Operating Systems

Input/Output Devices

ENCE 360

Need for Input and Output

- An OS clearly needs input
 - How else can it know what services are required?
- An OS clearly provides output
 - How else are users/clients supposed to benefit from the services?

THE CRUX: HOW TO INTEGRATE I/O INTO OPERATING SYSTEMS?

How should I/O be integrated into OS? What are the general mechanisms? How can we make them efficient?

Outline

- Introduction
- Device Controllers
- Device Software
- Hard Disks

(done) (next)

Chapter 5 MODERN OPERATING SYSTEMS (MOS) By Andrew Tanenbaum Chapter 36, 37 OPERATING SYSTEMS: THREE EASY PIECES By Arpaci-Dusseau and Arpaci-Dusseau

Prototypical System Architecture

Canonical Device

Internals can be simple (e.g., USB controller) to complex (e.g., RAID controller)

For OS, device is interface - like API of 3rd party system/library!

Canonical Protocol

while (STATUS == BUSY)
; // wait until device is not busy
write data to DATA register
; // device may need to service request
write command to COMMAND register
; // starts device to execute command
while (STATUS == BUSY)
; // wait until device is done

See any problems? Hint: remember, devices can be slow!

Canonical Device

Canonical Protocol

while (STATUS == BUSY)
; // wait until device is not busy
write data to DATA register
; // device may need to service request
write command to COMMAND register
; // starts device to execute command
while (STATUS == BUSY)
; // wait until device is done

Internals can be simple (e.g., USB controller) to complex (e.g., RAID controller)

For OS, device is interface - like API of 3rd party system/library!

THE CRUX: HOW TO AVOID THE COST OF POLLING? How can OS check device status without frequent polling?

Solution – the Interrupt (Again)

- Instead, CPU switches to new process
- Device raises interrupt when done
- Invokes interrupt handler

Copying Data? Ho, Hum

Process 1 wants to write data to disk

- CPU copying data (write and read) rather trivial
 - Could be better spent on other tasks!

THE CRUX: HOW TO LOWER DEVICE OVERHEADS? How can OS offload work so CPU can be more efficient?

Solution – Direct Memory Access (DMA)

- 1. CPU provides DMA address
- 2. Device performs direct transfer to memory
- 3. Device interrupts processor
- Processor

 accesses device
 data from
 memory

The Benefits of DMA

Process 1 wants to write data to disk

Outline

- Introduction
- Device Controllers
- Device Software
- Hard Disks

(done) (done) (next)

Integration

- Devices interfaces are very specific
 - Even for functionally similar devices!
 - e.g., SCSI disk vs. IDE disk vs. USB thumb drive ...
 - Not to mention functionally different devices!
 - e.g., keyboard vs. disk vs. network card ...
- Want system to be (mostly) oblivious to differences

THE CRUX: HOW TO BUILD DEVICE-NEUTRAL OS? How to hide details of device interactions from OS interactions?

Solution – Abstraction

Application	user
POSIX API [open, read, write, close, etc.]	••••
File System	
Generic Block Interface [block read/write]	ode
Generic Block Layer	kernel mode
Specific Block Interface [protocol-specific read/write]	kerr
Device Driver [SCSI, ATA, etc.]	
Hardware	

- Application oblivious to file system details
- File system oblivious layer specific details
- Device layer oblivious device specific details
- Device driver knows specifics of device hardware

70% of Linux is device driver code!

Generic Device Types

Application	user
POSIX API [open, read, write, close, etc.]	
File System	
Generic Block Interface [block read/write]	Jode
Generic Block Layer	kernel mode
Specific Block Interface [protocol-specific read/write]	kerr
Dev ce Driver [SCSI, ATA, etc.]	
Ha 1. block - access is independent of previous	
 e.g., hard disk access is carial 	
 stream - access is serial e.g., keyboard, network 	
3. other (e.g., timer/clock (just generate interrupts))	

Interrupt Handler (1 of 2)

(Next slide)

- Interrupts handled by device in two parts
 - Short at first/top (generic)
 - Longer next/bottom (device specific)

Interrupt Handler (2 of 2)

- When handling interrupt, other interrupts disabled
 - Incoming ones may be lost
 - So, make as small as possible
- Solution → Split into two pieces

- First part minimal amount of work
 - Defer rest until later
 - Effectively, queue up rest
 - Re-enable interrupts
 - Linux: "top-half" handler
- Second part does most of work
 - Run device-specific code
 - Windows: "deferred procedure call"
 - Linux: "bottom-half" handler

I/O System Summary

Outline

- Introduction
- Device Controllers
- Device Software
- Hard Disks

(done) (done) (done) (next)

Hard Drive Overview

- Hard disk has series of platters
- How do bytes get arranged on disk?

Reading/Writing Disk Blocks

Time to read/write block: Seek time – move arm to position Rotation time – spin disk to right block Transfer time – data on/off disk

Organizing Disk Block Requests

- Rotation fast
- Arm movement relatively slower
- → Seek time dominates

So, if 2 and 21, then which next?

Because matters so much, OS often organizes requests for efficiency → But how?

- Service requests in order that they arrive
 Total time: 14+13+2+6+3+12+3=53
- Little done to optimize
- How can we make more efficient?

- Service request closest to read arm
 Total time: 1+2+6+9+3+2 = 23
- What might happen that is bad?
 - Hint: something similar happened with scheduling

- Service request closest to read arm
 Total time: 1+2+6+9+3+2 = 23
- What might happen that is bad?
 - Continual request near arm \rightarrow starvation!

- Time
- Total time: 1+2+6+3+2+17 = 31
- Usually, a little worse average seek time than SSTF
 But more fair, avoids starvation
- Alternate C-SCAN has less variance
- Note, seek getting faster, rotational not
 - Someday, change algorithms

State of the Art – a Mixed Bag

- Disks evolving (e.g., rotation + seek converging), so OS may not always know best
- Instead, issue cluster of requests that are likely to be best
 - Send to disk and let disk handle
- Linux no one-size fits all (sys admins tune)
 - Complete Fair Queueing (CFQ) queue per processes, so fair but can optimize within process
 - Default for many systems
 - Deadline optimize queries (better perf), but hard limit on latency to avoid starvation
 - Noop no-sorting of requests at all (good for SSD. Why?)

Outline

- Introduction
- Device Controllers
- Device Software
- Hard Disks

(done) (done) (done) (done)