network traffic
 - Inject script
 - Collect trace (both)
- Dispatcher
 - Python program to generate
 - Script for a list of region and actions
 - Bash script to drive the experiment

Experiment

- Action script:
 - 1 min each
 - Randomly change destination/direction 5 times
 - Within region boundary
- Systemically visit 125 regions
- Cached and uncached
- Trace are processed for publication
 - Packet trace
 - Location trace
 - Statistics trace

Downlink Traffic Characteristic

- Region Tokugawa, uncached
 - High traffic volume
 - Bandwidth throttling
 - Packet type

Uplink Traffic Characteristics

- Region Tokugawa, uncached
 - Lower traffic
 - Game logic only
 - Small packet size

Effect of Cache

- Region Tokugawa, cached
 - Greatly lower traffic

Aggregated Traffic Characteristics

- Aggregated over 125 regions, uncached, downlink
 - In initial stage, action has insignificant effect
 - Packet size showed bimodel characteristics

Avatar/object density correlation

- Local object count affects is correlated to traffic metrics
- Local avatar too little to statistically meaningful

References

- S. Fernandes, F. Antonello, J. Moreira, D. Sadok, and C. Kamienski. Traffic analysis beyond this world: the case of Second Life. (NOSSDAV'07)
- M. Ferreira and R. Morla. Second Life in-world action traffic modeling. (NOSSDAV'10)
- I. Oliver, A. Miller, and C. Allison. Virtual worlds, real traffic: Interaction and adaptation. (MMSys'10)
- J. Kinicki and M. Claypool. Traffic analysis of avatars in Second Life. (NOSSDAV'08)
- And many others, omitted due to space limitation

Conclusion

- Applications:
 - Traffic modeling
 - Synthetic trace generation
 - Improving QoS
 - Prioritize according to packet type
 - Gateway for mobile devices
 - Texture down-sampling
- What we need: Parameterized model
 - There is no one-size-fits-all model

