Operating Systems

Processes

ENCE 360

Motivation
Control block
Switching
Control

Outline

MODERN OPERATING SYSTEMS (MOS)

Chapter 2

By Andrew Tanenbaum

Chapter 4
OPERATING SYSTEMS: THREE EASY PIECES
By Arpaci-Dusseau and Arpaci-Dusseau

The Problem

e Remember “CPU” program from day 17

— Each ran as if was only program on computer

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE ILLUSION OF MANY CPUS?

Few physical CPUs available, so how can OS provide
illusion of nearly-endless supply of said CPUs?

The Solution — The Process

 “A program in execution”
* Running several at once provides pseudo-parallelism

A

Conceptual View C

Time-sharing

Program
Counter

e Low-level machinery (mechanisms)
: : Note: good
Answer question of how. E.g., how to keep program context design to :

* High-level intelligence (policies) . separate!

Answer question of which. E.g., which processtorun

Process States

e Consider the shell command:
cat /etc/passwd | grep claypool

1. What is this command doing?

2. How many processes are involved?

Process States

e Consider the shell command:
cat /etc/passwd | grep claypool

Initialization -ﬂ:
Dispatch I/0O request
Create Interrupt

. 3 processes

Waiting ' cat :
I/O complete * grep
E- bash

--

Clean up

(See process states with top)

OS as a Process Scheduler

OS Process Scheduler

Simple OS view — just schedule processes! Even OS
services (e.g., file system) are just processes

Small scheduler handles interrupts, stopping and starting
processes (policy decides when)

Ok, what are mechanisms needed to make this happen?

Program —> Process

What information do we
need to keep track of a
process (i.e., a running
program)?

Program —> Process

int g x int g x Heap
main () { main () | 1/0 g x
.. f —
}) Stack
A AQ) N
f = open() f = open() nain
} }

* Low-level machinery (mechanisms) — to store

program context

— (Discuss policies later in scheduling)

— Current execution location

— Intermediate computations (heap and stack)
— Access to resources (e.g., I/O and files open)

Motivation
Control block
Switching
Control

Outline

(done)
(next)

Process Control Block

OS keeps one Process Control Block

(PCB) for each process
— process state

— program counter

— registers

— memory management
— open devices

OS keeps list/table of PCB’s for all
processes (use when scheduling)

Code examples:

—

process descriptor

— SOS “pcb.h”: ProcessControlBlock

— Xv6 “proc.h”: proc
— Linux “sched.h”: task_struct

P

struct task_struct

| ~struct task_struct

\[5
> [“struct task_struct

|
%

;.i}uct task_struct

unsigned long state;

int prio;

unsigned long policy;
struct task_struct *parent;
struct list_head tasks;
pid_t pid;

. 8

~
the task list

Process Control Block — Summary Info

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started

CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

List of typical attributes in PCB

12

Motivation
Control block
Switching
Control

Outline

(done)
(done)
(next)

Process Creation

* When are processes created?

Process Creation

System initialization

— When OS boots, variety of system
processes created

— init - parent of all processes (pid 1)

— Background, don’t need to interact with
user (daemons for “guiding spirit”)
* Note, foreground processes get input from user

Created on demand by user
— Shell command or, e.g., double clicking icon
Execution of system call

— Process itself may create other processes
to complete task

Created by batch job

— Queued awaiting necessary resources.
When available, create process(es)

BIOS

Boot loader

init

Daemons

Shell

User command

User command

Process Termination

* When are processes terminated?

Process Termination

* Voluntarily

— Make system call to
exit() or return from
main()

* Involuntarily

— By OS if “misbehave” —
e.g., divide by zero,
invalid memory access

— By another process (e.g.,
kill orsignal())

Created Terminated
Main Memory
Running
¥ Vsl " A -
Waiting < Blocked

@apped out and waiting> Gwapped out and block%

Pag_é_filé i_éﬁap space

Creation/Termination Example — Unix

Shell
e System call: fork()

— Creates (nearly) identical copy of process

See: “shell-vo.c”

[options] (usuolly preceded by a dash)

. . >
— Return value different for child/parent L
* System call: exec() —
_ Over-write with new process address space ~+S ~al /scratch
S . : A
+ Shell p .
— Uses -For‘k() and exec () ovmmand name T P URC I
- Simple!
Read
/7 coxnmamd \
®wai
ol)
Display Interpret [z.g. bazh)
prompt command
®exiti]
Execute
CONmMand . @jexeci] pTrograrm
(=g kazh) - =g a.out]
Interpreter

Jop

See: “shell-vl.c”

Model for Multiprogramming

CPU switches from — e ve— m——
process to process ol /f”—plml —
— Each runs for 10s or 100s ; [save state into PCB,
of milliseconds dle
— Block for |/O reload state from PCE, 1
- idla

* E.g., disk read
— Other interrupt
e E.g., /0 complete

— “timeslice” is over

A

(configurable parameter) oeurs ™~ |

Interrupl or system call

R

zava state Into F‘E‘E1

reload state from F'EBLI

l axaculing

idle

Silberschatz & Galvin, 5t Ed, Wiley, Fig 4.3

Operating System Concepts

19

Context Switch

Process 1 Process 2

user code

kemel code } context switch
user code

kernel code } context switch

user code

Pure overhead
So ... want it to be fast, fast, fast
— typically 1 to 1000 microseconds
Sometimes special hardware to speed up
— Real-time wants worst case (e.g., max 20 microseconds)

When to switch contexts to another process is process
scheduling

Interrupt Handling Mechanism

Store PC (hardware)

Load new PC (hardware)
— Jump to interrupt service procedure

Save PCB information (assembly)
Set up new stack (assembly)

Set “waiting” proc to “ready” (C)
Service interrupt (C and assembly)

Invoke scheduler (C)

— Newly awakened process (context-
switch)

— Previously running process

Memory
(1) VO add
interrupt sub | user
‘i-' and | program
(2) save PC or
(3) jump to
interrupt _|
service
routine (5) [ra8d ™ interrupt
(4) store | service
perform ;r y routine
transfer

Outline

Motivation (done)
Control block (done)
Switching (done)
Control (next)

Chapter 6
OPERATING SYSTEMS: THREE EASY PIECES
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-mechanisms.pdf

The Problem — Virtualizing CPU with

Control
Al A
lllegal!
(e.g., read() w/out perm) B
Time Time

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY VIRTUALIZE CPU WITH
CONTROL?

OS must virtualize CPU efficiently while retaining
control over system. Note: hardware support required!

Solution — Limited Direct Execution

Still allow programs to directly

Hardware provides two (sometimes more) run (e.g., on CPU) — i.e., no

modes “sandbox” interpretation
— User mode — certain operations/access not But limit permissions
allowed T

— Kernel mode — full access allowed

Allows OS to protect against

— Faulty processes

— Malicious processes
Some instructions and memory locations
are designated as privileged

— Only executable or accessible in kernel mode
System calls, traps, and interrupts change
mode from user to kernel

— Return from system call resets mode to user

Least privileged

Ring 1

Ring 0

Kernel

Most privileged
Device drivers

Device drivers

Applications

Trap — Transition User to Kernel Mode

USer process

user process executing

» calls system call

return from system call

\

LY

user mode
(mode bit = 1)

kernel

Save {pc, registers,
return} to stack

trap

return

ode bit =0 mode bit = 1

execute system call

Restore
(pop) stack

kernel mode
(mode bit = 0)

e But ... wow to know what code to execute for system
call? i.e., how to know where system call is?

Trap — System Call Lookup Table

user application

open ()
user
mode %%
kernel 3:
mode
L | - open ()
. Implementation
i » of open ()
SySCS“ . system call
numbpber
- syscall
table return

e Each system call has own number/identity
— Initialized at boot time

* Kernel trap handler uses syscall number to index into table of
syscall routines

— Unique to each OS

E.g., Accessing Kernel via Library

#include <stdio.h>
int main ()

{

printf ("Greetings"); |

return o;

}

user
mode

standard C library

kernel

mode
(fvrite ()

write ()
system call

Inside Kernel Mode, OS can ...

Read and modify data
structures not in user
address space

Control devices and
hardware settings forbidden
to user processes

Invoke operating system
functions not available to
user processes

Access address of space of
invoking process

writeable in user mode

Not readable or

!

Kernel Space

User

Y
&~

Space

\

\’

Kernel Code and Data

stack

SP >

(dynamically allﬂcated)

heap
(dynamically allﬂcated)

global and static data

PC S code
(text)

Involuntary Transition User to Kernel

* E.g., Inuser
mode, memory
violation
generates
Interrupt

Mode

|
yes
-—><i>—>
no

error

Memory

Switch to kernel mode

Handle error (e.g., terminate process)

The Problem — Virtualizing the CPU

/ lllegal!

(e.g., read() w/out perm) B

Time Time

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY VIRTUALIZE CPU WITH
CONTROL?

What if process doesn’t voluntarily give up control? It
doesn’t make a system call (so, can’t check) and it
doesn’t make a violation. e.g., while(1) {}

Solution — Special Timer Hardware

Pulse from 5 5 : :
to 300 MHz ecrement counter
when ==

— generate interrupt

* Holding register to load counter
* Use to control clock ticks (i.e.,
length of timer)

 When timer interrupt occurs, OS regains control
* E.g., can run scheduler to pick new process

Motivation
Control block
Switching
Control

Outline

(C

(C

(C

(C

one)
one)
one)
one)

