
Operating Systems

Threads

ENCE 360

Outline

• Model
• Motivation
• Libraries

Chapter 2.2
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

Chapter 26.1, 26.2
OPERATING SYSTEMS: THREE EASY PIECES

By Arpaci-Dusseau and Arpaci-Dusseau

Threads (Lightweight Processes)
• Single sequence of execution

within a process
– Basic unit of CPU utilization

• Private
– Program counter
– Register set
– Stack space

• Shared
– Code section
– Data section
– OS resources

text segment

data segment

Program
Counter

(Threads)

C
st

ac
k

B
st

ac
k

A
st

ac
k

A B C

A B C

“Multithreaded Program”

Process

Because have some process properties (but
not all), often called lightweight process

Thread – Private vs. Shared
int g_x;
B() {

int x = 10;
printf(x);

}
A(int x) {

B();
}
main() {

A(1);
}

A PC

B PC

Assume two threads (A and B)
in same process running code on left

What is shared between them?

What is private?

Hint: remember other components of
system, too!

Thread – Private vs. Shared
int g_x;
B() {

int x = 10;
printf(x);

}
A(int x) {

B();
}
main() {

A(1);
}

B(): x = 10

A(): x = 1

main()

A(): x = 1

main()

A PC

B PC

Shared Private

Thread A Thread B

file
descriptor

includes stdio, stdin

Beware non-thread safe library/system calls!
e.g., strtok(), rand(), readdr()
Use thread-safe version: e.g., rand_r()

(OS Internals)

SOS: “pcb-thread.h”

g_x

Thread – Private vs. Shared Summary

6

(Shared by each thread) (Private to each thread)

Outline

• Model (done)
• Motivation (next)
• Libraries

Example: A Threaded Spreadsheet

Command
Thread

Spreadsheet
Data

Other
Data

Display
Thread

Recalculate
Thread

What Kinds of Programs to Thread?

What Kinds of Programs to Thread?

• Independent tasks (e.g., spreadsheet)
• Single program, concurrent operation

– Servers: e.g., file server, Web server
– OS kernels: concurrent system requests by

multiple processes/users

Disk

Registers

CPU1
Registers

CPU1

Mem• Especially with multiple-CPUs!
 Each CPU can run one thread

• Especially when block for I/O!
With threads, can continue
execution in another thread

Potential Thread Benefits

• But separate code
needed to coordinate
processes
a) e.g., pipes
b) e.g., shared memory +

locks

• Few thousand
processes not ok

• Few thousand
threads ok

• And debugging tougher
• Also, processes “cost” more

– Up to 100x longer to create/destroy
– Far more memory (since not shared)
– Slower to context switch among

“What about just using multiple communicating processes?”
Sure, this can be made to work

Warning Using Threads

• Versus single threaded program, can be more difficult to
write and debug code

• Concurrency problems for shared resources
– Global variables
– But also system calls and system resources

• Only use threads when performance an issue (blocking
too costly and/or multi-processor is available)

• So … is performance an issue?

Is Performance an Issue?
• You don’t need to improve performance of your code
• Most important  Code that works, is robust
• More important  Code that is clear, readable

– It will be re-factored
– It will be modified/extended by others (even you!)

• Less important  Code that is efficient, fast
– Is performance really issue?
– Can hardware upgrade fix performance problems?

• e.g., Moore’s Law

– Can design fix performance problems?
• Ok, so you do really need to improve performance

– Use threads … but carefully! (Concurrency)

(http://en.wikipedia.org/wiki/Moore's_law)

Outline

• Model (done)
• Motivation (done)
• Libraries (next)

Thread Libraries for C/C++
• Dozens: https://en.wikipedia.org/wiki/thread-lib
• Main – POSIX threads (pthreads) and Windows

– Totally different
• Fortunately, common functionality

– Create, Destroy, Join, Yield
– Lock/Unlock (for concurrency)

#include <pthread.h>
Linker: -lpthread

POSIX Threads - Example
See: “threads-hello.c”

Example –
Thread vs. Fork

(1 of 2)

What do you
think the

output will be?

See: “fork.c”

Example –
Thread vs. Fork

(2 of 2)

What do you
think the

output will be?

“thread.c”

19

Making Single-Threaded Code Multithreaded

• Many legacy systems single-
threaded

• If benefit, (see “performance?”
above) can convert  But tricky!

• Yes, local variables easy
• Many library functions expect to be

single-threaded
– Not re-entrant code
– Look for _r versions (e.g., strtok_r())

• And global variables difficult
– Can create private “globals”

• Still other issues, signal handling,
stack management, and so on

 Proceed with caution!

Thread 1 Thread 2

check errno

sys_call() fail

check errno

Overwritten!

sys_call() fail

e.g., non-thread safe library

Outline

• Model (done)
• Motivation (done)
• Libraries (done)

