
Operating Systems

Concurrency

ENCE 360

Outline

• Introduction
• Solutions
• Classic Problems

Chapter 26, 28, 31
OPERATING SYSTEMS: THREE EASY PIECES

By Arpaci-Dusseau and Arpaci-Dusseau

Chapter 2.3
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

A long time ago, …

• Remember day 1?
• Yes, single

number, but what
if bank account?

• What if print
spooler?

• What if database?

68 prompt% threads-v0 100000
Initial value: 0
Final value: 200000
69 prompt% threads-v0 100000
Initial value: 0
Final value: 146796

Thread 0 Thread 1 Thread 2 Thread 3

Paycheck Buy fancy new TV Roommate pays rent Buying a video game

retrieve balance
add 450 to balance

store balance

retrieve balance
subtract 450 from balance

store balance

retrieve balance
add 300 to balance

store balance

retrieve balance
subtract 50 from balance

store balance

The Heart of the Problem
Display information from object file - machine instructions:

objdump –-source thread-v0

[line 415]
g_counter++;
400c38: 8b 05 6e 14 20 00 mov 0x201465,%eax # 6020ac <g_counter>
400c3e: 83 c0 01 add $0x1,%eax
400c41: 89 05 65 14 20 00 mov %eax,0x201465 # 6020ac <g_counter>

Source code from “-g” flag

Address Object code Assembly code Reference location

Let’s zoom in …

The Heart of the Problem (Zoom)
mov g_counter %eax
add 1 %eax
mov %eax g_counter

mov 0x20146e(%rip),%eax
add $0x1,%eax
mov %eax,0x201465(%rip)

Counter is 50. Thread T1 & T2, one processor. WCGW?

Not
52!

“critical
section”

“race
condition”

The Heart of the Problem – 3 not 1

• 3 operations instead of 1. What if had:

• Atomic action – can’t be interrupted
 Seems simple. Problem solved!

• But … what if wanted to “subtract 1”, or “add
10”, or “atomic update of B-tree”
– Won’t be atomic instructions for everything!

mov g_counter %eax
add 1 %eax
mov %eax g_counter

memory-add 0x201465 1

The Heart of the Solution

• Instead, provide synchronization primitives
 Programmer can use for atomicity (and more)

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE SUPPORT FOR SYNCHRONIZATION?

What synchronization primitives should be provided?
What support needed from hardware to build?
How to make correct and efficient?
How do programmers use them?

Useful Terms*
• Critical section – code that access shared

resource (e.g., variable or data structure)
• Race condition – arises when multiple

threads/processes simultaneously enter critical
section leading to non-deterministic outcome

• Indeterminant program – program with 1+ race
conditions, so output varies run to run

• Mutual exclusion – method to guarantee only 1
thread/process active in critical section at a time

* That all good systems-programmers (you!) should know

Outline

• Introduction (done)
• Solutions (next)
• Classic Problems

Illustration of Critical Region

What basic mechanism can stop B from
entering critical region when A in?

Hint: just need to block access

How to Use a Lock
lock_t mutex; // globally-allocated ’mutex’
…
lock(&mutex);
x = x + 1; // critical region
unlock(&mutex);

THE CRUX: HOW TO BUILD A LOCK?
How to build efficient lock?
What hardware support is needed?
What OS support?

pthread_mutex_t lock;
pthread_mutex_lock(&lock);
x = x + 1; // or general CR
pthread_mutex_unlock(&lock);

See: “thread-v1.c”

Simple Lock Implementation -
Disable Interrupts

• If no interrupts, no race condition
void lock() {

DisableInterrupts();
}
void unlock() {

EnableInterrupts();
}

What is the potential problem?
Hint: consider all sorts of user programs

Time

Many Problems with Disabling
Interrupts in General

• Privileged operations, so must trust
user code
– But may never unlock! (unintentional or

malicious)
• Does not work for multiprocessors

– Second processor may still access
shared resource

• When interrupts off, subsequent
ones may become lost
– E.g., disk operations

Disk

Register
sCPU1

Register
sCPU2

Mem

Lock Solution, Take 2
int mutex; // 0 -> lock available, 1 -> held

void lock(int *mutex) {
while (*mutex == 1) // TEST flag

; // spin-wait (do nothing)
*mutex = 1; // now SET it!

}

void unlock(int *mutex) {
*mutex = 0;

}

This almost works … but
not quite. Why not?

Hint, has race condition -
Can you spot it?

Lock Solution, Take 2
int mutex; // 0 -> lock available, 1 -> held

void lock(int *mutex) {
while (*mutex == 1) // TEST flag

; // spin-wait (do nothing)
*mutex = 1; // now SET it!

}

void unlock(int *mutex) {
*mutex = 0;

}

This almost works … not quite…

If can TEST mutex and SET it in
atomic operation, would be ok

But … aren’t back to square 1?

No! Only need hardware
support for 1 operation 

build lock primitive

Synchronization Hardware –
Test and Set

Test-and-Set: returns and modifies atomically

int TestAndSet(int *mutex) {
int temp;
temp = *mutex;
*mutex = true;
return temp;

}

Done with hardware support.
All modern computers since 1960’s
e.g., x86 has compare-and-exchange
Others: compare-and-swap, fetch-
and-add, … all atomic

Lock Solution, Take 3
int mutex; // 0 -> lock available, 1 -> held

void lock(int *mutex) {
while (TestAndSet(mutex)) // 1 if held

; // spin-wait (do nothing)
// once here, have lock!

}

void unlock(int *mutex) {
*mutex = 0;

}

Note, no need to protect unlock()
(Exercise: why not?)

Now, what is major remaining shortcoming?
Hint: code works, but could be more efficient

Lock Solution, Take 4
int mutex; // 0 -> lock available, 1 -> held

void lock(int *mutex) {
while (TestAndSet(mutex)) {

queueAdd(*mutex);
park(); // put process to sleep

}
}

void unlock(int *mutex) {
*mutex = 0;
if (!queueEmpty(*mutex))

unpark(); // wake up process
}

Note: almost right, but need
to protect queue, too (see

OSTEP, 28.14 for final touch)

Synchronization Primitive - Semaphore

• “Special” integer, provided
by OS

• Only accessible through
two routines:
sem_post()
sem_wait()

• Both routines are atomic

int sem_wait(sem_t &s) {
s = s - 1
if (s < 0)

add process to queue and sleep
}

int sem_post(sem_t &s) {
s = s + 1
if (s <= 0)

remove process from queue and wake
}

Operational Model
value of counter = number of procs that may pass before closed
counter <= 0  gate closed!
blocked process "waits" in Q
counter < 0  number of processes waiting in Q

How to Use a Semaphore

semaphore mutex; // globally-allocated
…
wait(&mutex);
x = x + 1; // critical region
signal(&mutex);

Easy, peasy!
And available on most operating systems
Can use for general synchronization problems (next)

SOS: Semaphore

• How does the OS protect access
to the semaphore integer
count?
– Previously said this was a bad idea

… why is it ok in this context?
– How else might the OS protect

this critical region?

• Challenge: Implement “attach”
and “detach” functions

See: “semaphore.c”

/* Attach to OS semaphore */
int AttachSemaphore(int key);

/* Deattach from sem id */
int DetachSemaphore(int sid);

Design Technique
Reducing Problem to

Special Case

Other examples:
name servers, on-line
help

Other Synchronization Primitives

• Monitors
• Condition Variables
• Events
• …
• Execise: learn on own

• Fortunately, if have one (e.g,. Lock)
can build others

Outline

• Introduction (done)
• Solutions (done)
• Classic Problems (next)

– Dining Philosophers
– Readers-Writiers

Dining Philosophers

• Philosophers
– Think
– Sit
– Eat
– Think

• Need 2 chopsticks to
eat

Philosopher i:

while (1) {
/* think… */
wait(chopstick[i]);
wait(chopstick[i+1 % 5]);
/* eat */
signal(chopstick[i]);
signal(chopstick[i+1 % 5]);

}

Dining Philosophers

This almost
works, but
not quite.
Why not?

For 5 Philosophers

Solutions?

Dining Philosopher Solutions

• Allow at most N-1 to sit at a time
• Allow to pick up chopsticks only if both are

available
• Asymmetric solution (odd L-R, even R-L)

Readers-Writers

• Readers only read the content
of object

• Writers read and write the
object

• Critical region, one of:
1. No processes
2. One or more readers (no

writers)
3. One writer (nothing else)

shared
resource

Readers-Writers

Shared:

semaphore mutex;
semaphore wrt;
int readcount;

Writer:

wait(wrt)
/* write stuff */
signal(wrt);

Reader:

wait(mutex);
readcount = readcount + 1;
if (readcount==1)

wait(wrt);
signal(mutex);
/* read stuff */
wait(mutex);
readcount = readcount - 1;
if (readcount==0)

signal(wrt);
signal(mutex);

Solution “favors” readers.
Can you see why?

Other Classic Problems

• Bounded Buffer
• Sleeping Barber
• Bakery Algorithm
• Cigarette smokers
• …

• If can model your problem as one of the
above  Solution

• Akin to Software Design Patterns

Outline

• Introduction (done)
• Solutions (done)
• Classic Problems (done)

