A Selective Retransmission Protocol for Multimedia on the Internet

Mike Piecuch, Ken French, George Oprica and Mark Claypool

Computer Science Department
Worcester Polytechnic Institute

Proceedings of SPIE Multimedia, Systems and Applications Conference
Boston, November 2000

Applications:
Text-Based vs. Multimedia

- Text
 - Strict loss constraints
 - Minimal timing constraints

- Multimedia
 - Forgiving to loss
 - Requires timing constraints

Protocols:
TCP vs. UDP

- TCP
 - No loss
 - Retransmits all lost messages
 - Potentially large latency

- UDP
 - Potentially unbounded loss
 - Does no retransmission
 - Minimal latency

- Neither is what you want!

Our Solution:
A Selective Retransmission Protocol

- Balances the extremes of TCP and UDP
- Tradeoff between loss and latency
- Retransmits a percentage of lost packets
 - If end-to-end delay is large, may accept loss
 - If end-to-end delay is small, may always request retransmission
 - If loss rate is very high, may request retransmission
 - How to decide?

Groupwork

- Measure of loss
- Measure of latency
- Packet is lost
- ... Do you request retransmission?

- Consider:
 - Quiet WAN, interactive audio
 - LAN, broadcast video
 - Lossy MAN, interactive audio

Decision Algorithms

(Kleinrock, 1992)
Decision Algorithms

![Graph of Decision Algorithms](image)

Approach

- Implement SRP and “application”
- Setup “WAN” test-bed
- Run “application” over
 - TCP: No loss, Low latency
 - UDP: Medium loss, Medium latency
 - SRP: High loss, High latency
- Measure “Quality”
- Analyze Results

Policies

- OQ
- ELL

Acceptable Quality Approach

- Implement SRP and “application”
- Setup “WAN” test-bed
- Run “application” over
 - TCP: No loss, Low latency
 - UDP: Medium loss, Medium latency
 - SRP: High loss, High latency
- Measure “Quality”
- Analyze Results

Implementation of SRP

- Application layer client/server protocol
 - No “kernel hacking” (yet)
 - Built on top of UDP
- Measure loss and latency
 - Use to decide when to request retransmission
- Decision algorithm modular
 - Equal Loss Latency (ELL)
 - Optimum Quality (OQ)

Sample SRP Session

<table>
<thead>
<tr>
<th>Data Block</th>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample SRP Session

- Do not request retransmission

Experiments

- UDP traffic generator
- Token bucket router to control loss and latency
- Audio session 8000 bytes/sec
 - Sample rate 160ms, packet size 1280
Sample Data

Low Loss, Low Latency

High Loss, High Latency

Conclusions

- TCP and UDP provide extremes
 - Not what Multimedia wants
- SRP can provide a balance
- Tuning of SRP depends upon
 - Application
 - Measure of “quality”
 - Measurement of network (loss, RTT)

Future Work

- Repair (FEC)
- Congestion control
- Loss detection (timeout)
- Additional decision algorithms
- Multicast

Evaluation of Science?

- Category of Paper
- Science Evaluation (1-10)?
- Space devoted to Experiments?