
Operating Systems

File Systems

ENCE 360

Motivation – Top Down: Process Need

• Processes store, retrieve information
• When process terminates, memory lost
• How to make it persist?
• What if multiple processes want to share?

• Requirements:
– large
– persistent
– concurrent access

Solution?
Hard disks are

large,
persistent!

Motivation – Bottom Up: Hard Disks

• Requirements
– Differentiation of data blocks
– Reading and writing of blocks
– Efficient access

bs – boot sector
sb – super block

Disks come
formatted with
blocks (typically

512 bytes)

CRUX: HOW TO IMPLEMENT A FILE
SYSTEM ON A HARD DISK
How to find information?

How to map blocks to files of all sizes?
How to know which blocks are free?Solution? File Systems

Outline

• Introduction (done)
• Implementation (next)
• Directories
• Journaling

Chapter 4
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

Chapter 39, 40
OPERATING SYSTEMS: THREE EASY PIECES

By Arpaci-Dusseau and Arpaci-Dusseau

Example: Unix open()

int open(char *path, int flags [, int mode])

• path is name of file (NULL terminated string)
• flags is bitmap to set switch

– O_RDONLY, O_WRONLY, O_TRUNC …
– O_CREATE then use mode for permissions

• success returns index
– On error, -1 and set errno

Unix open() – Under the Hood
int fid = open(“blah”, flags);

read(fid, …);

User Space

System Space

stdin
stdout
stderr

...

0
1
2
3

File Structure

...

...

File
Descriptor

(Where
blocks are)

(File attributes)

(index)

(Per process) (Per device)

Process Control Block

Open File Table
File Descriptor

Table

Disk

File sys info

File
descriptors

Copy fd
to mem

Directories

Data

File System Implementation

• Core data to track: which blocks with which
file?
– Job of the file descriptor

• Different implementations:
a) Contiguous allocation
b) Linked list allocation
c) Linked list allocation with index
d) Inode

File
Descriptor

Contiguous Allocation (1 of 2)
• Store file as contiguous blocks on disk
• Good:

– Easy: file descriptor knows file location in
1 number (start block)

– Efficient: read entire file in 1 operation
(start & length)

• Bad:
– Static: need to know file size at creation

• Or tough to grow!

– Fragmentation: chunks of disk “free” but
can’t be used

(Example next slide)

Contiguous Allocation (2 of 2)

What if want new file, size 8 blocks?
 Fragmentation (“free” but can’t be used)

De
le

te

De
le

te

Linked List Allocation
• Keep linked list with disk blocks

• Good:
– Easy: remember 1 number (location)
– Efficient: no space lost in fragmentation

• Bad:
– Slow: random access bad (e.g., process want’s middle

block)

File
Block

0

File
Block

1

File
Block

2

Physical
Block

null

4 7 2

File
Block

0

File
Block

1

null

6 3

Linked List Allocation with Index

• Table in memory
– MS-DOS FAT, Win98 VFAT

• Good: faster random access
• Bad: can be large! e.g., 1 TB

disk, 1 KB blocks
– Table needs 1 billion entries
– Each entry 3 bytes (say 4 typical)
 4 GB memory!

Physical
Block

0

1

null2

null3

74

5

36

27
Common format still (e.g., USB drives)

since supported by many OSes &
additional features not needed

“File Allocation Table”

inode

• Fast for small files
• Can hold large files

• Typically 15 pointers
– 12 to direct blocks
– 1 single indirect
– 1 doubly indirect
– 1 triply indirect

• Number of pointers per block? Depends on
block size and pointer size

– e.g., 1k byte block, 4 byte pointer each indirect
has 256 pointers

• Max size of file? Same – depends on block
size and pointer size

– e.g., 4KB block, 4 byte pointer max size 2 TB

Linux File System: ext3 inode
// linux/include/linux/ext3_fs.h
#define EXT3_NDIR_BLOCKS 12 // Direct blocks
#define EXT3_IND_BLOCK EXT3_NDIR_BLOCKS + 1 // Indirect block index
#define EXT3_DIND_BLOCK EXT3_IND_BLOCK + 1 // Double-ind. block index
#define EXT3_TIND_BLOCK EXT3_DIND_BLOCK + 1 // Triple-ind. block index
#define EXT3_N_BLOCKS EXT3_TIND_BLOCK + 1 // (Last index & total)

struct ext3_inode {
__u16 i_mode; // File mode
__u16 i_uid; // Low 16 bits of owner Uid
__u32 i_size; // Size in bytes
__u32 i_atime; // Access time
__u32 i_ctime; // Creation time
__u32 i_mtime; // Modification time
__u32 i_dtime; // Deletion time
__u16 i_gid; // Low 16 bits of group Id
__u16 i_links_count; // Links count
__u32 i_blocks; // Blocks count
...
__u32 i_block[EXT3_N_BLOCKS]; // Block pointers
...

}

Outline

• Introduction (done)
• Implementation (done)
• Directories (next)
• Journaling

Directory Implementation
• Just like files (“wait,

what?”)
– Have data blocks
– File descriptor to map

which blocks to directory
• But have special bit set so

user process cannot
modify contents
– Data in directory is information

/ links to files
– Modify only through

system call (right)
• Tree structure, directory

most common

See: “ls.c”

• Create

• Delete

• Opendir

• Closedir

• Readdir

• Rename

• Link

• Unlink

Directory System Calls

Directories
• Before reading file, must be opened
• Directory entry provides information to get

blocks
– Disk location (blocks, address)

• Map ASCII name to file descriptor

name block count

block numbers

Where are file attributes (e.g.,
owner, permissions) stored?

Options for Storing Attributes
a) Directory entry has attributes (Windows)

b) Directory entry refers to file descriptor (e.g.,
inode), and descriptor has attributes (Linux)

Windows (FAT) Directory

• Hierarchical directories
• Entry:

– name - date
– type (extension) - block number (w/FAT)
– time

name type attrib time date block size

Unix Directory

• Hierarchical directories
• Entry:

– name
– inode number (try “ls –i” or “ls –iad .”)

• Example, say want to read data from below file
/usr/bob/mbox
Want contents of file, which is in blocks
Need file descriptor (inode) to get blocks
How to find the file descriptor (inode)?

inode name

User Access to Same File in More than
One Directory

Possibilities for “alias”:
A. Refer to file descriptor in two

locations – “hard link”
B. Special directory entry points

to real directory entry – “soft
link”

B C

A ? B C

(Instead of tree, really have
directed acyclic graph)

“alias”

Examples: try
“ln”, “ln -s”
and “ls -i”

Windows “shortcut” – but only
viewable by graphic browser,

absolute paths, with metadata,
can track even if move

Keeping Track of Free Blocks
Keep one large “file” of free blocks (use normal file descriptor)

Contents are linked-list of free blocks
(can be small when full, but no locality)

Contents are bitmap of free blocks
(preserves locality, but 1-bit/block)

Outline

• Introduction (done)
• Implementation (done)
• Directories (done)
• Journaling (next)

Need for Robust File Systems
• Consider upkeep for removing file

1. Remove file from directory entry
2. Return all disk blocks to pool of

free disk blocks
3. Release file descriptor (e.g.,

inode) to pool of free descriptors
• What if system crashes in middle?

a) inode becomes orphaned
(lost+found, 1 per partition)
b) Same blocks free and allocated
If flip steps, blocks/descriptor free
but directory entry exists!

• Crash consistency problem

1

2

inode
5

91
12

3

91

Crash Consistency Problem

• Disk guarantees that single sector writes are
atomic
– But no way to make multi-sector writes atomic

• How to ensure consistency after crash?
1. Don’t bother to ensure consistency

• Accept that the file system may be inconsistent after crash
• Run program that fixes file system during bootup
• File system checker (e.g., fsck)

2. Use transaction log to make multi-writes atomic
• Log stores history of all writes to disk
• After crash log “replayed” to finish updates
• Journaling file system

24

File System Checker –
the Good and the Bad

• Advantages of File System Checker
– Doesn’t require file system to do any work to ensure

consistency
– Makes file system implementation simpler

• Disadvantages of File System Checker
– Complicated to implement fsck program

• Many possible inconsistencies that must be identified
• Many difficult corner cases to consider and handle

– Usually super sloooooooow…
• Scans entire file system multiple times
• Consider really large disks, like 400 TB RAID array!

25

Journaling File Systems
1. Write intent to do actions (a-c) to log (aka “journal”)

before starting
– Option - read back to verify integrity before continue

2. Perform operations
3. Erase log

• If system crashes, when restart read log and apply
operations

• Logged operations must be idempotent (can be
repeated without harm)

Superblock
Block

Group 0
Block

Group 1 … Block
Group N

Journal

Journaling Example
• Assume appending new data block (D2) to file

– 3 writes: inode v2, data bitmap v2, data D2

• Before executing writes, first log them

27

Jo
ur

na
l

D2B v2I v2TxB
ID=1

TxE
ID=1

1. TxB: Begin new transaction with unique ID=1
2. Write updated meta-data block (inode, data bitmap)
3. Write file data block
4. TxE: Write end-of-transaction with ID=1

Commits and Checkpoints
• Transaction committed after all writes to log complete
• After transaction is completed, OS checkpoints update

28

Journal D2B v2I v2TxB TxE

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

v2 D2

• Final step: free checkpointed transaction

Committed!

Checkpointed!

Crash Recovery (1 of 2)
• What if system crashes during logging?

– If transaction not committed, data lost
– But, file system remains consistent!

29

Journal D2B v2I v2TxB

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

Crash Recovery (2 of 2)
• What if system crashes during checkpoint?

– File system may be inconsistent
– During reboot, transactions committed but not completed are

replayed in order
– Thus, no data is lost and consistency restored!

30

Journal D2B v2I v2TxB TxE

v1 D1

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

v2 D2

Journaling Summary

• Advantages of journaling
– Robust, fast file system

recovery
• No need to scan entire journal

or file system
– Relatively straight forward to

implement

• Disadvantages of journaling
– Write traffic to disk doubled

• Especially file data, which is
probably large

– Can fix! Only journal meta-
data!

(Left for student exploration)

• Today, most OSes use
journaling file systems
– ext3/ext4 on Linux
– NTFS on Windows

• Provides crash recovery
with relatively low space
and performance overhead

• Next-gen OSes likely move
to file systems with copy-
on-write semantics
– btrfs and zfs on Linux

31

Outline

• Introduction (done)
• Implementation (done)
• Directories (done)
• Journaling (done)

