
Operating Systems

Inter-Process Communication

ENCE 360

Outline

• Introduction
• Examples

– Shared Memory
– Files
– Pipes
– Signals

Pages 43-45, 733-734
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

Interprocess Communication (IPC)

• Independent process
cannot affect or be
affected by execution of
another process

• Cooperating process
can affect or be affected
by execution of another
process

• Advantages of process
cooperation:
– Information sharing
– Computation speed-up
– Modularity
– Convenience

Examples?

Cooperating Processes - Examples

• Communication example – Unix shell

• Sharing example – print spooler
– Processes (A, B) enter file name in spooler queue
– Printer daemon checks queue and prints

letter hw1... ...(empty)

A

6 7

free 9

8

B

cat file.jpg | jpegtopnm | pnmscale 0.1 | ssh claypool@host.com “cat > file.pnm”

print
daemon

Interprocess Communication (IPC)
• Independent process

cannot affect or be
affected by execution of
another process

• Cooperating process can
affect or be affected by
execution of another
process

• Advantages of process
cooperation:
– Information sharing
– Computation speed-up
– Modularity
– Convenience

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY ENABLE PROCCESS

COMMUNICATION/COORDINATION?
How do processes share data?
How do processes communicate data?
How to avoid problems/issues when sharing data?

IPC Paradigms

a) Message passing
Why good? All sharing is explicit less chance for error
Why bad? Overhead. Data copying, cross protection domains

b) Shared Memory
Why good? Performance. Set up shared memory once, then access w/o
crossing protection domains
Why bad? Can change without process knowing, error prone

Outline

• Introduction (done)
• Examples

– Shared Memory (next)
– Files
– Pipes
– Signals

What Are Some IPC Mechanisms?

Some IPC Mechanisms
• Shared memory

– Through shared variables

• File system
– By reading and writing to file(s)

• Message passing
– By passing data through pipe
– Also: remote procedure call,

sockets

• Signal
– By indicating event occurred

A B

C

?

IPC Using Shared Memory
• System call to create shared memory segment
• Once created, access as “normal” memory

Shared Memory - Example
See: “shmem.c”

Outline

• Introduction (done)
• Examples

– Shared Memory (done)
– Files (next)
– Pipes
– Signals

IPC Using Files

• Process writes to file,
another reads from same
file

• Note, if both writing,
requires locking to share file
safely
– File – locks the whole file

(e.g., flock(), fcntl())
– Record – locks portion of file

(e.g., databases)

Note! Windows and Linux
do not lock by default

file
system

A B

File - Example
See: “file.c”

Outline

• Introduction (done)
• Examples

– Shared Memory (done)
– Files (done)
– Pipes (next)
– Signals

IPC Using Pipes

• A bounded buffer,
provided by OS
– Shared buffer
– Block writes to full pipe
– Block reads to empty

pipe

• System calls to
create/destroy
– e.g., pipe()

• System calls to
read/write
– e.g., read(), write()

b l a h . c \0

write fdread fd

Pipe - Example
See: “pipe.c”

• Unnamed pipe
int pid[2];
pipe(pid);

write(pid[1], buffer, strlen(buffer)+1);
read(pid[0], buffer, BUFSIZE);

• Named pipe
int pid0, pid1;
mknod("named_pipe_filename", S_IFIFO | 0666, 0);
pid1 = open("named_pipe_filename", O_WRONLY);
pid0 = open("named_pipe_filename", O_RDONLY);

write(pid1, buffer, strlen(buffer)+1);
read(pid0, buffer, BUFSIZE);

Named versus Unnamed Pipes

Persistent (after processes exit)
Can be shared by any process)

Can be treated like FIFO file

The Shell Using a Pipe
• One process writes, 2nd process reads

% ls | more

Shell:
1 Create unnamed pipe

2 Create process for ls, setting stdout to write side

3 Create process for more, setting stdin to read side

Shell

ls more

1

stdout
23

stdin

Ok, but how to “set” stdout and stdin?

File Descriptors

• 0-2 standard for each
process

• Used for files, pipes,
sockets …

• Can be changed
– Openend
– Closed
– Copied (dup2())

User Space
System Space

stdin
stdout
stderr

...

0
1
2
3

(index)

(Per process)

int fd = open(“blah”, flags);

read(fd, …);

Example – dup2
See: “dup.c”

Example – dup2
w/pipe

0 stdin

1 stdout

2 stderror

3 pipe read

4 pipe write

0

1

2

3 4

0

1

2

3 4

File Descriptor
Table (FDT)
after fork
parent

0 stdin

1 stdout

2 stderror

3 pipe read

4 pipe write

FDT
after fork
child

0 pipe read

1 stdout

2 stderror

3 pipe read

4 pipe write

FDT
after dup2
parent

0 stdin

1 pipe write

2 stderror

3 pipe read

4 pipe write

FDT
after dup2
child

parent

pipe

child

0

21

2

1

0

0 pipe read

1 stdout

2 stderror

FDTs
after execl

0 stdin

1 pipe write

2 stderror

parent

pipe

child

before

after

Outline

• Introduction (done)
• Examples

– Shared Memory (done)
– Files (done)
– Pipes (done)
– Signals (next)

IPC using Signals
• Signal corresponds to an event

– Raised (or “sent”) by one process (or hardware)
– Handled by another
– E.g., ctrl-c  sends signal (SIGINT) to process

• Originate from various sources
– Hardware. e.g., divide by zero
– Operating System. e.g., file size limit exceeded
– User (shell)

• Keyboard. e.g., ctrl-Z (SIGTSTP), ctrl-C (SIGINT)
• Kill command

– Other processes. e.g., child
• Handling varies by processes

– default – most terminate process
– catch – catch and do appropriate action
– ignore – do not take any action, but do not terminate

kernel

A

B

“timer
expired”

“stop”

“child process
exiting”

C

D

“illegal
instruction”

Generating & Handling Signals

Generate
• kill()- send signal to

specified process
– kill(int pid, int sig);
– signal: 0-31
– pid == 0  goes to all user’s

processes
• alarm()- send SIGALRM to

itself after specified time
• raise()- send signal to

itself
– kill(getpid(), sig);

Handle
sigaction() - change
behaviour for when signal
arrives

See: “man 7 signal”

Example - Signal
See: “signal.c”

Note, handling is like interrupt
1. Store state/location where

process was (stack)
2. Move to handler
3. When handler done,

return to previous location

Example – Signal-2

See: “signal-2.c”

Defined Signals
SIGABRT Process abort signal.
SIGALRM Alarm clock.
SIGFPE Erroneous arithmetic operation.
SIGHUP Hangup.
SIGILL Illegal instruction.
SIGINT Terminal interrupt signal.
SIGKILL Kill (cannot be caught or ignored).
SIGPIPE Write on pipe no one to read it.
SIGQUIT Terminal quit signal.
SIGSEGV Invalid memory reference.
SIGTERM Termination signal.
SIGUSR1 User-defined signal 1.
SIGUSR2 User-defined signal 2.
SIGCHLD Child process terminated

SIGCONT Continue executing, if stopped.
SIGSTOP Stop (cannot be ignored).
SIGTSTP Terminal stop signal.
SIGTTIN Background attempt read.
SIGTTOU Background attempting write.
SIGBUS Bus error.
SIGPOLL Pollable event.
SIGPROF Profiling timer expired.
SIGSYS Bad system call.
SIGTRAP Trace/breakpoint trap.
SIGURG High bandwidth data at socket.
SIGVTALRM Virtual timer expired.
SIGXCPU CPU time limit exceeded.
SIGXFSZ File size limit exceeded.

See man pages for details

Outline

• Introduction (done)
• Examples (done)

– Shared Memory (done)
– Files (done)
– Pipes (done)
– Signals (done)

