A Survey of Packet-Loss Recovery Techniques

Colin Perkins, Orion Hodson and Vicky Hardman
Department of Computer Science
University College London (UCL)
London, UK

IEEE Network Magazine
Sep/Oct, 1998

Overview

- This paper:
 - Loss characteristics of Mbone
 - Techniques to repair loss in a 'light-weight' manner
 - Concentrate on audio
 - Recommendations

- Other papers:
 - Fully-reliable (every bit must arrive), but not real-time
 - Real-time, but not receiver based approaches

Outline

- Overview
- Multicast Channel Characteristics
- Sender Based Repair
- Receiver Based Repair
- Recommendations

IP Multicast Characteristics

- Group address
 - Client receives to address
 - Sender sends to address, without client knowledge
- Loosely coupled connections
 - Not-two way (‘extension to’ UDP)
 - Makes it scalable
 - Allows clients to do local-repair
- Multicast router shared with unicast traffic
 - Can have high loss

Mbone Loss Characteristics

- Most receivers in the 2-5% loss range
- Some see 20-50% loss
- Characteristics differ, so local decisions
Mbone Jitter Characteristics
- High jitter
 - If too late, will be discarded and look like loss
- Interactive applications need low latency
 - Influence repair scheme

Media Repair Taxonomy
- Media Repair
 - Sender Based
 - Receiver Based

Sender Based Repair Taxonomy
- Sender Based Repair
 - Active
 - Passive
- Interleaving
- Forward Error Correction

Media Independent, Media Specific

Figure 3: A Taxonomy of Sender Based Repair Techniques
- Work from right to left
- Unit of audio data vs. a packet
 - Unit may be composed of several packets

Forward Error Correction (FEC)
- Add data to stream
- Use repair data to recover lost packets
- Two classes:
 - Media independent (not multimedia specific)
 - Media dependent (knowledge of audio or video)

Media Independent FEC
- Given k data packets
- Generate $n-k$ check packets
- Transmit n packets
- Schemes originally for bits (like checksum)
 - Applied to packets
 - So ith bit of check packet, checks ith bit of each associated packet

FEC Coding
- XOR operation across all packets
- Transmit 1 parity packet every n data packets
- If 1 loss in n packets, can fully recover
- Reed-Solomon treat as polynomial
Media Independent FEC
Advantages and Disadvantages

Advantages
- Media independent
 - Audio, video, different compression schemes
 - Computation is small and easy to implement

Disadvantages
- Add delay (repair wait for all n packets)
- Add bandwidth (causing more loss?)
- Add decoder complexity

Sender Based Repair Taxonomy

Media Specific FEC

Multiple copies of data

Quality of secondary frames?

Media Specific FEC Secondary Frame

- Send packet energy and zero crossing rate
 - 2 numbers, so small
 - Interpolate from missing packet
 - Coarse, effective for small loss
- Low bit-rate encoded version of primary
 - Lower number of sample bits audio sample, say
- Full-version of secondary
 - Effective if primary is small (low bandwidth)

Media Specific FEC Discussion

- Typical overhead 20-30% for low-quality
 - [HSK98]
- Media specific FEC can repair various amounts by trading off quality of repair
 - Media independent FEC has fixed number of bits for certain amount of repair
- Can have adaptive FEC
 - When speech changes (cannot interpolate)
 - Add when increase in loss [PCM00]
 - Delay more than 1 packet when bursty loss

Media Specific FEC Advantages and Disadvantages

Advantages
- Low latency
 - Only wait a single packet to repair
 - Multiple if adapted to bursty losses
- Can have less bandwidth than independent FEC

Disadvantages
- Computation may be more difficult implement
- Still add bandwidth
- Add decoder complexity
- Lower quality
Sender Based Repair Taxonomy

Interleaving

Interleaving Advantages and Disadvantages

- **Advantages**
 - Most audio compression schemes can do interleaving without additional complexity
 - No extra bandwidth added
- **Disadvantages**
 - Delay of interleaving factor in packets
 - Even when not repairing!

Retransmission Discussion

- In a typical multicast session, can have every packet usually lost by some receiver
 - Will always retransmit at least once
 - FEC may save bandwidth
- Typically, crossover point to FEC based on loss rate
- Some participants may not be interactive
 - Use retransmission
 - Others use FEC
Retransmission Advantages and Disadvantages

- **Advantages**
 - Well understood
 - Only add additional data ‘as needed’

- **Disadvantages**
 - Potentially large delay
 + not usually suitable for interactive applications
 - Large jitter (different for different receivers)
 - Implosion (setting timers difficult)

Media Repair Taxonomy

- **Media Repair**
 - **Sender Based**
 - **Receiver Based**

 - Do not require assistance of Sender
 - Receiver recover as best it can
 - Often called Error Concealment
 - Work well for small loss (<15%), small packets (4-40 ms)
 - Not a substitute for sender-based
 - Rather use both
 - Receiver based can conceal what is less

Taxonomy of Error Concealment

<table>
<thead>
<tr>
<th>Error Concealment</th>
<th>Description</th>
</tr>
</thead>
</table>
| Splicing | Splice together stream on either side
 - Do not preserve timing
 - Advantage
 - “Easy, peasy smudge”
 - Works ok for short packets of 4-16 ms
 - Disadvantage
 - Crappy for losses above 3%
 - Interfere with delay buffering

- **Silence Substitution**
 - Fill the gap left by lost packet with silence
 - Preserve timing
 - Advantage
 - Still easy, peasy smudge
 - Works good for low loss (< 2%)
 - Works ok for short packets of 4-16 ms
 - Disadvantage
 - Crappy for higher losses (3%+)
 - Ineffective with 40ms packets (typical)

- **Noise Substitution**
 - Human psych says can repair if sound, not silence (*phonemic restoration*)
 - Replace lost packet with “white noise”
 - + Like static on radio
 - Still preserve timing
 - Similar to silence substitution
 - Sender can have “comfort noise” so receiver gets white-noise volume right
Repetition
- Replace missing packet with previous packet
- Can “fade” if multiple repeats over time
 - Decrease signal amplitude to 0
- Still pretty easy, but can work better
- A step towards interpolation techniques (next)

Interpolation Based Repair
- Waveform substitution
 - Use waveform repetition from both sides of loss
 - Works better than repetition (that uses one side)
- Pitch waveform replication
 - Use repetition during unvoiced speech and use additional pitch length during voiced speech
 - Performs marginally better than waveform
- Time scale modifications
 - “Stretch” the audio signal across the gap
 - Generate a new waveform that smoothly blends across loss
 - Computationally heavier, but performs marginally better than others

Regeneration Based Repair
- Interpolation of transmitted state
 - State-based decoding can then interpret what state codec should be in
 - Reduces boundary-effects
 - Typically high processing
- Model-Based recovery
 - Regenerate ‘speech’ to fit with speech on either side

Summary of Receiver Based Repair
- Quality increase decreases at high complexity
- Repetition is at ‘knee’ in curve
Groupwork

- Consider:
 - Interactive voice from Europe to U.S.
 - Multicast broadcast video of taped lecture
 - Multicast replicated database update
 - Interactive voice across city
- Choose a repair technique and why:
 - Interleaving
 - Retransmission
 - Media Specific FEC
 - Media Independent FEC

Recommendations: Non-Interactive Applications

- Latency less important
- Bandwidth a concern (mcast has various bandwidth)
- \(\rightarrow \) use interleaving
- \(\rightarrow \) repetition for concealment
- Retransmission does not scale
 - Ok for unicast
- Media independent FEC may be ok

Recommendations: Interactive Applications

- Want to minimize delay
 - \(\rightarrow \) Interleaving delay is large
 - \(\rightarrow \) retransmission delay can be large
 - \(\rightarrow \) media independent FEC usually large
 + (Or computationally expensive)
- Use media specific FEC
 - Approximate repair ok

Recommendations: Error Concealment

- Will be some residual error at receiver
- Silence substitution not acceptable
 - Use packet repetition
 - Others can be used, but more costly and not necessarily worthwhile

Evaluation of Science?

- Category of Paper
- Science Evaluation (1-10)?
- Space devoted to Experiments?