Operating Systems

Review

ENCE 360

High-level Concepts

e What are three conceptual pieces
fundamental to operating systems?

High-level Concepts

e What are three conceptual pieces
fundamental to operating systems?

1. Virtualization — sharing computer hardware
in time and space

2. Concurrency — simultaneous access to shared
resources

3. Persistence — making information exist across
power outages, crashes, etc.

Operating System Model

e Arrange layers in order, top (user) to bottom

. Device driver (e.g., mouse)
Computer game (e.g., FIFA 2018)
Shell (e.g., Bash)

. Physical devices (e.g., Hard disk)
Operating System (e.g., Linux)

mmooOw >

Program control (e.g., Task Manager)

Operating System Model

e Arrange layers in order, top (user) to bottom

<= Applications

Task Manager Shell Shell - System
Programs
‘

V -

Hardware

The Process

e What is a process?

The Process

e What is a process?

e “A program in execution”

Process States

e What are the 3 main process states?
e What are the transitions between them?

Process States

e What are the 3 main process states?
e What are the transitions between them?

Initialization - ﬂ;
Dispatch /0 request
Create Interrupt

— @
/O complete

Clean up

Advice, help and support on campus

Medical care, Upskill your .
q} counselling, academic

travel advice, or writing and ‘ '
physiotherapy. study skills. -

UC Health Centre Academic Skills Centre
healthcentre@canterbury.ac.nz academicskills@canterbury.ac.nz

Feel more energised. Have issues?

Lift. Move. Play.
Compete. Excel. Need he'D?

Students’
UC RecCentre R
& @UC RecCentre Association (UCSA)

help@ucsa.org.nz

UC sport
& @UC Sport

Feeling unsafe or need emergency
help? UC Security 0800 823 637

Are you Maori A disability or
and need medical condition
advice, cultural affecting your

or academic support? study?

M3ori Student Development Team Disability Resource Service
maoridevelopment@canterbury.ac.nz disabilities@canterbury.ac.nz

Need to talk things over? Are you Pasifika and

Practical guidance, advice need advice, cultural

and support for our domestic e t?
and international students. Or academic support:

Student Care
studentcare@canterbury.ac.nz

Pacific Development
Team
pasifika@)canterbury.ac.nz

Check your uclive emails regularly.

You can have them forwarded to another email account—see the IT Services webpage
for more info.

4

Process Control Block

e What is a process control block?

e What are the main components?

Process Control Block

e What is a process control block?

— A data structure the OS uses to manage a running
program (a process)

e What are the main components?
— Running current code stuff — PC, registers, state, ...
— Memory stuff — stack, heap, code, ...
— 1/0 stuff — file descriptors, working directory, ...

Process Creation in Unix

main() { What does the code to
fork(); the left do when run?
puts(“hello”);

¥

 How can we change it
to only have child
process print “hello”?

Process Creation in Unix

main() { What does the code to
fork(); the left do when run?
puts(“hello”); hello

} hello

 How can we change it
to only have child
process print “hello”?

— Change fork() lineto
be:

if (fork() == 0)

Processes and Threads

What is a process?
What is a thread?

For two processes, what is private?

For two threads in the same process, what is
private?

Processes and Threads

What is a process?

— A program in execution / a running program
What is a thread?

— A single sequence of execution within a process
For two processes, what is private?

— Code, memory (global variables, stack), hardware state
(program counter, registers), OS resources (file
descriptors+)

For two threads in the same process, what is private?

— Memory (stack), Hardware state (program counter,
registers)

Processes and Threads

For two
processes, what
is private?

For two threads
in the same

process, what is
private?

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread —— ;

:

%

;._

— thread

single-threaded process

multithreaded process

(Helpful picture)

Thread Creation with Pthreads

void A() { e What does the code to
puts(“hello”); the left do when run?
}

void main() {
pthread_create(&t,A);
puts(“goodbye”);

}

Thread Creation with Pthreads

void A() { e \What does the code to
puts(“hello”); the left do when run?
} goodbye or hello
hello goodbye
void main() { e What code to add to
pthread create(&t,A); always have “hello”

puts(“goodbye”); before “goodbye”?
}

Thread Creation with Pthreads

void A() { e What does the code to
puts(“hello”); the left do when run?
} goodbye or hello or goodbye
hello goodbye
void main() { * What code to add to
pthread create(&t,A); always have “hello

pthread_join(t); before “goodbye”?

puts(“goodbye”); — pthread_join(t) before
} puts (“goodbye™)

IPC Paradigms

e What are two main paradigms for Interprocess
Communication (IPC)?

 What are some advantages/disadvantages for
each?

IPC Paradigms

 What are two main paradigms for Interprocess
Communication (IPC)?

 What are some advantages/disadvantages for
each?

1. Message passing

Good: explicit, less chance for programmer error
Bad: overhead

2. Shared memory

Good: performance, flexibility for programmer

Bad: changes without process knowing (side effects),
programmer needs to handle sync

IPC Mechanisms

e What are some IPC mechanisms?

IPC Mechanisms

e What are some IPC mechanisms?
— Pipe
— Files
— Shared memory
— Signals
— Sockets

Pipe

e What is a pipe? What operations does it
support?

Pipe

e What is a pipe? What operations does it
support?
— IPC mechanism provided by OS
— Gives bounded-buffer, FIFO/queue access
— Write to one end, Read from other
— Block on full write, Block on empty read

I
[[

read fd write fd

System Exploration

File-descriptors and exec ()
Signal-signal
Thread-signal

Challenge: once you use dup2 () to change
STDOUT, can you restore it?
— Hint, see:

https://stackoverflow.com/questions/11042218/c-
restore-stdout-to-terminal

Dup?

 From the user’s perspective, what does this code do?
fd = open(“dup.txt”, O WRONLY)
dup2(fd, STDOUT FILENO)

e What does it do from the system’s perspective?

Dup?

 From the user’s perspective, what does this code do?
fd = open(“dup.txt”, O WRONLY)
dup2(fd, STDOUT FILENO)

— Opens a file and changes standard output to go to the file
instead of the screen

e What does it do from the system’s perspective?

— Closes STDOUT _FILENO, copies the file descriptor to the
new file descriptor

0 0

1 stdout 1 N stgbut
2 2 ‘\\\k:>8(
3 file 3 > | file

Before dup2() After dup2()

Signals

 What is an operating system signal?

* Broadly describe how to write code to use one

 Provide an example of how signals might be used

Signals
e What is an operating system signal?

— A message to a process corresponding to an event,
sent by either another process or the OS

 Broadly describe how to write code to use one

 Provide an example of how signals might be used

Signals

 What is an operating system signal?

— A message to a process corresponding to an event, sent by

either another process or the OS
* Broadly describe how to write code to use one

— Write handler function /0id handle_signal(int sig) {
if (sig == SIGINT)
— Make system call printf("Nya, nya, nya - I

—_ Send Signa|s if (sigaction(SIGINT, &handle_action, NULL)

perror(“sigaction");

if (kill(pid, SIGUSR1) ==
perror(“kill");

1)

 Provide an example of how signals might be used

Signals

 What is an operating system signal?

— A message to a process corresponding to an event, sent by
either another process or the OS

* Broadly describe how to write code to use one

— Write handler function v0id handle_signal(int sig) {
if (sig == SIGINT)
— Make system call printf("Nya, nya, nya - I
—_ Send Signa|s if (sigaction(SIGINT, &handle_action, NULL)
perror(“sigaction");

if (kill(pid, SIGUSR1l) == -1)
perror(“kill");

 Provide an example of how signals might be used
— Gracefully shut down upon ctrl-c
— Indicate to parent child has finished work
— Wake up and do some action upon an alarm

Sockets

 What two (maybe three) pieces of information
does a client need to know to connect to a
server?

Sockets

 What two (maybe three) pieces of information
does a client need to know to connect to a
server?
— |P Address — gets data to right computer
— Port — gets data to right process
— (Network protocol — TCP or UDP)

D (

agreed port (

sock{e—’lr)// any port | sacket
message

client D |
Dl other ports <(<|

Internet address = 138.37.94.248 Internet address = 138.37.88.249

server

Sockets —
Put in Order for Client & Server

send() Client Server

connect()

socket ()

Sockets —

Put in Order for Client & Server

send()
connect()

socket ()

Client

socket ()
connect()
send()
recv()
close()

Server

socket ()
bind()
listen()
accept()
recv()
close()

Sockets - Describe

e What is the difference between

—send() and recv()
VsS.

—read() andwrite()

Sockets - Describe

e What is the difference between

—send() and recv()
VsS.

—read() andwrite()

* Answer: send() and recv() have flags that

may be useful
« E.g., MSG_PEEK, MSG_DONTWAIT

Sockets - Describe

e What does “non-blocking” mean for a socket?

Sockets - Describe

e What does “non-blocking” mean for a socket?

Answer:

recv()/send(), do not
sleep if no data.

Note: can be done for
accept() too on server

Non-Blocking 1/0

Application Operating system

System call

recvfrom() No datagram ready

EWOULDBLOCK
System call

recvfrom() » No datagram ready
EWOULDBLOCK
recvErom() System call datagram ready
t Copy datagram
Proces blocks Copy data to user

Ret k
Process datagram = Copy complete

CPU Scheduling

* Briefly describe the shortest time to completion
first (STCF) algorithm

e |s STCF pre-emptive?

CPU Scheduling

* Briefly describe the shortest time to completion
first (STCF) algorithm

— From ready to run processes, select process with
shortest time to finish it’s CPU burst

[B,C arrive]
AlB C A

0 20 40 60 80 100 120

e |s SCTF pre-emptive?

— Yes —if a process arrives that has a shorter completion
time than the one currently running, it is chosen
instead

CPU Scheduling

Queue Runable processes
headers , A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

e Describe some rules that will make the MLFQ
adaptive

CPU Scheduling

Queue Runable processes
headers , A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

e Describe some rules that will make the MLFQ
adaptive

1. New processes at highest priority
2. If process uses all of timeslice, reduce priority

3. If process voluntarily blocks before timeslice
expires, increase priority

