Operating Systems

Threads

ENCE 360

Outline

* Model
* Motivation
e Libraries
Chapter 2.2 Chapter 26.1, 26.2
MODERN OPERATING SYSTEMS (MOS) OPERATING SYSTEMS: THREE EASY PIECES
By Andrew Tanenbaum By Arpaci-Dusseau and Arpaci-Dusseau

Threads (Lightweight Processes)

Process

. Sinile sequence of execution

within a process
— Basic unit of CPU utilization Program
* Private Counter
— Program counter
(Threads)

— Register set
— Stack space

e Shared
— Code section
— Data section
— OS resources

. Because have some process properties (but !

i not all), often called lightweight process

Thread — Private vs. Shared

int g Xx;

B() { O T P
int x = 10; |Assume two threads (A and B)

A PC=b printf(x); !INsame process running code on left
) i
A(Int x) 1 I\What is shared between them?
BPC=» B();

} |
main() { ' What is private?
A(1); :

J Hint: remember other components of

ystem, too!

V)

Thread — Private vs. Shared

int g Xx;
B() {
int x = 10;

A PC=» printf(x);

}

A(int x) {
BPC=» B();

}

main() {

A(L); g8_X Thread A Thread B

}

Shared Private

(OS Internals) i Beware non-thread safe library/system calls!
, e.g., strtok(), rand(), readdr()
file » |:| [.
descriptor * Il W i Use thread-safe version: e.g., rand_r()

includes stdio, stdin SOS: “pcb-thread.h”

Thread — Private vs. Shared Summary

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

(Shared by each thread)

(Private to each thread)

Outline

 Model (done)
* Motivation (next)
* Libraries

Example: A Threaded Spreadsheet

What Kinds of Programs to Thread?

What Kinds of Programs to Thread?

* Independent tasks (e.g., spreadsheet)
* Single program, concurrent operation

— Servers: e.g., file server, Web server

— OS kernels: concurrent system requests by
multiple processes/users

' Especially when block for I/O! .
. = With threads, can continue
execution in another thread

ool —

Registers

Registers

Especially with multiple-CPUs! =
- Each CPU can run one thread

Potential Thread Benefits

“What about just using multiple communicating processes?”
Sure, this can be made to work

Lt

But separate cod.e . SRS
needed to coordinate | T
processes processB | M process B

a) e.g., pipes

b) e.g., shared memory + d B &

locks |
kernel M | kernel

And debugging tougher - &

* Few thousand
processes not ok

Also, processes “cost” more
— Up to 100x longer to create/destroy
- Far more memory (since not shared) * Few thousand
: threads ok
- Slower to context switch among S N

-y

Warning Using Threads

All Cool. No
Worries!

I'm a variable that two threads
accessed the same time and | got

‘-|| “ Soiipied
Vari o
a b Ie | (Variable =
“'

Time 2

Time
Two threads accessing the same variable at different times
Two threads accessing the same variable at the same time

* Versus single threaded program, can be more difficult to
write and debug code

* Concurrency problems for shared resources
— Global variables
— But also system calls and system resources

* Only use threads when performance an issue (blocking
too costly and/or multi-processor is available)

* So ...is performance an issue?

s Performance an Issue?

You don’t need to improve performance of your code
Most important = Code that works, is robust
More important - Code that is clear, readable
— It will be re-factored
— It will be modified/extended by others (even you!)
Less important = Code that is efficient, fast
— |s performance really issue?
— Can hardware upgrade fix performance problems?

* e.g., Moore’s Law (http://en.wikipedia.org/wiki/Moore's law)
— Can design fix performance problems?
Ok, so you do really need to improve performance
— Use threads ... but carefully! (Concurrency)

Outline

 Model (done)
* Motivation (done)
* Libraries (next)

Thread Libraries for C/C++

thread A

 Dozens: https://en.wikipedia.org/wiki/thread-lib
 Main — POSIX threads (pthreads) and Windows

— Totally different =
* Fortunately, common functionality Y Y

— Create, Destroy, Join, Yield
— Lock/Unlock (for concurrency)

Oithread crzation Creaa Bl

-
i #include <pthread.h> i
| Linker: -1pthread i

Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yield Release the CPU to let another thread run
Pthread_attr_init Create and initialize a thread’s attribute structure
Pthread_attr_destroy | Remove a thread’s attribute structure

#include <stdio.h> POSIX Th reads - Example

#include <pthread.h>

// Do some work.

void *worker(void *arg) {
printf("This is a thread. Hello, world!\n");
pthread _exit(NULL);

}

int main(int argc, char *argv[]) {

pthread t pl, p2;

if (pthread_create(&pl, NULL, worker, NULL) != 0) {
printf("Error! pl: pthread _create failed.");
return 9;

¥

if (pthread_create(&p2, NULL, worker, NULL) != 0) {
printf("Error! p2: pthread_create failed.");
return 9;

}

printf("Main thread waiting for children to finish....\n");
pthread join(pl, NULL);
pthread join(p2, NULL);

printf("Children finished. Exiting.\n");
return 0;

Example —
e st < 5. Thread vs. Fork
int main(int argc, char *argv[]) { (1 Of 2)

int local = 10;

{] fork.c

printf("Start: global %d, local %d\n", global, local); ESee:”fopk.c”i

int pid = fork(); lemmmmmmmm e ;

if (pid< @) { J/* Fail. %f
perror("Fork failed.");
return -1;

} What do you
it (pid == 9) { /* €hild. */ i
printf(" Child. My id is %d.\n", getpid()); thmkt.he
global++; output will be?
local++;
} else { /* Parent. */
printf("Parent. My child id is %d.\n", pid);
global--;
local--;

}
printf(" End: global %d, local %d\n", global, local);

// thread.c

volatile int global = 5;

Example —

bt ety | Thread vs. Fork

int local = 16;

printf("Child thread.\n"); (2 Of 2)

local++;
global++;
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
pthread t p;
int local = 160;

printf("Start: global %d, local %d\n", global, local);
if (pthread_create(&p, NULL, worker, NULL) != 0) {
printf("Error! pthread create failed.");
return 9;
} else {
printf("Parent thread.\n");
sleep(2);
global--;
local--;

}
printf(" End: global %d, local %d\n", global, local);

What do you

think the
output will be?

Making Single-Threaded Code Multithreaded

e.g., non-thread safe library

* Many leﬁacv systems single- Thread 1 Thread 2
threade
* |f benefit, (see “performance?” sys_call() | fal
above) can convert = But tricky! Vo sys call() | fai
* Yes, local variables easy check | errno
* Many library functions expect to be check | errno
single-threaded '
— Not re-entrant code Overwritten!
— Look for _r versions (e.g., strtok_r())
* And global variables difficult
— Can create private “globals” Thread 2
 Still other issues, signal handling, T
stack management, and so on
/ stack
- Proceed with caution! o
Thread 2's
globals

Outline

 Model (done)
* Motivation (done)
* Libraries (done)

