Lightweight Active Router-Queue Management for Multimedia Networking

M. Parris, K. Jeffay, and F.D. Smith
Department of Computer Science
University of North Carolina

Multimedia Computing and Networking (MMCN)
January 1999

Outline
• Problem
 – Supporting multimedia on the Internet
• Context
 – Drop Tail
 – RED
 – FRED
• Approach
 – CBT
• Evaluation
• Conclusion

Congestion on the Internet

Congestion Collapse

Congestion Avoidance

Throughput

Goodput

• Drops are the usual way congestion is indicated
• TCP uses congestion avoidance to reduce rate

Internet Routers

• Queue to hold incoming packets until can be sent
 • Typically, drop when queue is full (Drop Tail)

Throughput

Goodput

Router Queue

(Who gets dropped can determine Fairness)

Buffer Management & Congestion Avoidance

The case against drop-tail

• Large queues in routers are a bad thing
 – End-to-end latency is dominated by the length of queues at switches in the network
• Allowing queues to overflow is a bad thing
 – Connections that transmit at high rates can starve connections that transmit at low rates
 – Causes connections to synchronize their response to congestion and become unnecessarily bursty
Random Early Detection (RED) Packet Drop

- Use an exponential average of the queue length to determine when to drop
 - Accommodates short-term bursts
- Tie the drop probability to the weighted average queue length
 - Avoids over-reaction to mild overload conditions

Algorithm

```plaintext
for each packet arrival:
calculate the average queue size \( \text{ave} \)
if \( \text{ave} \geq \text{min} \), do nothing
else if \( \text{min} < \text{ave} < \text{max} \),
calculate drop probability \( p \)
drop arriving packet with probability \( p \)
else if \( \text{max} \geq \text{ave} \),
drop the arriving packet
```

- The average queue length computation needs to be low pass filtered to smooth out transients due to bursts
 - \(\text{ave} = (1 - w_q) \text{ave} + w_q q \)

Performance

- Floyd/Jacobson simulation of two TCP (ftp) flows
Random Early Detection (RED)

Summary
- Controls average queue size
- Drop early to signal impending congestion
- Drops proportional to bandwidth, but drop rate equal for all flows
- Unresponsive traffic will still not slow down!

RED Vulnerability to Misbehaving Flows
- TCP performance on a 10 Mbps link under RED in the face of a "UDP" blast

Router-Based Congestion Control

Dealing with heterogeneous/non-responsive flows
- TCP requires protection/isolation from non-responsive flows
- Solutions?
 - Employ fair-queuing/link scheduling mechanisms
 - Identify and police non-responsive flows (not here)
 - Employ fair buffer allocation within a RED mechanism

Dealing With Non-Responsive Flows

CBQ of...
- Class-based Queuing (CBQ) (Floyd/Jacobson) provides fair allocation of bandwidth to traffic classes
 - Separate queues are provided for each traffic class and serviced in round robin order (or weighted round robin)
 - n classes each receive exactly $1/n$ of the capacity of the link
- Separate queues ensure perfect isolation between classes
- Drawback: 'reservation' of bandwidth and state information required

Dealing With Non-Responsive Flows

CBQ of...
- Isolation can be achieved by reserving capacity for flows within a single FIFO queue
 - Rather than maintain separate queues, keep counts of packets in a single queue
- Lin/Morris: Modify RED to perform fair buffer allocation between active flows
 - Independent of protection issues, fair buffer allocation between TCP connections is also desirable
Flow Random Early Detect (FRED)

- In RED, 10 Mbps → 9 Mbps and 1 Mbps → .9 Mbps
 - Unfair
- In FRED, leave 1 Mbps untouched until 10 Mbps is down

• Separate drop probabilities per flow
• “Light” flows have no drops, heavy flows have high drops

Congestion Avoidance vs. Fair-Sharing
TCP throughput under different queue management schemes

• TCP performance as a function of the state required to ensure/approximate fairness

Queue Management Recommendations

• Recommend (Braden 1998, Floyd 1998)
 - Deploy RED
 - Avoid full queues, reduce latency, reduce packet drops, avoid lock out
 - Continue research into ways to punish aggressive or misbehaving flows

• Multimedia
 - Does not use TCP
 - Can tolerate some loss
 - Price for latency is too high
 - Often low-bandwidth
 - Delay sensitive

Outline

• Problem
 - Supporting multimedia on the Internet
• Context
 - Drop Tail
 - RED
 - FRED
• **Approach**
 - CBT
• Evaluation
• Conclusion

Goals

• Isolation
 - Responsive (TCP) from unresponsive
• Unresponsive: multimedia from aggressive
• Flexible fairness
 - Something more than equal shares for all
• Lightweight
 - Minimal state per flow
• Maintain benefits of RED
 - Feedback
 - Distribution of drops
Class-Based Threshold (CBT)

- Designate a set of traffic classes and allocate a fraction of a router’s buffer capacity to each class.
- Once a class is occupying its limit of queue elements, discard all arriving packets.
- Within a traffic class, further active queue management may be performed.

Classifier

\(f_1, f_2, \ldots \)

Scheduler

Class-Based Threshold (CBT)

- Isolation
 - Packets are classified into 1 of 3 classes
 - Statistics are kept for each class
- Flexible fairness
 - Configurable thresholds determine the ratios between classes during periods of congestion
- Lightweight
 - State per class and not per flow
 - Still one outbound queue
- Maintain benefits of RED
 - Continue with RED policies for TCP

CBT Implementation

- Implemented in Alt-Q on FreeBSD
- Three traffic classes:
 - TCP
 - Marked non-TCP ("well behaved UDP")
 - Non-marked non-TCP (all others)
- Subject TCP flows get RED and non-TCP flows to a weighted average queue occupancy threshold test.

CBT Evaluation

Experimental design

- RED Settings:
 - qsize = 60 pkts
 - max-th = 30 pkts
 - min-th = 15 pkts
 - Wq = 0.002
 - max-p = 0.1
- CBT Settings:
 - mm-th = 10 pkts
 - udp-th = 2 pkts

Throughput and Latency
Conclusion

• RED/FIFO scheduling not sufficient
 – Aggressive unresponsive flows cause trouble
 – Low bandwidth unresponsive (VoIP) punished
• CBT provides
 – Benefits of RED for TCP only traffic
 – Isolation of TCP vs. Unresponsive
 – Isolation of Aggressive vs. Low Bandwidth
 – Lightweight overhead

Future Work?

• How to pick thresholds?
 – Implies reservation
 – Dynamic adjustments of thresholds (D-CBT)
• Additional queue management for classes
 – Classes use “Drop Tail” now
• Extension to other classes
 – Voice
 – Video