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The Problem

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE ILLUSION OF MANY CPUS?

Few physical CPUs available, so how can OS provide 
illusion of nearly-endless supply of said CPUs?

• Remember “CPU” program from day 1?
– Each ran as if was only program on computer
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The Solution – The Process
• “A program in execution”
• Running several at once provides pseudo-parallelism
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Time-sharing

• Low-level machinery (mechanisms)
Answer question of how.  E.g., how to keep program context

• High-level intelligence (policies)
Answer question of which.  E.g., which process to run

Note: good 
design to 
separate!



Process States

• Consider the shell command:
cat /etc/passwd | grep claypool

1. What is this command doing?
2. How many processes are involved? 



Process States

• Consider the shell command:
cat /etc/passwd | grep claypool

WaitingReady

Create

Dispatch

Interrupt
I/O request

I/O complete

Terminate

(See process states with top)

Clean up

Initialization

3 processes
• cat
• grep
• bash

Running



OS as a Process Scheduler

cat ls ... disk

Process Scheduler

vid

• Simple OS view – just schedule processes!  Even OS 
services (e.g., file system) are just processes

• Small scheduler handles interrupts, stopping and starting 
processes (policy decides when)

• Ok, what are mechanisms needed to make this happen?

OS



Program  Process

• What information do we 
need to keep track of a 
process (i.e., a running 
program)?

int g_x
main() {
...
}
A() {
f = open()
...

}

?



Program  Process

• Low-level machinery (mechanisms) – to store 
program context
– (Discuss policies later in scheduling)
– Current execution location
– Intermediate computations (heap and stack)
– Access to resources (e.g., I/O and files open)

int g_x
main() {
...
}
A() {
f = open()
...

}

int g_x
main() {
...
}
A() {
f = open()
...

}

Heap

A
main

Stack

g_xI/O
f

Process Control Block (PCB)
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Process Control Block

• OS keeps one Process Control Block 
(PCB) for each process
– process state
– program counter
– registers
– memory management
– open devices
– …

• OS keeps list/table of PCB’s for all 
processes (use when scheduling)

• Code examples: 
– SOS “pcb.h”: ProcessControlBlock
– Xv6 “proc.h”: proc
– Linux “sched.h”: task_struct
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Process Control Block – Summary  Info

List of typical attributes in PCB
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Process Creation

• When are processes created?



Process Creation
• System initialization

– When OS boots,  variety of system 
processes created

– init – parent of all processes (pid 1)
– Background, don’t need to interact with 

user (daemons for “guiding spirit”)
• Note, foreground processes get input from user

• Created on demand by user
– Shell command or, e.g., double clicking icon

• Execution of system call
– Process itself may create other processes 

to complete task
• Created by batch job 

– Queued awaiting necessary resources. 
When available, create process(es)

BIOS

Boot loader

init

Shell

User command

Daemons

User command



Process Termination

• When are processes terminated?



Process Termination

• Voluntarily 
– Make system call to 
exit() or return from 
main()

• Involuntarily
– By OS if “misbehave” –

e.g., divide by zero, 
invalid memory access

– By another process (e.g., 
kill or signal())



Creation/Termination Example – Unix 
Shell

• System call: fork()
– Creates (nearly) identical copy of process
– Return value different for child/parent

• System call: exec()
– Over-write with new process address space

• Shell
– Uses fork() and exec()
 Simple!

See: “shell-v0.c”

See: “shell-v1.c”



19

Model for Multiprogramming

• CPU switches from 
process to process
– Each runs for 10s or 100s 

of milliseconds 
– Block for I/O

• E.g., disk read

– Other interrupt
• E.g., I/O complete

– “timeslice” is over 
(configurable parameter)

Silberschatz & Galvin, 5th Ed, Wiley, Fig 4.3
Operating System Concepts

scheduled



Context Switch

• Pure overhead
• So … want it to be fast, fast, fast

– typically 1 to 1000 microseconds
• Sometimes special hardware to speed up

– Real-time wants worst case (e.g., max 20 microseconds)
• When to switch contexts to another process is process 

scheduling



Interrupt Handling Mechanism

• Store PC (hardware)
• Load new PC (hardware)

– Jump to interrupt service procedure
• Save PCB information (assembly)
• Set up new stack (assembly)
• Set “waiting” proc to “ready” (C)
• Service interrupt (C and assembly)
• Invoke scheduler (C)

– Newly awakened process (context-
switch)

– Previously running process
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Chapter 6
OPERATING SYSTEMS: THREE EASY PIECES

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-mechanisms.pdf



The Problem – Virtualizing CPU with 
Control

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY VIRTUALIZE CPU WITH 

CONTROL?

OS must virtualize CPU efficiently while retaining 
control over system. Note: hardware support required! 
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Illegal!
(e.g., read() w/out perm)



Solution – Limited Direct Execution
• Hardware provides two (sometimes more) 

modes
– User mode – certain operations/access not 

allowed
– Kernel mode – full access allowed

• Allows OS to protect against
– Faulty processes
– Malicious processes

• Some instructions and memory locations 
are designated as privileged
– Only executable or accessible in kernel mode

• System calls, traps, and interrupts change 
mode from user to kernel
– Return from system call resets mode to user

Still allow programs to directly 
run (e.g., on CPU) – i.e., no 
“sandbox” interpretation

But limit permissions



Trap – Transition User to Kernel Mode

• But … wow to know what code to execute for system 
call?  i.e., how to know where system call is?

Save {pc, registers, 
return} to stack

Restore 
(pop) stack



Trap – System Call Lookup Table

• Each system call has own number/identity
– Initialized at boot time

• Kernel trap handler uses syscall number to index into table of 
syscall routines
– Unique to each OS

syscall
number syscall

table



E.g., Accessing Kernel via Library



Inside Kernel Mode, OS can …

SP

PC

Not readable or
writeable in user mode• Read and modify data 

structures not in user 
address space

• Control devices and 
hardware settings forbidden 
to user processes

• Invoke operating system 
functions not available to 
user processes

• Access address of space of 
invoking process



Involuntary Transition User to Kernel 
Mode

• E.g., in user 
mode, memory 
violation 
generates 
interrupt

CPU

Limit Register

<

error

no

yes

Memory

Switch to kernel mode
Handle error (e.g., terminate process)



The Problem – Virtualizing the CPU

THE CRUX OF THE PROBLEM:
HOW TO EFFICIENTLY VIRTUALIZE CPU WITH 

CONTROL?

What if process doesn’t voluntarily give up control?  It 
doesn’t make a system call (so, can’t check) and it 
doesn’t make a violation.  e.g.,  while(1) {}
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Time 

Illegal!
(e.g., read() w/out perm) ?



Solution – Special Timer Hardware

• When timer interrupt occurs, OS regains control
• E.g., can run scheduler to pick new process

Crystal Oscillator
Pulse from 5 
to 300 MHz Decrement counter

when == 0 
 generate interrupt

• Holding register to load counter
• Use to control clock ticks (i.e., 

length of timer)
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