Overview

- One or more systems, real or hypothetical
- You want to evaluate their performance
- What technique do you choose?
 - Analytic Modeling?
 - Simulation?
 - Measurement?

Outline

- Selecting an Evaluation Technique
- Selecting Performance Metrics
 - Case Study
- Commonly Used Performance Metrics
- Setting Performance Requirements
 - Case Study

Selecting an Evaluation Technique

(1 of 4)

- What life-cycle stage of the system?
 - Measurement only when something exists
 - If new, analytical modeling or simulation are only options
- When are results needed? (often, yesterday!)
 - Analytic modeling only choice
 - Simulations and measurement can be same
 - But Murphy’s Law strikes measurement more
- What tools and skills are available?
 - Maybe languages to support simulation
 - Tools to support measurement (ex: packet sniffers, source code to add monitoring hooks)
 - Skills in analytic modeling (ex: queuing theory)

Selecting an Evaluation Technique

(2 of 4)

- Level of accuracy desired?
 - Analytic modeling coarse (if it turns out to be accurate, even the analysts are surprised!)
 - Simulation has more details, but may abstract key system details
 - Measurement may sound real, but workload, configuration, etc., may still be missing
 * Accuracy can be high to none without proper design
 - Even with accurate data, still need to draw proper conclusions
 * Ex: so response time is 10.2351 with 90% confidence. So what? What does it mean?

Selecting an Evaluation Technique

(3 of 4)

- What are the alternatives?
 - Can explore trade-offs easiest with analytic models, simulations moderate, measurement most difficult
 * Ex: QFind – determine impact (tradeoff) of RTT and OS
 * Difficult to measure RTT tradeoff
 * Easy to simulate RTT tradeoff in network, not OS
- Cost?
 - Measurement generally most expensive
 - Analytic modeling cheapest (pencil and paper)
 - Simulation often cheap but some tools expensive
 * Traffic generators, network simulators
Selecting an Evaluation Technique
(4 of 4)

- Saleability?
 - Much easier to convince people with measurements
 - Most people are skeptical of analytic modeling results since hard to understand
 - Often validate with simulation before using
- Can use two or more techniques
 - Validate one with another
 - Most high-quality perf analysis papers have analytic model + simulation or measurement

Summary Table for Evaluation Technique Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Modeling</th>
<th>Simulation</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stage</td>
<td>Any</td>
<td>Any</td>
<td>Prototype+</td>
</tr>
<tr>
<td>2. Time required</td>
<td>Small</td>
<td>Medium</td>
<td>Varies</td>
</tr>
<tr>
<td>3. Tools</td>
<td>Analysts</td>
<td>Some</td>
<td>Instrumentation languages</td>
</tr>
<tr>
<td>4. Accuracy</td>
<td>Low</td>
<td>Moderate</td>
<td>Varies</td>
</tr>
<tr>
<td>5. Trade-off</td>
<td>Easy</td>
<td>Moderate</td>
<td>Difficult</td>
</tr>
<tr>
<td>6. Cost</td>
<td>Small</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>7. Saleability</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>

Outline

- Selecting an Evaluation Technique
- Selecting Performance Metrics
 - Case Study
- Commonly Used Performance Metrics
- Setting Performance Requirements
 - Case Study

Selecting Performance Metrics
(1 of 3)

- Mean is what usually matters
 - But variance for some (ex: response time)
- Individual vs. Global
 - May be at odds
 - Increase individual may decrease global
 * Ex: response time at the cost of throughput
 - Increase global may not be most fair
 * Ex: throughput of cross traffic
- Performance optimizations of bottleneck have most impact
 - Example: Response time of Web request:
 - Client processing is 1s, Latency 500ms, Server processing 10s → Total is 11.5s
 - Improve client 50% → 5.75s
 - Improve server 50% → 6.5s

Selecting Performance Metrics
(2 of 3)

- May be more than one set of metrics
 - Resources: Queue size, CPU Utilization, Memory Use ...
- Criteria for selecting subset, choose:
 - Low variability - need fewer repetitions
 - Non redundancy - don’t use 2 if 1 will do
 * Ex: queue size and delay may provide identical information
 - Completeness - should capture tradeoffs
 * Ex: one disk may be faster but may return more errors so add reliability measure
Outline

- Selecting an Evaluation Technique
- Selecting Performance Metrics
 - Case Study
- Commonly Used Performance Metrics
- Setting Performance Requirements
 - Case Study

Case Study (1 of 5)

- Computer system of end-hosts sending packets through routers
 - Congestion occurs when number of packets at router exceed buffering capacity (are dropped)
- Goal: compare two congestion control algorithms
- User sends block of congestion control algorithms
 - A) Some delivered in order
 - B) Some delivered out of order
 - C) Some delivered more than once
 - D) Some dropped

Case Study (2 of 5)

- For A), straightforward metrics exist:
 1) Response time: delay for individual packet
 2) Throughput: number of packets per unit time
 3) Processor time per packet at source
 4) Processor time per packet at destination
 5) Processor time per packet at router
- Since large response times can cause extra retransmissions:
 6) Variability in response time since can cause extra retransmissions

Case Study (3 of 5)

- For B), cannot be delivered to user and are often considered dropped
 7) Probability of out of order arrivals
- For C), consume resources without any use
 8) Probability of duplicate packets
- For D), many reasons is undesirable
 9) Probability lost packets
- Also, excessive loss can cause disconnection
 10) Probability of disconnect

Case Study (4 of 5)

- Since a multi-user system and want fairness:
 - Throughputs ($x_1, x_2, ..., x_n$):
 $$ f(x_1, x_2, ..., x_n) = \frac{(\sum x_i)^2}{n \sum x_i^2} $$
- Index between 0 and 1
 - All users get same, then 1
 - If k users get equal and $n-k$ get zero, than index is k/n

Case Study (5 of 5)

- After a few experiments (pilot tests)
 - Found throughput and delay redundant
 * Higher throughput had higher delay
 - Instead, combine with power $= \text{thruput/delay}$
 - Found variance in response time redundant with probability of duplication and probability of disconnection
 - Drop variance in response time
- Thus, left with nine metrics
Outline

- Selecting an Evaluation Technique
- Selecting Performance Metrics
 - Case Study
- Commonly Used Performance Metrics
- Setting Performance Requirements
 - Case Study

Commonly Used Performance Metrics

- Response Time
 - Turnaround time
 - Reaction time
 - Stretch factor
- Throughput
 - Operations/second
 - Capacity
 - Efficiency
 - Utilization
- Reliability
 - Uptime
 - MTTF

Response Time (1 of 2)

* Interval between user's request and system response

- But simplistic since requests and responses are not instantaneous
- Users type and system formats

Response Time (2 of 2)

- Can have two measures of response time
 - Both ok, but 2 preferred if execution long
- *Think time can determine system load

Response Time+

* Turnaround time - time between submission of a job and completion of output
 - For batch job systems
* Reaction time - Time between submission of a request and beginning of execution
 - Usually need to measure inside system since nothing externally visible
* Stretch factor - ratio of response time at load to response time at minimal load
 - Most systems have higher response time as load increases

Throughput (1 of 2)

* Rate at which requests can be serviced by system (requests per unit time)
 - Batch: jobs per second
 - Interactive: requests per second
 - CPUs
 - Millions of Instructions Per Second (MIPS)
 - Millions of Floating-Point Ops per Sec (MFLOPS)
 - Networks: pkts per second or bits per second
 - Transactions processing: Transactions Per Second (TPS)
Throughput (2 of 2)

- Throughput increases as load increases, to a point
- Nominal capacity is ideal (ex: 10 Mbps)
- Usable capacity is achievable (ex: 9.8 Mbps)
- Knee is where response time goes up rapidly for small increase in throughput

Efficiency

- Ratio of maximum achievable throughput (ex: 9.8 Mbps) to nominal capacity (ex: 10 Mbps) \(\rightarrow 98\% \)
- For multiprocessor, ratio of \(n \)-processor to that of one-processor (in MIPS or MFLOPS)

Utilization

- Typically, fraction of time resource is busy serving requests
 - Time not being used is idle time
 - System managers often want to balance resources to have some utilization
 * Ex: equal load on CPUs
 * But may not be possible. Ex: CPU when I/O is bottleneck
- May not be time
 - Processors - busy / total makes sense
 - Memory - fraction used / total makes sense

Miscellaneous Metrics

- Reliability
 - Probability of errors or mean time between errors (error-free seconds)
- Availability
 - Fraction of time system is available to service requests (fraction not available is downtime)
 - Mean Time To Failure (MTTF) is mean uptime
 * Useful, since availability high (downtime small) may still be frequent and no good for long request
- Cost/Performance ratio
 - Total cost / Throughput, for comparing 2 systems
 - Ex: For Transaction Processing system may want Dollars / TPS

Utility Classification

- HB - Higher is better (ex: throughput)
- LB - Lower is better (ex: response time)
- NB - Nominal is best (ex: utilization)

Outline

- Selecting an Evaluation Technique
- Selecting Performance Metrics
 - Case Study
- Commonly Used Performance Metrics
- Setting Performance Requirements
 - Case Study
Setting Performance Requirements (1 of 2)

• The system should be both processing and memory efficient. It should not create excessive overhead.
• There should be an extremely low probability that the network will duplicate a packet, deliver it to a wrong destination, or change the data.
• What’s wrong?

Setting Performance Requirements (2 of 2)

• General Problems
 - Nonspecific – no numbers. Only qualitative words (rare, low, high, extremely small)
 - Nonmeasureable – no way to measure and verify system meets requirements
 - Nonacceptable – numbers based on what sounds good, but once setup system not good enough
 - Nonrealizable – numbers based on what sounds good, but once started are too high
 - Nonthorough – no attempt made to specify all outcomes

Setting Performance Requirements: Case Study (1 of 2)

• Performance for high-speed LAN
 - Speed – if packet delivered, time taken to do so is important
 A) Access delay should be less than 1 sec
 B) Sustained throughput at least 80 Mb/s
 - Reliability
 A) Prob of bit error less than 10^{-7}
 B) Prob of frame error less than 1%
 C) Prob of frame error not caught 10^{-15}
 D) Prob of frame miss-delivered due to uncaught error 10^{-16}
 E) Prob of duplicate 10^{-5}
 F) Prob of losing frame less than 1%

Setting Performance Requirements: Case Study (2 of 2)

• Availability
 A) Mean time to initialize LAN < 15 msec
 B) Mean time between LAN inits > 1 minute
 C) Mean time to repair < 1 hour
 D) Mean time between LAN partitions > ½ week
• All above values were checked for realizability by modeling, showing that LAN systems satisfying the requirements were possible.