Operating Systems

Input/Output Devices

ENCE 360

Need for Input and Output

* An OS clearly needs input

— How else can it know what services are required?

* An OS clearly provides output

— How else are users/clients supposed to benefit
from the services?

THE CRUX: HOW TO INTEGRATE 1/0
INTO OPERATING SYSTEMS?

How should I/O be integrated into OS?
What are the general mechanisms?
How can we make them efficient?

Outline

ntroduction
Device Controllers
Device Software
Hard Disks

(done)
(next)

Chapter 5

MODERN OPERATING SYSTEMS (MOS)
By Andrew Tanenbaum

Chapter 36, 37
OPERATING SYSTEMS: THREE EASY PIECES
By Arpaci-Dusseau and Arpaci-Dusseau

Prototypical System Architecture

CPU

Memory

Graphics

Fast, so must
be short.

Memory Bus Also SS
propristary) ——

, Devices that demand
General /O Bus)
(e.g.. PCI) high perf generally
closer to CPU

OS must deal
with all devices!

» Peripheral /0O Bus
(e.g., SCSI, SATA, USB)

i Longer, so slower. i
Need many
devices

Canonical Device

Internals can be simple (e.g., USB
Registers ‘ Status \ |Command\ | Data \ controller) to complex (e.g., RAID
__ controller)
Micro-controller (CPU)
Memory (DRAM or SRAM or both) For OS, device is interface - like
Other Hardware-specific Chips API of 3" party system/library!

Canonical Protocol

while (STATUS == BUSY)
5 // wait until device is not busy
write data to DATA register : _
; // device may need to service request Hint: remember,
write command to COMMAND register . devices can be slow!
./ starts device to execute command | mm—n——ns
while (STATUS == BUSY)
5 // wait until device is done

See any problems?

Canonical Device

Internals can be simple (e.g., USB
Registers | Status \ |Command\ | Data \ controller) to complex (e.g., RAID
__ controller)

Micro-controller (CPU)
Memory (DRAM or SRAM or both) For OS, device is interface - like
Other Hardware-specific Chips API of 3" party system/library!
Canonical Protocol
while (STATUS == BUSY) THE CRUX:

5 // wait until device is not busy HOW TO AVOID THE
write data to DATA register COST OF POLLING?

; // device may need to service request
write command to COMMAND register
; // starts device to execute command

while (STATUS == BUSY)
5 // wait until device is done

How can OS check device
status without frequent
polling?

Solution — the Interrupt (Again)

Polling

CPU 111 (1] 1] 1 11111

Disk T(1 11 (1] 1

* |nstead, CPU switches to new process
* Device raises interrupt when done
* |nvokes interrupt handler

CPU |1 |1 |1 [1]1 Breraraavy 1 | 1| 1| 1

Disk t 1101]1] 1| Interrupt

Copying Data? Ho, Hum

Process 1 wants to write data to disk

CPU (1|1 (1|11 |c]|c]|c

2

2 2

2 2 e

Disk CPU copies
data to device

* CPU copying data (write
and read) rather trivial

— Could be better spent on
other tasks!

1

1

1

11 1

THE CRUX:

HOW TO LOWER
DEVICE OVERHEADS?

How can OS offload
work so CPU can be
more efficient?

Solution — Direct Memory Access
(DMA)

Interrupts

1. CPU provides
DMA address

CPU

2. Device performs
direct transfer to
memory

Cache

Bus 3. Device interrupts

pProcessor

4. Processor
accesses device
data from

memory

The Benefits of DMA

Process 1 wants to write data to disk

CPU |11 [1 1|1 |c | c | c B I

Disk CPU C'Opies 1 1 1 1 1

data to device

CPU 11111111

DMA C C C CPU can run another process
. [} T J
Disk Device copies 1 1 1 1 1

data from mem

Outline

ntroduction (done)
Device Controllers (done)
Device Software (next)

Hard Disks

Integration

* Devices interfaces are very specific

— Even for functionally similar devices!
e e.g., SCSI disk vs. IDE disk vs. USB thumb drive ...

— Not to mention functionally different devices!
e e.g., keyboard vs. disk vs. network card ...

* Want system to be (mostly) oblivious to
differences

THE CRUX:
HOW TO BUILD DEVICE-NEUTRAL OS?

How to hide details of device interactions from OS interactions?

Solution — Abstraction

POSIX API [open, read, write, close, etc.]
File System

Generic Block Interface [block read/write]

Specific Block Interface [protocol-specific read/write]

Device Driver [SCSI, ATA, etc.]

Application oblivious to file system details

File system oblivious layer specific details

Device layer oblivious device specific details
Device driver knows specifics of device hardware

70% of Linux
is device
driver code!

Generic Device Types

POSIX API [open, read, write, close, etc.]
File System

Generic Block Interface [block read/write]

Specific Block Interface [protocol-specific read/witg S
ce Driver [SCSI, ATA, etc.]

1.

block - access is independent of previous
— e.g., hard disk

2. stream - access is serial
— e.g., keyboard, network

3. other (e.g., timer/clock (just generate interrupts))

Interrupt Handler (1 of 2)

POSIX API [open, read, write, close, etc.]
File System

Generic Block Interface [block read/write] C

* Interrupts handled by device in two parts .
— Short at first/top (generic) (Next slide)
— Longer next/bottom (device specific)

 When handling interrupt,
other interrupts disabled

— Incoming ones may be lost

Interrupt Handler (2 of 2)

— So, make as small as
possible

* Solution = Split into two
pieces

request

Device Driver

Interrupt ~ toP

Handler bottom

asuodsal

\4

Hardware

* First part minimal amount
of work
— Defer rest until later
— Effectively, queue up rest
— Re-enable interrupts
— Linux: “top-half” handler
e Second part does most of
work
— Run device-specific code

— Windows: “deferred
procedure call”

— Linux: “bottom-half”
handler

/0 request

/O System Summary

User Level Library

1

1 Device Independent

Software

|
T

Device Drivers

Interrupt top
Handlers bottom

/O response

Make 1/0O call, format request and
response

Handle naming, protection, blocking,
buffering, allocation

Setup device registers for request,
check status upon response

Respond to interrupt when device
completes I/0O

Perform I/O operation

Outline

ntroduction
Device Controllers
Device Software
Hard Disks

(done)
(done)

(done)
(next)

Hard Drive Overview

Hard Disk

File ???

The quick brown
the lazy dogs

* Hard disk has series of platters

* How do bytes get arranged on
disk?

Reading/Writing Disk Blocks

Rotates this way Rotates this way

..
-

. Time to read/write block: E N
Seek time — move arm to position @
Rotation time — spin disk to right block
Transfer time — data on/off disk :

-
..

Disk with 3 tracks

Organizing Disk Block Requests

Rotates this way
e —e

e Rotation fast
9
9 10 * Arm movement
21 relatively slower
- Seek time dominates

So, if 2 and 21,
then which next?

Because matters so much,
OS often organizes
requests for efficiency

- But how?

Flrst Come First-Served (FCFS)

1 5 9 10 11 12 13 14 15 16 17 18 19 20

_—

e Service requests in order that they arrive
— Total time: 14+13+2+6+3+12+3=53

* Little done to optimize
e How can we make more efficient?

—

)

—— lime

Shortest Seek First (SSF)

1 2 3 9 10 11 12 13 14 15 16 17 18 19 20
\)\‘_-).

—— lime

e Service request closest to read arm
— Total time: 142+6+9+3+2 = 23

* What might happen that is bad?
— Hint: something similar happened with scheduling

Shortest Seek First (SSF)

1 2 3 9 10 11 12 13 14 15 16 17 18 19 20
\)\‘_-).

—— lime

* Service request closest to read arm
— Total time: 142+6+9+3+2 = 23

* What might happen that is bad?
— Continual request near arm - starvation!

—— lime

Elevator (SCAN)

2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20

Total time: 1+2+6+3+2+17 = 31

Usually, a little worse average seek time than SSTF
— But more fair, avoids starvation
Alternate C-SCAN has less variance

Note, seek getting faster, rotational not
— Someday, change algorithms

State of the Art — a Mixed Bag

Disks evolving (e.g., rotation + seek converging), so OS
may not always know best

Instead, issue cluster of requests that are likely to be
best

— Send to disk and let disk handle

Linux — no one-size fits all (sys admins tune)

— Complete Fair Queueing (CFQ) — queue per processes, so
fair but can optimize within process
e Default for many systems
— Deadline — optimize queries (better perf), but hard limit on
latency to avoid starvation

— Noop — no-sorting of requests at all (good for SSD. Why?)

Outline

ntroduction (done)
Device Controllers (done)
Device Software (done)
Hard Disks (done)

