
Operating Systems

Processes

ENCE 360

Outline

• Motivation
• Control block
• Switching
• Control

Chapter 2
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

Chapter 4
OPERATING SYSTEMS: THREE EASY PIECES

By Arpaci-Dusseau and Arpaci-Dusseau

The Problem

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE ILLUSION OF MANY CPUS?

Few physical CPUs available, so how can OS provide
illusion of nearly-endless supply of said CPUs?

• Remember “CPU” program from day 1?
– Each ran as if was only program on computer

A B

CD

The Solution – The Process
• “A program in execution”
• Running several at once provides pseudo-parallelism

A

B

C

Program
Counter

A B C

Conceptual View

B

A

C

Time

Time-sharing

• Low-level machinery (mechanisms)
Answer question of how. E.g., how to keep program context

• High-level intelligence (policies)
Answer question of which. E.g., which process to run

Note: good
design to
separate!

Process States

• Consider the shell command:
cat /etc/passwd | grep claypool

1. What is this command doing?
2. How many processes are involved?

Process States

• Consider the shell command:
cat /etc/passwd | grep claypool

WaitingReady

Create

Dispatch

Interrupt
I/O request

I/O complete

Terminate

(See process states with top)

Clean up

Initialization

3 processes
• cat
• grep
• bash

Running

OS as a Process Scheduler

cat ls ... disk

Process Scheduler

vid

• Simple OS view – just schedule processes! Even OS
services (e.g., file system) are just processes

• Small scheduler handles interrupts, stopping and starting
processes (policy decides when)

• Ok, what are mechanisms needed to make this happen?

OS

Program  Process

• What information do we
need to keep track of a
process (i.e., a running
program)?

int g_x
main() {
...
}
A() {
f = open()
...

}

?

Program  Process

• Low-level machinery (mechanisms) – to store
program context
– (Discuss policies later in scheduling)
– Current execution location
– Intermediate computations (heap and stack)
– Access to resources (e.g., I/O and files open)

int g_x
main() {
...
}
A() {
f = open()
...

}

int g_x
main() {
...
}
A() {
f = open()
...

}

Heap

A
main

Stack

g_xI/O
f

Process Control Block (PCB)

Outline

• Motivation (done)
• Control block (next)
• Switching
• Control

Process Control Block

• OS keeps one Process Control Block
(PCB) for each process
– process state
– program counter
– registers
– memory management
– open devices
– …

• OS keeps list/table of PCB’s for all
processes (use when scheduling)

• Code examples:
– SOS “pcb.h”: ProcessControlBlock
– Xv6 “proc.h”: proc
– Linux “sched.h”: task_struct

12

Process Control Block – Summary Info

List of typical attributes in PCB

Outline

• Motivation (done)
• Control block (done)
• Switching (next)
• Control

Process Creation

• When are processes created?

Process Creation
• System initialization

– When OS boots, variety of system
processes created

– init – parent of all processes (pid 1)
– Background, don’t need to interact with

user (daemons for “guiding spirit”)
• Note, foreground processes get input from user

• Created on demand by user
– Shell command or, e.g., double clicking icon

• Execution of system call
– Process itself may create other processes

to complete task
• Created by batch job

– Queued awaiting necessary resources.
When available, create process(es)

BIOS

Boot loader

init

Shell

User command

Daemons

User command

Process Termination

• When are processes terminated?

Process Termination

• Voluntarily
– Make system call to
exit() or return from
main()

• Involuntarily
– By OS if “misbehave” –

e.g., divide by zero,
invalid memory access

– By another process (e.g.,
kill or signal())

Creation/Termination Example – Unix
Shell

• System call: fork()
– Creates (nearly) identical copy of process
– Return value different for child/parent

• System call: exec()
– Over-write with new process address space

• Shell
– Uses fork() and exec()
 Simple!

See: “shell-v0.c”

See: “shell-v1.c”

19

Model for Multiprogramming

• CPU switches from
process to process
– Each runs for 10s or 100s

of milliseconds
– Block for I/O

• E.g., disk read

– Other interrupt
• E.g., I/O complete

– “timeslice” is over
(configurable parameter)

Silberschatz & Galvin, 5th Ed, Wiley, Fig 4.3
Operating System Concepts

scheduled

Context Switch

• Pure overhead
• So … want it to be fast, fast, fast

– typically 1 to 1000 microseconds
• Sometimes special hardware to speed up

– Real-time wants worst case (e.g., max 20 microseconds)
• When to switch contexts to another process is process

scheduling

Interrupt Handling Mechanism

• Store PC (hardware)
• Load new PC (hardware)

– Jump to interrupt service procedure
• Save PCB information (assembly)
• Set up new stack (assembly)
• Set “waiting” proc to “ready” (C)
• Service interrupt (C and assembly)
• Invoke scheduler (C)

– Newly awakened process (context-
switch)

– Previously running process

Outline

• Motivation (done)
• Control block (done)
• Switching (done)
• Control (next)

Chapter 6
OPERATING SYSTEMS: THREE EASY PIECES

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-mechanisms.pdf

The Problem – Virtualizing CPU with
Control

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY VIRTUALIZE CPU WITH

CONTROL?

OS must virtualize CPU efficiently while retaining
control over system. Note: hardware support required!

B

A

Time

Ready?!

A

Time

Illegal!
(e.g., read() w/out perm)

Solution – Limited Direct Execution
• Hardware provides two (sometimes more)

modes
– User mode – certain operations/access not

allowed
– Kernel mode – full access allowed

• Allows OS to protect against
– Faulty processes
– Malicious processes

• Some instructions and memory locations
are designated as privileged
– Only executable or accessible in kernel mode

• System calls, traps, and interrupts change
mode from user to kernel
– Return from system call resets mode to user

Still allow programs to directly
run (e.g., on CPU) – i.e., no
“sandbox” interpretation

But limit permissions

Trap – Transition User to Kernel Mode

• But … wow to know what code to execute for system
call? i.e., how to know where system call is?

Save {pc, registers,
return} to stack

Restore
(pop) stack

Trap – System Call Lookup Table

• Each system call has own number/identity
– Initialized at boot time

• Kernel trap handler uses syscall number to index into table of
syscall routines
– Unique to each OS

syscall
number syscall

table

E.g., Accessing Kernel via Library

Inside Kernel Mode, OS can …

SP

PC

Not readable or
writeable in user mode• Read and modify data

structures not in user
address space

• Control devices and
hardware settings forbidden
to user processes

• Invoke operating system
functions not available to
user processes

• Access address of space of
invoking process

Involuntary Transition User to Kernel
Mode

• E.g., in user
mode, memory
violation
generates
interrupt

CPU

Limit Register

<

error

no

yes

Memory

Switch to kernel mode
Handle error (e.g., terminate process)

The Problem – Virtualizing the CPU

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY VIRTUALIZE CPU WITH

CONTROL?

What if process doesn’t voluntarily give up control? It
doesn’t make a system call (so, can’t check) and it
doesn’t make a violation. e.g., while(1) {}

B

A

Time

Ready?!

A

Time

Illegal!
(e.g., read() w/out perm) ?

Solution – Special Timer Hardware

• When timer interrupt occurs, OS regains control
• E.g., can run scheduler to pick new process

Crystal Oscillator
Pulse from 5
to 300 MHz Decrement counter

when == 0
 generate interrupt

• Holding register to load counter
• Use to control clock ticks (i.e.,

length of timer)

Outline

• Motivation (done)
• Control block (done)
• Switching (done)
• Control (done)

