
Operating Systems

Sockets

ENCE 360

Outline

• Introduction
• Details
• Example code
• Socket options

Socket Overview

(TCP=Transport Control Protocol,
IP=Internet Protocol)

Application
Sockets

Protocol A Protocol B Protocol C
Network

• Socket - An end-point for
connection to another process
(remote or local)
– What application layer “plugs

into”

• User sees descriptor - integer
index/handle
– Like: file index from open()
– Returned by socket() call (more

later)
– Programmer cares about

Application Programming
Interface (API) similar to file I/O

Connection Endpoints
• End point determined by two

things:
– Host address: e.g., IP address
– Port number

• Two end-points determine
connection socket pair

Client

Port

Connection

Sever

Port

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

Ports
port 0

port 1

port 65535• Each host has 65,536 ports
– 16-bit integer

• Some ports are reserved for
specific apps (/etc/services)
– FTP 20,21
– Telnet 23
– HTTP 80

• Ports below 1024 are reserved
– User level 1024+

• Ports 1024-5000 ephemeral
– Assigned in outgoing connection

• Ports 5001+ services

server clientport

Network Packet

port port port port

app app app app

port data

data

Packet

Two Main Network Transport
Protocols Today

• UDP: User Datagram Protocol
– no acknowledgements
– no retransmissions
– out of order, duplicates possible
– Connectionless
– SOCK_DGRAM

• TCP: Transmission Control Protocol
– reliable (in order, all arrive, no

duplicates)
– flow control
– connection-based
– SOCK_STREAM More in a

networks
course!

TCP ~95% of all flows
and packets on Internet
(What applications may

use UDP?)

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Network

(IP,..)

Link

(device driver,..)

Socket Descriptor Data Structure
Descriptor Table

0

1

2

3

4

Family: PF_INET
Service: SOCK_STREAM
Local IP: 111.22.3.4
Remote IP: 123.45.6.78
Local Port: 2249
Remote Port: 3726

received
queue

sent
queue

Socket Data Structure

Service is the Transport Protocol
IP (Internet Protocol) - address of computer
Port - specifies which process on computer

Outline

• Introduction (done)
• Details (next)
• Example code
• Socket options

Unix Network Programming, W.
Richard Stevens, 2nd edition,

1998, Prentice Hall

Beej’s Guide to Network Programming,
Brian Hall, 2015, self-published,

http://beej.us/guide/bgnet/

Addresses and Sockets

• Structure to hold address information
• Functions pass info (e.g., address) from user to OS

bind()

connect()

sendto()

• Functions pass info (e.g., address) from OS to user
accept()

recvfrom()

Socket Address Structure
struct in_addr {
in_addr_t s_addr; /* 32-bit IPv4 addresses */

};

struct sockaddr_in {
unit8_t sin_len; /* length of structure */
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* TCP/UDP port number */
struct in_addr sin_addr; /* IPv4 address (above) */
char sin_zero[8];/* unused */

};

Also “generic” and “IPv6” socket structures

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close()End-of-File
recv()

close()

“well-known”
port

socket()
int socket(int family, int type, int protocol);
Create socket, giving access to transport layer service

• family is one of
– AF_INET (IPv4), AF_INET6 (IPv6), AF_LOCAL (local Unix),
– AF_ROUTE (access to routing tables), AF_KEY (for encryption)

• type is one of
– SOCK_STREAM (TCP), SOCK_DGRAM (UDP)
– SOCK_RAW (for special IP packets, PING, etc. Must be root)

• setuid bit (-rwsr-xr-x root 2014 /sbin/ping*)

• protocol is 0 (used for some raw socket options)
• upon success returns socket descriptor

– Integer, like file descriptor index used internally
– Return -1 if failure

bind()

• sockfd is socket descriptor from socket()
• myaddr is pointer to address struct with:

– port number and IP address
– if port is 0, then host will pick ephemeral port

• not usually for server (exception RPC port-map)
– IP address == INADDR_ANY (unless multiple nics)

• addrlen is length of structure
• returns 0 if ok, -1 on error

– EADDRINUSE (“Address already in use”)

int bind(int sockfd, const struct sockaddr *myaddr,
socklen_t addrlen);

Assign local protocol address (“name”) to socket

listen()

• sockfd is socket descriptor from socket()
• backlog is maximum number of incomplete

connections
– historically 5
– rarely above 15 even on moderately busy Web server!

• sockets default to active (for client)
– change to passive so OS will accept connection

int listen(int sockfd, int backlog);

Change socket state (to passive) for TCP server

accept()

• blocking call (by default)
• sockfd is socket descriptor from socket()
• cliaddr and addrlen return protocol address from

client
• returns brand new descriptor, created by OS
• note, if create new process or thread, can create

concurrent server

int accept(int sockfd, struct sockaddr
*cliaddr, socklen_t *addrlen);

Return next completed connection

close()

• sockfd is socket descriptor from socket()
• closes socket for reading/writing

– returns (doesn’t block)
– attempts to send any unsent data
– socket option SO_LINGER

• block until data sent
• or discard any remaining data

– returns -1 if error

int close(int sockfd);

Close socket for use

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close()End-of-File
recv()

close()

“well-known”
port

connect()

• sockfd is socket descriptor from socket()
• servaddr is pointer to structure with:

– port number and IP address
– must be specified (unlike bind())

• addrlen is length of structure
• client doesn’t need bind()

– OS will pick ephemeral port

• returns socket descriptor if ok, -1 on error

int connect(int sockfd, const struct
sockaddr *servaddr, socklen_t addrlen);

Connect to server

Sending and Receiving

int recv(int sockfd, void *buff, size_t
mbytes, int flags);

int send(int sockfd, void *buff, size_t
mbytes, int flags);

• Same as read() and write() but with flags
– MSG_DONTWAIT (this send non-blocking)
– MSG_OOB (out of band data, 1 byte sent ahead)
– MSG_PEEK (look, but don’t remove)
– MSG_WAITALL (don’t return less than mbytes)
– MSG_DONTROUTE (bypass routing table)

UDP Client-Server

socket()

bind()

recvfrom()

Server

socket()

sendto()

recvfrom()

Client

(Block until receive datagram)

sendto()

Data (request)

Data (reply)
close()

“well-known”
port

- No “connection”, no “handshake”
- No simultaneous close

Sending and Receiving
int recvfrom(int sockfd, void *buff, size_t mbytes, int

flags, struct sockaddr *from, socklen_t *addrlen);

int sendto(int sockfd, void *buff, size_t mbytes, int
flags, const struct sockaddr *to, socklen_t addrlen);

• Same as recv() and send() but with addr
– recvfrom fills in address of where packet came

from
– sendto requires address of where sending

packet to

Can connect() with UDP

• Record address and port of peer
– Datagrams to/from others are not allowed
– Does not do three way handshake, or connection
– So, “connect” a misnomer, here. Should be
setpeername()

• Use send() instead of sendto()
• Use recv() instead of recvfrom()
• Can change connect or unconnect by repeating
connect() call

• (Can do similar with bind() on receiver)

Outline

• Introduction (done)
• Details (done)
• Example code (next)
• Socket options

Example Code

% listen-tcp
listen-tcp - server to accept TCP connections
usage: listen-tcp <port>

<port> - port to listen on
% listen-tcp 7500
Listen activating.
Trying to create socket at port 7500...
Socket ready to go! Accepting connections....

received: 'Hello, world!'
received: 'Networking is awesome!'
server exiting

% talk-tcp
talk-tcp - client to try TCP connection to server
usage: talk-tcp <host> <port>

<host> - Internet name of server host
<port> - port

% talk-tcp localhost 7500
Talk activated.

Trying to connect to server localhost at port 7500...
Looking up localhost...
Found it. Setting port connection to 7500...
Done. Creating socket...
Created. Trying connection to server...
Connection established!
Type in messages to send to server.
Hello, world!
sending: 'Hello, world!'
Networking is awesome!
sending: 'Networking is awesome!'

Server Client

See:
“listen-tcp.c”
“talk-tcp.c”

Outline

• Introduction (done)
• Details (done)
• Example code (done)
• Socket options (next)

Socket Options (General)

• setsockopt(), getsockopt()
• SO_LINGER

– Upon close, discard data or block until sent
• SO_RCVBUF, SO_SNDBUF

– Change buffer sizes
– For TCP is “pipeline”, for UDP is “discard”

• SO_RCVLOWAT, SO_SNDLOWAT
– How much data before “readable” via select()

• SO_RCVTIMEO, SO_SNDTIMEO
– Timeouts

Socket Options (TCP)

• TCP_KEEPALIVE
– Idle time before close (2 hours, default)

• TCP_MAXRT
– Set timeout value

• TCP_NODELAY
– Disable Nagle’s Algorithm
– Won’t buffer data for larger chunk, but sends

immediately

fcntl()

• ‘File control’ but used for sockets, too
• Set socket owner
• Get socket owner
• Set socket non-blocking
flags = fcntl(sockfd, F_GETFL, 0);
flags |= O_NONBLOCK;
fcntl(sockfd, F_SETFL, flags);

• Beware not getting flags before setting!

Outline

• Introduction (done)
• Details (done)
• Example code (done)
• Socket options (done)

