Introduction (1 of 3)

- Goal is to obtain maximum information with minimum number of experiments
- Proper analysis will help separate out the factors
- Statistical techniques will help determine if differences are caused by variations from errors or not

No experiment is ever a complete failure. It can always serve as a negative example. — Arthur Bloch

The fundamental principle of science, the definition almost, is this: the sole test of the validity of any idea is experiment. — Richard P. Feynman

Introduction (2 of 3)

- Key assumption is non-zero cost
 - Takes time and effort to gather data
 - Takes time and effort to analyze and draw conclusions
 - Minimize number of experiments run
- Good experimental design allows you to:
 - Isolate effects of each input variable
 - Determine effects due to interactions of input variables
 - Determine magnitude of experimental error
 - Obtain maximum info with minimum effort

Introduction (3 of 3)

- Consider
 - Vary one input while holding others constant
 - Simple, but ignores possible interaction between two input variables
 - Test all possible combinations of input variables
 - Can determine interaction effects, but can be very large
 - Ex: 5 factors with 4 levels \(\rightarrow 4^5 = 1024 \) experiments. Repeating to get variation in measurement error \(1024 \times 3 = 3072 \)
 - There are, of course, in-between choices...
 - (Ch 19, but leads to confounding...)

Outline

- Introduction
- Terminology
- General Mistakes
- Simple Designs
- Full Factorial Designs
 - \(2^k \) Factorial Designs
 - \(2^{kr} \) Factorial Designs

Terminology (1 of 4)

(Will explain terminology using example)

- Study PC performance
 - CPU choice: 6800, 280, 8086
 - Memory size: 512 KB, 2 MB, 8 MB
 - Disk drives: 1-4
 - Workload: secretarial, managerial, scientific
 - Users: high school, college, graduate
- Response variable - the outcome or the measured performance
 - Ex: throughput in tasks/min or response time for a task in seconds
Terminology (2 of 4)

- **Factors** - each variable that affects response
 - Ex: CPU, memory, disks, workload, user
 - Also called predictor variables or predictors
- **Levels** - the different values factors can take
 - Ex: CPU 3, memory 3, disks 4, workload 3, users 3
 - Also called treatment
- **Primary factors** - those of most important interest
 - Ex: maybe CPU and memory the most

Terminology (3 of 4)

- **Secondary factors** - of less importance
 - Ex: maybe user type not as important
- **Replication** - repetition of all or some experiments
 - Ex: if run three times, then three replications
- **Design** - specification of the replication, factors, levels
 - Ex: Specify all factors, at above levels with 5 replications so $3 \times 3 \times 4 \times 3 \times 3 = 324$ time 5 replications yields 1215 total

Terminology (4 of 4)

- **Interaction** - two factors A and B interact if one shows dependence upon another
 - Ex: non-interacting factor since A always increases by 2

 | A1 | A2 | |
|---|---|---|
 | B1 | 3 | 5 |
 | B2 | 6 | 8 |
 - Ex: interacting factors since A change depends upon B

 | A1 | A2 | |
|---|---|---|
 | B1 | 3 | 5 |
 | B2 | 6 | 9 |

Outline

- Introduction
- Terminology
- **General Mistakes**
 - Simple Designs
 - Full Factorial Designs
 - 2^k Factorial Designs
 - 2^{kr} Factorial Designs

Common Mistakes in Experiments (1 of 2)

- **Variation due to experimental error is ignored.**
 - Measured values have randomness due to measurement error. Do not assign (or assume) all variation is due to factors.
- **Important parameters not controlled.**
 - All parameters (factors) should be listed and accounted for, even if not all are varied.
- **Effects of different factors not isolated.**
 - May vary several factors simultaneously and then not be able to attribute change to any one.
 - Use of simple designs (next topic) may help but have their own problems.

Common Mistakes in Experiments (2 of 2)

- **Interactions are ignored.**
 - Often effect of one factor depend upon another. Ex: effects of cache may depend upon size of program. Need to move beyond one-factor-at-a-time designs
- **Too many experiments are conducted.**
 - Rather than running all factors, all levels, at all combinations, break into steps
 - First step, few factors and few levels
 - Determine which factors are significant
 - Two levels per factor (details later)
 - More levels added at later design, as appropriate
Simple Designs

- Start with typical configuration
- Vary one factor at a time
 - Ex: typical may be PC with 8080, 2 MB RAM, 2 disks, managerial workload by college student
 - Vary CPU, keeping everything else constant, and compare
 - Vary disk drives, keeping everything else constant, and compare
 - Given k factors, with ith having n_i levels
 $$\text{Total} = 1 + \sum (n_i-1)$$ for $i = 1$ to k
 - Example: in workstation study
 $$1 + (3-1) + (3-1) + (4-1) + (3-1) + (3-1) + (3-1) = 14$$
 - But may ignore interaction (Example next)

Example of Interaction of Factors

- Consider response time vs. memory size and degree of multiprogramming

<table>
<thead>
<tr>
<th>Degree</th>
<th>32 MB</th>
<th>64 MB</th>
<th>128 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>0.52</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>0.81</td>
<td>0.66</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>1.45</td>
<td>0.70</td>
</tr>
</tbody>
</table>

- If fixed degree 3, mem 64 and vary one at a time, may miss interaction
 - Example: degree 4, non-linear response time with memory

Full Factorial Designs

- Every possible combination at all levels of all factors
- Given k factors, with ith having n_i levels
 $$\text{Total} = \Pi n_i$$ for $i = 1$ to k
- Example: in CPU design study
 (3 CPUs)(3 mem)(4 disks)(3 loads)(3 users) = 324 experiments
- Advantage is can find every interaction component
- Disadvantage is costs (time and money), especially since may need multiple iterations (later)
- Can reduce costs by: reduce levels, reduce factors, run fraction of full factorial
 (Next, reduce levels)

2^k Factorial Designs

- Very often, many levels at each factor
 - Ex: effect of network latency on user response time
 - There are lots of latency values to test
- Often, performance continuously increases or decreases over levels
 - Ex: response time always gets higher
 - Can determine direction with min and max
- For each factor, choose 2 alternatives at each level
- 2^factorial designs
- Then, can determine which of the factors impacts performance the most and study those further
2\(^2\) Factorial Design (1 of 4)
- Special case with only 2 factors
 - Easily analyzed with regression
- Example: MIPS for Mem (4 or 16 Mbytes) and Cache (1 or 2 Kbytes)

<table>
<thead>
<tr>
<th>Mem 4MB</th>
<th>Mem 16MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache 1 KB</td>
<td>15</td>
</tr>
<tr>
<td>Cache 2 KB</td>
<td>25</td>
</tr>
</tbody>
</table>

Define \(x_a = -1\) if 4 Mbytes mem, +1 if 16 Mbytes
Define \(x_b = -1\) if 1 Kbyte cache, +1 if 2 Kbytes
Performance:
\[y = q_0 + q_ax_a + q_bx_b + q_{ab}x_ax_b\]

2\(^2\) Factorial Design (2 of 4)
- Substituting:
 \[15 = q_0 - q_a - q_b + q_{ab}\]
 \[45 = q_0 + q_a - q_b - q_{ab}\]
 \[25 = q_0 - q_a + q_b - q_{ab}\]
 \[75 = q_0 + q_a + q_b + q_{ab}\]

Can solve to get:
\[y = 40 + 20x_a + 10x_b + 5x_ax_b\]
- Interpret:
 - Mean performance is 40 MIPS, memory effect is 20 MIPS, cache effect is 10 MIPS and interaction effect is 5 MIPS
 (Generalize to easier method next)

2\(^2\) Factorial Design (3 of 4)

<table>
<thead>
<tr>
<th>Exp</th>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>(y_1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>(y_2)</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>(y_3)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>(y_4)</td>
</tr>
</tbody>
</table>

- Solving, we get:
 \[q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)\]
 \[q_a = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)\]
 \[q_b = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)\]
 \[q_{ab} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)\]

Notice for \(q_a\) can obtain by multiplying “a” column by “y” column and adding
- Same is true for \(q_b\) and \(q_{ab}\)

2\(^2\) Factorial Design (4 of 4)

<table>
<thead>
<tr>
<th>i</th>
<th>a</th>
<th>b</th>
<th>ab</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

- Multiply column entries by \(y\), and sum
- Dived each by 4 to give weight in regression model
- Final:
 \[y = 40 + 20x_a + 10x_b + 5x_ax_b\]

Allocation of Variation (1 of 3)
- Importance of a factor measured by proportion of total variation in response explained by the factor
 - Thus, if two factors explain 90% and 5% of the response, then the second may be ignored
 * Ex: capacity factor (768 Kbps or 10 Mbps) versus TCP version factor (Reno or Sack)
- Sample variance of \(y\)
 \[s_y^2 = \frac{\sum (y_i - \bar{y})^2}{(2^2 - 1)}\]
- With numerator being total variation, or Sum of Squares Total (SST)
 \[SST = \sum (y_i - \bar{y})^2\]

Allocation of Variation (2 of 3)
- For a 2\(^2\) design, variation is in 3 parts:
 \[SST = 2q_{a}^2 + 2q_{b}^2 + 2q_{ab}^2\]
 (Derivation 17.1, p.287)
- Portion of total variation:
 - of \(a\) is \(2q_{a}^2\)
 - of \(b\) is \(2q_{b}^2\)
 - of \(ab\) is \(2q_{ab}^2\)
 - Thus, \(SST = SSA + SSB + SSAB\)
- And fraction of variation explained by \(a\):
 \[SSA/SST\]
 * Note, may not explain the same fraction of variance since that depends upon errors
Allocation of Variation (3 of 3)

- In the memory-cache study
 \[y = \frac{1}{4} (15 + 55 + 25 + 75) = 40 \]
- Total variation
 \[2y(y-y)^2 = (25^2 + 15^2 + 15^2 + 35^2) = 2100 = 4\times20^2 + 4\times10^2 + 4\times5^2 \]
- Thus, total variation is 2100
 - 1600 (of 2100, 76%) is attributed to memory
 - 400 (of 2100, 19%) is attributed to cache
 - Only 100 (of 2100, 5%) is attributed to interaction
- This data suggests exploring memory further and not spending more time on cache (or interaction)
 (That was for 2 factors. Extend to k next)

General 2^k Factorial Designs (1 of 4)

- Can extend same methodology to k factors, each with 2 levels \(\rightarrow \) Need 2^k experiments
 - k main effects
 - (k choose 2) two factor effects
 - (k choose 3) three factor effects...
- Can use sign table method
 (Show with example, next)

General 2^k Factorial Designs (2 of 4)

- Example: design LISP machine
 - Cache, memory and processors
 - Memory (a) 4 Mbytes 16 Mbytes
 - Cache (b) 1 Kbytes 2 Kbytes
 - Processors (c) 1 2
- The 2^3 design and MIPS perf results are:

<table>
<thead>
<tr>
<th>Cache (b)</th>
<th>One proc (c) Two proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 KB</td>
<td>14 46 22 58</td>
</tr>
<tr>
<td>2 KB</td>
<td>10 50 34 86</td>
</tr>
</tbody>
</table>

General 2^k Factorial Designs (3 of 4)

- \(q_a=10, q_b=5, q_c=20 \) and \(q_{ab}=5, q_{ac}=2, q_{bc}=3 \) and \(q_{abc}=1 \)
- \(\text{SST} = 2^3 (q_a + q_b + q_c + q_{ab} + q_{ac} + q_{bc} + q_{abc})^2 \)
 \[= 8 (10^2 + 5^2 + 20^2 + 5^2 + 1^2 + 1^2 + 1^2 + 1^2) \]
 \[= 800 + 25 + 400 + 25 + 1 + 1 + 1 + 1 \]
 \[= 1656 \]
- The portion explained by the 7 factors are:
 - \(\text{mem} = 800/1656 (48%) \)
 - \(\text{cache} = 200/1656 (48%) \)
 - \(\text{proc} = 3200/1656 (2%) \)
 - \(\text{mem-proc} = 8/1656 (0.5%) \)
 - \(\text{mem-cache} = 200/1656 (12%) \)
 - \(\text{cache-proc} = 72/1656 (2.5%) \)

Outline

- Introduction
- Terminology
- General Mistakes
- Simple Designs
- Full Factorial Designs
 - 2^k Factorial Designs
 - 2^r Factorial Designs
2\(^r\) Factorial Designs

- No amount of experimentation can ever prove me right; a single experiment can prove me wrong. —Albert Einstein

- With 2\(^r\) factorial designs, not possible to estimate error since only done once
- So, repeat r times for 2\(^{kr}\) observations
- As before, will start with 2\(^{2r}\) model and expand
 - Two factors at two levels and want to isolate experimental errors
 - Repeat 4 configurations r times
- Gives you error term:
 \[y = q_0 + q_a x_a + q_b x_b + q_{ab} x_a x_b + e \]
- Want to quantify e (Illustrate by example, next)

No amount of experimentation can ever prove me right; a single experiment can prove me wrong.
- Albert Einstein

2\(^r\) Factorial Design Errors (1 of 2)

- Previous cache experiment with r=3
- Mean y
- Ex: e_{11} = y_{11} - y_1 = 15 – 15 = 0
- SSE = 0^2 + 3^2 + (-3)^2 + (-3)^2 + 0^2 + 3^2 + 1^2 + 4^2 + (-2)^2 + (-2)^2 + 42 = 102

2\(^r\) Factorial Design Errors (2 of 2)

- Use sum of squared errors (SSE) to compute variance and confidence intervals
- Example:
 \[SSE = \sum_{i=1}^{4} \sum_{j=1}^{r} (y_{ij} - \bar{y})^2 \]
- Ex: e_{11} = y_{11} - \bar{y}_1 = 15 – 15 = 0
- SSE = 0^2 + 3^2 + (-3)^2 + (-3)^2 + 0^2 + 3^2 + 1^2 + 4^2 + (-2)^2 + (-2)^2 + 42 = 102

2\(^r\) Factorial Allocation of Variation

- Total variation (SST)
 \[SST = \sum (y_{ij} - \bar{y})^2 \]
- Can be divided into 4 parts:
 \[\sum (y_{ij} - \bar{y})^2 = 2^2r q_a^2 + 2^2r q_b^2 + 2^2r q_{ab}^2 + \Sigma e_{ij}^2 \]
 - SST = SSA + SSB + SSAB + SSE
- Thus:
 - SSA, SSB, SSAB are variations explained by factors a, b and ab
 - SSE is unexplained variation due to experimental errors
 - Can also write SST = SSY-SS0 where SS0 is sum squares of mean
 (Derivation 18.1, p.296)

2\(^r\) Factorial Allocation of Variation Example

- For memory cache study:
 - SSY = 15^2 + 18^2 + 12^2 + ... + 75^2 + 81^2 = 27,204
 - SS0 = 2^2r q_0^2 = 12x412 = 20,172
 - SSA = 2^2r q_a^2 = 12x(21.5)^2 = 5547
 - SSB = 2^2r q_b^2 = 12x(9.5)^2 = 1083
 - SSAB = 2^2r q_{ab}^2 = 12x(5)^2 = 300
 - SSE = 27,204-2^2r(15^2+21.5^2+9.5^2+5^2)=102
 - SST = 5547 + 1083 + 300 + 102 = 7032
- Thus, total variation of 7032 divided into 4 parts:
 - Factor a explains 5547/7032 (78.88%), b explains 15.40%, ab explains 4.27%
 - Remaining 1.45% unexplained and attributed to error

Confidence Intervals for Effects

- Assuming errors are normally distributed, then y_{ij}s are normally distributed with same variance
- Since q_0, q_a, q_b, q_{ab} are all linear combinations of y_{ij}'s (divided by 2^r), then they have same variance (divided by 2^r)
- Variance \(s^2 = SSE /(2^2(r-1)) \)
- Confidence intervals for effects then:
 \[\pm t_{\alpha/2, (2^2(r-1))} \sqrt{s^2} \]
- If confidence interval does not include zero, then effect is significant
Confidence Intervals for Effects (Example)

- Memory-cache study, std dev of errors:
 \[s_e = \sqrt{\frac{\text{SSE}}{2(2^r-1)}} = \sqrt{102/8} = 3.57 \]
- And std dev of effects:
 \[s_i = \frac{s_e}{\sqrt{2^r}} = \frac{3.57}{3.47} = 1.03 \]
- The t-value at 8 degrees of freedom and 95% confidence is 1.86
- Confidence intervals for parameters:
 \[q_i \pm (1.86)(1.03) = q_i \pm 1.92 \]
- \(q_0 \) (18.66, 35.92)
- \(q_a \) (19.58, 23.41)
- \(q_b \) (7.58, 11.41)
- \(q_{ab} \) (3.08, 6.91)
- Since none include zero, all are statistically significant

Confidence Intervals for Predicted Responses (1 of 2)

- Mean response predicted
 \[y = q_0 + q_a x_a + q_b x_b + q_{ab} x_a x_b \]
- If predict mean from \(m \) more experiments, will have same mean but confidence interval on predicted response decreases
- Can show that std dev of predicted \(y \) with \(m \) more experiments:
 \[s_y = s_e \sqrt{\frac{1}{n_{eff}} + \frac{1}{m}} \]
 - Where \(n_{eff} = \frac{2^r}{1 + df} \)
- In 2 level case, each parameter has 1 df, so \(n_{eff} = \frac{2^r}{5} \)

Confidence Intervals for Predicted Responses Example (1 of 2)

- Mem-cache study, for \(x_a = -1, x_b = -1 \)
- Predicted mean response for future experiment:
 - \(y_1 = q_0 - q_a - q_b + q_{ab} = 41 - 21.5 + 1 = 15 \)
- Std dev = \(3.57 \times \sqrt{\frac{5}{12} + 1} = 4.25 \)
- Using \(t_{0.95;8} = 1.86 \), 90% conf interval:
 - 15 ± 1.86 x 4.25 = (8.09, 22.91)

Confidence Intervals for Predicted Responses Example (2 of 2)

- Predicted Mean Response for Large Number of Experiments:
 - Std dev = \(3.57 \times \sqrt{\frac{5}{12}} = 2.30 \)
 - The confidence interval:
 - 15 ± 1.86 x 2.30 = (10.72, 19.28)

Confidence Intervals for Predicted Responses (2 of 2)

- A 100(1-\(\alpha \))% confidence interval of response:
 - \(y \pm t_{1-\alpha/2; 2^r-2} \cdot s_y \)
- Two cases are of interest:
 - Std dev of one run (\(m = 1 \))
 - \(s_1 = s_e \sqrt{\frac{5}{12} + 1} \)
 - Std dev for many runs (\(m = \infty \))
 - \(s_1 = s_e \sqrt{\frac{5}{12}} \)

Confidence Intervals for Predicted Responses Example (2 of 2)

- Predicted mean response for 5 future experiments:
 - Std dev = \(3.57 \times \sqrt{\frac{5}{12} + \frac{1}{5}} = 2.80 \)
 - 15 ± 1.86 x 2.80 = (9.79, 20.29)