
Operating Systems

Input/Output Devices

ENCE 360

Need for Input and Output
• An OS clearly needs input

– How else can it know what services are required?

• An OS clearly provides output
– How else are users/clients supposed to benefit

from the services?

THE CRUX: HOW TO INTEGRATE I/O
INTO OPERATING SYSTEMS?

How should I/O be integrated into OS?
What are the general mechanisms?
How can we make them efficient?

Outline

• Introduction (done)
• Device Controllers (next)
• Device Software
• Hard Disks

Chapter 5
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

Chapter 36, 37
OPERATING SYSTEMS: THREE EASY PIECES

By Arpaci-Dusseau and Arpaci-Dusseau

Prototypical System Architecture

Fast, so must
be short.
Also $$

Longer, so slower.
Need many

devices

Devices that demand
high perf generally

closer to CPU

OS must deal
with all devices!

Canonical Device

See any problems?
Hint: remember,

devices can be slow!

For OS, device is interface - like
API of 3rd party system/library!

Internals can be simple (e.g., USB
controller) to complex (e.g., RAID
controller)

Canonical Protocol

while (STATUS == BUSY)
; // wait until device is not busy

write data to DATA register
; // device may need to service request

write command to COMMAND register
; // starts device to execute command

while (STATUS == BUSY)
; // wait until device is done

Canonical Device

THE CRUX:
HOW TO AVOID THE
COST OF POLLING?

How can OS check device
status without frequent

polling?

For OS, device is interface - like
API of 3rd party system/library!

Internals can be simple (e.g., USB
controller) to complex (e.g., RAID
controller)

Canonical Protocol

while (STATUS == BUSY)
; // wait until device is not busy

write data to DATA register
; // device may need to service request

write command to COMMAND register
; // starts device to execute command

while (STATUS == BUSY)
; // wait until device is done

Solution – the Interrupt (Again)

• Instead, CPU switches to new process
• Device raises interrupt when done
• Invokes interrupt handler

Polling

Interrupt

Copying Data? Ho, Hum

• CPU copying data (write
and read) rather trivial
– Could be better spent on

other tasks!

Process 1 wants to write data to disk

CPU copies
data to device

THE CRUX:
HOW TO LOWER

DEVICE OVERHEADS?
How can OS offload
work so CPU can be
more efficient?

Solution – Direct Memory Access
(DMA)

1. CPU provides
DMA address

2. Device performs
direct transfer to
memory

3. Device interrupts
processor

4. Processor
accesses device
data from
memory

CPU

1

2

3

4

The Benefits of DMA

Process 1 wants to write data to disk

CPU copies
data to device

Device copies
data from mem

CPU can run another process

Outline

• Introduction (done)
• Device Controllers (done)
• Device Software (next)
• Hard Disks

Integration
• Devices interfaces are very specific

– Even for functionally similar devices!
• e.g., SCSI disk vs. IDE disk vs. USB thumb drive …

– Not to mention functionally different devices!
• e.g., keyboard vs. disk vs. network card …

• Want system to be (mostly) oblivious to
differences

THE CRUX:
HOW TO BUILD DEVICE-NEUTRAL OS?

How to hide details of device interactions from OS interactions?

Solution – Abstraction

• Application oblivious to file system details
• File system oblivious layer specific details
• Device layer oblivious device specific details
• Device driver knows specifics of device hardware

70% of Linux
is device

driver code!

Hardware

Hardware

Generic Device Types

1. block - access is independent of previous
– e.g., hard disk

2. stream - access is serial
– e.g., keyboard, network

3. other (e.g., timer/clock (just generate interrupts))

Interrupt Handler (1 of 2)

• Interrupts handled by device in two parts
– Short at first/top (generic)
– Longer next/bottom (device specific)

Hardware

(top)
Interrupt Handler

(bottom)

(Next slide)

Interrupt Handler (2 of 2)

• When handling interrupt,
other interrupts disabled
– Incoming ones may be lost
– So, make as small as

possible
• Solution Split into two

pieces

• First part minimal amount
of work
– Defer rest until later
– Effectively, queue up rest
– Re-enable interrupts
– Linux: “top-half” handler

• Second part does most of
work
– Run device-specific code
– Windows: “deferred

procedure call”
– Linux: “bottom-half”

handler

Device Driver

Interrupt
Handler

Hardware

re
qu

es
t

response
top

bottom

User Level Library

Device Independent
Software

Device Drivers

Interrupt
Handlers

Hardware

I/O System Summary
I/O request I/O response

Make I/O call, format request and
response

Handle naming, protection, blocking,
buffering, allocation

Setup device registers for request,
check status upon response

Respond to interrupt when device
completes I/O

Perform I/O operation

top

bottom

Outline

• Introduction (done)
• Device Controllers (done)
• Device Software (done)
• Hard Disks (next)

Hard Drive Overview

• Hard disk has series of platters
• How do bytes get arranged on

disk?

The quick brown
fox jumped over

the lazy dogs

File
Hard Disk

???

Reading/Writing Disk Blocks

Time to read/write block:
Seek time – move arm to position
Rotation time – spin disk to right block
Transfer time – data on/off disk

Disk with 1 track

Disk with 3 tracks

Organizing Disk Block Requests

• Rotation fast
• Arm movement

relatively slower
 Seek time dominates

Because matters so much,
OS often organizes
requests for efficiency
 But how?

21

2

So, if 2 and 21,
then which next?

First-Come First-Served (FCFS)

• Service requests in order that they arrive
– Total time: 14+13+2+6+3+12+3=53

• Little done to optimize
• How can we make more efficient?

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

Shortest Seek First (SSF)

• Service request closest to read arm
– Total time: 1+2+6+9+3+2 = 23

• What might happen that is bad?
– Hint: something similar happened with scheduling

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

Shortest Seek First (SSF)

• Service request closest to read arm
– Total time: 1+2+6+9+3+2 = 23

• What might happen that is bad?
– Continual request near arm starvation!

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

Elevator (SCAN)

• Total time: 1+2+6+3+2+17 = 31
• Usually, a little worse average seek time than SSTF

– But more fair, avoids starvation
• Alternate C-SCAN has less variance
• Note, seek getting faster, rotational not

– Someday, change algorithms

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

State of the Art – a Mixed Bag

• Disks evolving (e.g., rotation + seek converging), so OS
may not always know best

• Instead, issue cluster of requests that are likely to be
best
– Send to disk and let disk handle

• Linux – no one-size fits all (sys admins tune)
– Complete Fair Queueing (CFQ) – queue per processes, so

fair but can optimize within process
• Default for many systems

– Deadline – optimize queries (better perf), but hard limit on
latency to avoid starvation

– Noop – no-sorting of requests at all (good for SSD. Why?)

Outline

• Introduction (done)
• Device Controllers (done)
• Device Software (done)
• Hard Disks (done)

