
1

Interactive Media
and

Game DevelopmentGame Development

Game Design

Outline

• Selecting Features (next)
• Level Design
• Core Design

What Next?
• Note! First …

– Work on core mechanics (movement, shooting, etc.)
– Get bugs worked out, animations and movement

smooth
• Then, have

– prototype with solid core mechanics– prototype with solid core mechanics
– tweaked some gameplay so can try out levels

• Need
– 25 levels
– Rest of features

• Problem … too many ideas!
– If don’t have enough, show it to some friends and

they’ll give you some

Selecting Features – Types
• Player can use

– Abilities (attack moves, swimming, flying)
– Equipment (weapons, armor, vehicles)
– Characters (engineer, wizard, medic)
– Buildings (garage, barracks, armory)g (g g , , y)

• Player must overcome
– Opponents (with new abilities)
– Obstacles (traps, puzzles, terrain)
– Environments (battlefields, tracks, climate)

• Categorizing may help decide identity
– Ex: Game may want many kinds of obstacles, or

many characters. What is core?

Tips on Vetting
• Pie in the Sky

“The Koala picks up the jetpack and everything turns 3d and you fly
through this customizable maze at 1000 m.p.h…”

– Beware of features that are too much work
– Don’t always choose the easiest, but look (and think) before you

leap
– And don’t always discard the craziest features … you may find they

work out after all
• Starting an Arms Race

“Once the Koala’s get their nuclear tank nothing can hurt them Once the Koala s get their nuclear tank, nothing can hurt them.
Sweet! No, wait …”

– If you give player new ability (say tank) they’ll like it fine at first
– But subsequently, earlier challenges are too easy
– You can’t easily take it away next level
– Need to worry about balance of subsequent levels

• One-Trick Ponies
“On this one level, the Koala gets swallowed by a giant and has to go

through the intestines fighting bile and stuff…”
– Beware of work on a feature, even if cool, that is only used once

Outline

• Selecting Features (done)
• Level Design (next)
• Core Design

2

Learning Curves

Sk
ill

Stage 1

Stage 2

Stage 3

• Stage 1 – Players learn lots, bug progress slow. Often can give up.
Designer needs to ensure enough progress that continues

• Stage 2 – Players know lots, increase in skill at rapid rate.
Engrossed. Easy to keep player hooked.

• Stage 3 – Mastered challenges. Skill levels off. Designer needs to
ensure challenges continue.

Practice (Time)

Difficulty Curves

D
if

fi
cu

lt
y

Stage 1 Stage 2

• Maintain Stage 2 by introducing new features!
• Too steep? Player gives up out of frustration. Too shallow? Player

gets bored and quits.
• How to tell? Lots of play testing! Still, some guidelines…

Practice (Time)

Easy Medium Hard

Guidelines
• Decide how many levels (virtual or real)
• Divide into equal groups of EASY, MEDIUM, HARD (in

order)
• Design each level and decide which group

– All players complete EASY. Design these for those who
have never played before

– Most can complete MEDIUM. Casual game-players of
this genrethis genre

– Good players complete HARD. These are designed for
yourself and friends who play these games.

• If not enough in each group, redesign to make harder or
easier so about equal number

• Play all and arrange in order, easiest to hardest
• Test on different players (friends and family, but enough in

each category)
• Tweak according to outcomes of test

Outline

• Selecting Features (done)
• Level Design (done)
• Core Design (next)

Implementing Gameplay (1 of 2)
• Choices must be non-trivial, with upside and

downside
– If only upside, AI should take care of it
– If only downside, no-one will ever use it

• Note, this is only regarding game theory
– Ex: Could have ray gun that plays music. “Cool”, but

soon “gimme the BFG”soon gimme the BFG
– Ex: Nintendo’s Smash Bro’s has “Taunt” … ask: what

for?
– Ask: other examples from popular games?

• Gameplay value when upside and downside and
payoff depends upon other factors
– Ex: Rohan horsemen, but what if other player

recruits pikemen?
– Ex: Bazooka, but what if other player gets out of

tank?

Implementing Gameplay (2 of 3)

• Should be series of interesting choices
• Ex: Use of health potion now may depend upon

whether have net for capturing more fairies
• Having net may depend upon whether needed space

for more arrows for bow
• Needing arrows may depend upon whether killed all g y p p

flying zombie bats yet
• Hence, well designed game should require strategy
• Game must display complexity

– But doesn’t mean it must be complex!
• Don’t make too many rules. Less if more.
• Real world example: termites place one piece of mud.

Results in hive, with cooling vents, etc.

3

Avoid Trivial Choices
• Horsemen Archers Pikemen

– Transitive, not so interesting
• Horsemen Archers Pikemen Horsemen

(picture)
– Ask: what game does this look like? (rock-paper-

scissors)
– Intransitive, more interesting
– Ex: from LOTR Battle for Middle Earth

• Horsemen fast, get to archers quickly with lances
• Pikemen spears hurt horsemen bad
• Pikemen slow, so archers wail on them from afar

• Don’t want to hardwire. Sometimes A way better
than B, sometimes a bit better, sometimes worse
– The answer should depend upon the game situation,

weather, terrain, time … also what opponent is doing

Ensuring Interesting Choices

• Interesting choices require good judgment
on the part of the player
– Correct choice must vary with circumstances

• Ai s d si s i st s d ’t • Aim as designer, ensure circumstances don’t
stagnate and have only one right way to win

• No method for finding “best” choices
– That’s where creativity comes in (art)

• Still, some tips …

Toolbox of Interesting Choices

• Strategic versus Tactical
• Supporting Investments
• Versatility
• Compensating Factors
• Impermanence
• Shadow Costs
• Synergies

Strategic versus Tactical (1 of 3)

• Strategic choices affect course of game
over medium or long term
– Tactical choices apply right now
– Ex: build archers or swordsmen (strategic)
– Ex: send archers or swordsmen to defend Ex: send archers or swordsmen to defend

against invading force (tactical)
• Strategic choices have effect on tactical

choices later
– Ex: if don’t build archers, can’t use

tactically later

Strategic versus Tactical (2 of 3)

• Ex: StarCraft
– Strategic choice: 1) upgrade range of

marines, 2) upgrade damage, or 3) research
faster fire

– Which to choose?
• If armored foes, Protoss Zealot, more

damage
• If fast foes, Zerglings, maybe faster fire

– Other factors: number of marines, terrain,
on offense or defense

Strategic versus Tactical (3 of 3)
• Ex: Warzone 2100 (ask: who played?)

– Build factories to spawn war machines
– If build in level, then spawn quickly but

factory only used for that level
– If build at base spawn slowly (have to ship to – If build at base, spawn slowly (have to ship to

front lines) but factory can be used in
subsequent levels

• Lesson: Good gameplay should have different
choices leading to different kinds of payoff
– Reduces the risk of trivial choices
– Increase scope for good judgment

4

Supporting Investments
• Often game has primary goal (ex: beat enemy) but

secondary goals (ex: build farms for resources)
• Some expenditures directly impact primary goal

(ex: hire soldier), while others indirect (ex: build
farm) called supporting investments

• Primary goals are “one removed”Primary goals are one-removed
– Ex: improve weapons, build extra barracks

• Supporting goals are “two-removed”
– Ex: build smithy can then improve weapons
– Ex: research construction lets you build smithy and

build barracks (two and three removed)
• Most interesting since strategic

• Payoff will depend upon what opponents do

Versatility (1 of 2)
• Rule of thumb is to ask what is best and worst

about choices:
1) This move does most damage, but slowest
2) This move is fastest, but makes defenseless
3) This move best defense, but little damageg
4) This neither best nor worst, but most versatile

• Most should be best in some way
• Versatile good for

– beginners
– flexibility (against unpredictable or expert

opponent)

Versatility (2 of 2)

• Ex: beam can mine asteroids and shoot
enemies
– Versatility makes it good choice

• S d is f s tilit• Speed is common way for versatility
– Don’t make fast units best

• If a versatile unit is also cheapest and
most powerful no interesting choice
– (See “Compensating Factors”, next)

Compensating Factors
• Consider strategy game where all units impeded by

some terrain
– Ships can’t go on land, tanks can’t cross water, camel

riders only in dessert
• Assume flying unit that can go anywhere (Ask: how

to balance?)
1) Make slow1) Make slow
2) Make weak, easily destroyed
3) Make low surveillance range (unrealistic)
4) Make expensive

• Note, last choice common but uninteresting since
doesn’t change tactical use

• Choice should be clear to player. Don’t make a
gamble before they know.
– Ex: pick troops (cold weather) then find in jungle

Impermanence (1 of 2)

• Some permanent (ex: you get to treasure first),
others not (ex: I got storage near mine, but you
can grab it off me)

• Really, another kind of compensating factor
I e impermanence can compensate for something – I.e. – impermanence can compensate for something
being really good

• Can be used for interesting choices
– Ex: choice of medium armor for rest of game or

invulnerable for 30 seconds?
• Advantage (or disadvantages) can be impermanent

in number of ways:

Impermanence (2 of 2)

• (Examples mostly from Magic the Gathering –
Battlegrounds)
– Can be destroyed (enchantments, ex: gratuitous

violence makes units tough, but can be destroyed)
– Can be stolen or converted (ex: threaten steals or

t f h t ti)converts enemy for short time)
– Can be applied to something you don’t always have

(ex: goblin king gives bonus to goblins, but must
have goblins)

– Certain number of uses (ex: three grenades, but
grenade spamming)

– Last for some time (wears off, ex: Mario
invulnerable star)

• Common in games, but deserves special attention

5

Shadow Costs (1 of 2)

• In a game, continually presented with costs
and trade-offs. But not all direct.
– Ex: soldiers for gold, but need armory first

for weapons and barracks for soldiersfor weapons and barracks for soldiers
– Called shadow costs for supporting

investments
– Can make flow chart mapping shadow costs

Shadow Costs (2 of 2)
• Ex: Age of Mythology has wood and food. Food is

inexhaustible, wood is finite
– Charioteer

• Costs 60 wood, 40 food and 40 seconds to spawn
• Shadow costs vary over game

– Early on, food and wood expensive, spawn doesn’t
matter

– Mid game much food and wood spawn makes it – Mid-game, much food and wood, spawn makes it
harder to pump out new units

– End-game, no wood, spawn is priceless
• Use variability to add subtlety to game. Vary

environment and vary shadow costs (ex: more trees
to vary cost of wood)
– Challenge for level designer
– Expert players will appreciate

Synergies (1 of 2)

• Positive Feedback
– Economies of Scale –

the more of one type,
the better (ex: wizards

• Negative Feedback
– Diseconomies of scale –

first is most useful,
others have less

Synergies are interaction between different elements
of player’s strategies (note, terms may be different than ch 2.2)

(
draw strength from
each other)

– Economies of Scope –
the more of a set, the
better, or advantage of
combined arms (ex:
trident and net,
infantry and tanks)

benefit (ex: diminishing
returns from more
peasants entering a
mine since get in each
other’s way)

– Diseconomies of scope –
(ex: mixed troops go
only as fast as slowest)

Synergies (2 of 2)

• Ideally, all go together at once, but can emphasize
– Ex: Chess is a game of positive feedback
– Small advantage early on, exploited to crushing

advantage
• Game of negative feedback needs other ways to • Game of negative feedback needs other ways to

keep interesting
– Ex: trench combat makes a “catch-up” factor, or as

get far from base, supply long grows, game lasts a
long time

– Ex: Super NES NBA Jam – catch up setting as an
equalizer

• Be aware of each

Review: Use Tools from Toolbox of
Interesting Choices

• Strategic versus Tactical
• Supporting Investments
• Versatility
• Compensating Factors
• Impermanence• Impermanence
• Shadow Costs
• Synergies

• Groupwork:
– Use 1-2 in a game about graduating from high

school. Discuss.

AI and Games
• Opponents that are challenging, or allies that are

helpful
– Unit that is credited with acting on own

• Human-level intelligence too hard
– But under narrow circumstances can do pretty – But under narrow circumstances can do pretty

well
– Ex: chess and Deep Blue

• Artificial Intelligence
– Around in CS for some time
– Games a special niche (needs to be real-time)

6

AI and Games
• Must be smart, but purposely flawed

– Lose in a fun, challenging way
• No unintended weaknesses

– No "golden path" to defeat
– Must not look dumb

 f l ()• Must perform in real time (CPU)
• Configurable by designers

– Not hard coded by programmer
• "Amount" and type of AI for game can vary

– RTS needs global strategy, FPS needs modeling of
individual units at "footstep" level

– RTS most demanding: 3 full-time AI programmers
– Puzzle, street fighting: 1 part-time AI programmer

Group Exercise

• Consider game where hero is in a pyramid
full of mummies. Mummy – wanders around
maze. When hero gets close, can “sense”
and moves quicker When it can see hero and moves quicker. When it can see hero,
rushes to attack. If wounded, flees.

• What “states” can you see? What are the
transitions? Can you suggest Game Maker
appropriate code?

Finite State Machines (1 of 2)

Wander Attack

See Enemy

Low
 H

eal
thNo Enemy

No Enemy

• Abstract model of computation
• Formally:

– Set of states
– A starting state
– An input vocabulary
– A transition function that maps inputs and the

current state to a next state

Flee L

my

Finite State Machines (2 of 2)

Wander Attack

Flee

See Enemy

Low
 H

eal
thNo Enemy

No Enemy

• Most common game AI software pattern
– Natural correspondence between states and behaviors
– Easy to understand, program and debug
– Completely general to any problem

• Problems
– Explosion of states
– Often created with ad-hoc structure

