An Algorithm for Determining the Endpoints for Isolated Utterances

L.R. Rabiner and M.R. Sambur

Outline

- Intro to problem
- Solution
- Algorithm
- Summary

Motivation

- Word recognition needs to detect word boundaries in speech
- Recognizing silence can reduce:
 - Processing load
 - (Network not identified as savings source)
- Easy in sound proof room, with digitized tape

Visual Recognition

- “Eight”

- Easy
- Note how quiet beginning is (tape)

Slightly Tougher Visual Recognition

“Six”

- “sss” starts crossing the ‘zero’ line, so can still detect

Tough Visual Recognition

“Four”

- Eye picks ‘B’, but ‘A’ is real start
 - /f/ is a weak fricative
Tough Visual Recognition

"Five"

- Eye picks 'A', but 'B' is real endpoint
 - V becomes devoiced

"Nine"

- Difficult to say where final trailing off ends

The Problem

- Noisy computer room with background noise
 - Weak fricatives: /f, th, h/
 - Weak plosive bursts: /p, t, k/
 - Final nasals
 - Voiced fricatives becoming devoiced
 - Trailing off of sounds (ex: binary, three)
- Simple, efficient processing
 - Avoid hardware costs

The Solution

- Two measurements:
 - Energy
 - Zero crossing rate
- Simple, fast, accurate

Energy

- Sum of magnitudes of 10 ms of sound, centered on interval:
 \[E(n) = \sum_{-50 \leq i \leq 50} |s(n + i)| \]

Zero (Level) Crossing Rate

- Number of zero crossings per 10 ms
 - Normal number of cross-overs during silence
 - Increase in cross-overs during speech
The Algorithm: Startup

- At initialization, record sound for 100ms
 - Assume ‘silence’
 - Measure background noise
- Compute average (IZC’) and std dev (σ) of zero crossing rate
- Choose Zero-crossing threshold (IZCT)
 - Threshold for unvoiced speech
 - IZCT = min(25 / 10ms, IZC’ * 2σ)

The Algorithm: Thresholds

- Compute energy, \(E(n) \), for interval
 - Get max, IMX
 - Have silence, IMN
 \[
 I_1 = 0.03 \times (IMX - IMN) + IMN
 \]
 (3% of peak energy)
 \[
 I_2 = 4 \times IMN
 \]
 (4x silent energy)
- Get energy thresholds (ITU and ITL)
 - ITL = MIN (I_1, I_2)
 - ITU = 5 * ITL

The Algorithm: Energy Computation

- Search sample for energy greater than ITL
 - Save as start of speech, say \(s \)
- Search for energy greater than ITU
 - \(s \) becomes start of speech
 - If energy falls below ITL, restart
- Search for energy less than ITL
 - Save as end of speech
- Results in conservative estimates
 - Endpoints may be outside

The Algorithm: Zero Crossing Computation

- Search back 250 ms
 - Count number of intervals where rate exceeds IZCT
 - If 3+, set starting point, \(s \), to first time
 - Else \(s \) remains the same
- Do similar search after end

The Algorithm: Example

(Word begins with strong fricative)

Algorithm: Examples

- Caught trailing /l/

“Half”
Algorithm: Examples

“Four”

Notice how different each “four” is

Evaluation: Part 1

- 54-word vocabulary
- Read by 2 males, 2 females
- No gross errors (off by more than 50ms)
- Some small errors
 - Losing weak fricatives
 - None affected recognition

Evaluation: Part 2

- 10 speakers
- Count 0 to 9
- No errors at all

Evaluation 3: Your Project 1

Future Work

- Three classes of speech:
 - Silence
 - Unvoiced speech
 - Voiced speech
- May be more computationally intensive solutions that are more effective