
1

Equation-Based Congestion
Control for Unicast Applications

Sally Floyd, Mark Handley
AT&T Center for Internet Research (ACIRI)

Proceedings of ACM SIGCOMM, 2000

Jitendra Padhye
Umass Amherst

Jorg Widmer
International Computer Science Institute (ICSI)

Outline

• Intro
• Foundations
• TFRC
• Experimental Evaluation
• Related Work
• Conclusions

Introduction
• TCP

– Dominant on Internet
– Needed for stability
– AIMD
– Window-based

• “Bulk-data” applications fine with TCP
– But real-time find window fluctuations annoying

• Equation-based congestion control to the
rescue!
– Smooth the rate
– (Note, class-based isolation beyond this paper)

But don’t we need TCP?

• Practical
– Primary threat are from unresponsive flows

+ Choose UDP over TCP
– Give others protocol so they have something!

• Theoretical
– Internet does not require reduction by ½

+ Other rates have been 7/8 (DECbit)

– Even ‘fairness’ to TCP doesn’t require this
– Needs some control to avoid high sending rate

during congestion

Guiding Basics for Equation-Based
Protocol

• Determine maximum acceptable sending rate
– Function of loss event rate
– Round-trip time

• If competing with TCP (like Internet) should
use TCP response equation during steady
state

• There has been related work (see later
sections) but still far away from deployable
protocol

• This work presents one such protocol
– TFRC

TFRC Goals
• Want reliable and as quick as possible?

– Use TCP

• Slowly changing rate?
– Use TFRC (ms. vs. s.)

• Tackle tough issues in equation-based
– Responsiveness to persistent congestion
– Avoiding unnecessary oscillations
– Avoiding unnecessary noise
– Robustness over wide-range of time scales
– Loss-event rate is a key component!

• Multicast
– If all receivers change rates a lot, never can scale

2

Foundations of Equation-Based
Congestion Control
• TCP-Friendly Flow

– In steady-state, uses no more bandwidth than
conformant TCP running under same conditions

• One formulation:

• s – packet size R – Round Trip Time
• p – loss event rate tRTO – TCP timeout
• (Results from analytic model of TCP)

Outline

• Intro
• Foundations
• TFRC
• Experimental Evaluation
• Related Work
• Conclusions

TFRC Basics
• Maintain steady sending rate, but still

respond to congestion
• Refrain from aggressively seeking out

bandwidth
– Increase rate slowly

• Do not respond as rapidly
– Slow response to one loss event
– Halve rate when multiple loss events

• Receiver reports to sender once per RTT
– If it has received packet

• If no report for awhile, sender reduces rate

Protocol Overview

• Compute p (at receiver)
• Compute R (at sender)
• RTO and s are easy (like TCP and fixed)
• Computations could be split up many ways

– Multicast would favor ‘fat’ receivers

• TFRC has receiver only compute p and send
it to sender

• Next:
– Sender functionality
– Receiver functionality

Sender Functionality
• Computing RTT

– Sender time-stamps data packets
– Smooth with exponentially weighted avg
– Echoed back by receiver

• Computing RTO
– From TCP: RTO = RTT + 4 * RTTvar

– But only matters when loss rate very high
– So, use: RTO = 4 * R

• When receive p, calculate new rate T
– Adjust application rate, as appropriate

Receiver Functionality
• Compute loss event rate, p

– Longer means subject to less ‘noise’
– Shorter means respond to congestion

• After “much testing”:
– Loss event rate instead of packet loss rate

+ Multiple packets may be one event
– Should track smoothly when steady loss rate
– Should respond strongly when multiple loss

events
• Different methods:

– Dynamic History Window, EWMA Loss Interval,
Average Loss Interval

3

Computing Loss Event Rate

• Dynamic History Window
– Window of packets
– Even at ‘steady state’ as packets arrive and leave

window, added ‘noise’ could change rate

• Exponentially Weighted Moving Average
– Count packets between loss events
– Hard to adjust weights correctly

• Average Loss Interval
– Weighted average of packets between loss events

over last n intervals
– The winner! (Comparison not in paper here)

Average Weighted Loss Intervals

Loss Interval Computation

• wi = 1 for 1 <= I <= n/2
• wi = 1 – (I – n/2) / (n/2 + 1)
• 1, 1, 1, 1, 0.8, 0.6, 0.4, 0.2
• Rate depends upon n

– n = 8 works well during increase in congestion (Later section
validates)

– Have not investigated relative weights
• History discounting for sudden decreases in

congestion
– Interval s0 is a lot larger
– Can speed up

• Loss event rate, p, is inverse of loss interval

Illustration of Average Loss
Interval

Instability from RTT Variance
• Inter-packet time varies with RTT

– Fluctuations when RTT changes

Improving Stability
• Take square root of current RTT (M is sqrt of

average)

4

Slowstart
• TCP slowstart can no more than double

congestion bottleneck
– 2 packets for each ack

• Rate-based could more than double
– Actual RTTs getting larger as congestion but

measured RTTs too slow

• Have receiver send arrival rate
– Ti+1 = min(2Ti, 2Trecv)
– Will limit it to double cong bwidth

• Loss occurs, terminate “slowstart”
– Loss intervals? Set to ½ of rate for all
– Fill in normally as progress

Outline

• Intro
• Foundations
• TFRC

– Mechanics (done)
– Discussion of features

• Experimental Evaluation
• Related Work
• Conclusions

Loss Fraction vs. Loss Event
Fraction
• Obvious is packets lost/packets received

– But different TCP’s respond to multiple losses in
one window differently

+ Tahoe, Reno, Sack all halve window
+ New Reno reduces it twice

• Use loss event fraction to ignore multiple
drops within one RTT

• Previous work shows two rates are within
10% for steady state queues
– But DropTail queues are bursty

Increasing the Transmission Rate

• What if Tnew is a lot bigger than Told?
– May want to dampen the increase amount

• Typically, only increase 0.14 packets / RTT
– History discounting provides 0.22 packets / RTT

• Theoretical limit on increase
– A is number of packets in interval, w is weight

– So … no need to dampen more

Response to Persistent
Congestion
• To be smooth, TFRC does not respond as

fast as does TCP to congestion
– TFRC requires 4-8 RTTs to reduce by ½

• Balanced by milder increase in sending rate
– 0.14 packets per RTT rather than 1

• Does respond, so will avoid congestion
collapse

• (Me, but about response to bursty traffic?)

Response to Quiescent Senders

• Assume sender sending at maximum rate
– Like TCP

• But if sender stops, and later has data to
send
– the previous estimated rate, T, may be too high

• Solution:
– if sender stops, receiver stops feedback

• Sender ½ rate every 2 RTTs
• (Me, what about just a reduced rate that is

significantly less than T?
– May happen for coarse level MM apps)

5

Outline

• Intro
• Foundations
• TFRC

• Experimental Evaluation
– Simulation
– Implementation

+ Internet
+ Dummynet

• Related Work
• Conclusions

Simulation Results (NS)

• TFRC co-exist with many kinds of TCP traffic
– SACK, Reno, NewReno…
– Lots of flows

• TFRC works well in isolation
– Or few flows

• Many network conditions

TFRC vs. TCP, DropTail

• Mean TCP throughput (want 1.0)
• Fair (?)

TFRC vs. TCP, RED

• Even more fair
• Not fair for small windows
• (Me … bursty traffic with many flows?)

Fair Overall, but what about
Variance?

• Variance increases with loss rate, flows

CoV of Flows (Std Dev / Mean)

• A fairness measure
• Average of 10 runs
• TFRC less fair for high loss rates (above typical)
• Same w/Tahoe and Reno, SACK does better

– timer granularity is better with SACK

6

Individual Throughputs over
Time

• .15 second interval (about multimedia sensitivity)
•Smoother rate from TFRC

Equivalence at Different
Timescale
• Compare two flows
• Number between 0 and 1 (equation (4))
• Cases

– Long duration flows in background
– On-Off flows in background

Equivalence
for Long
Duration

• Results hold over
Broad range of
timescales

•Single bottleneck
•32 flows
•15 Mbps link
•Monitor 1 flow
•95% confidence interval

Outline

• Intro
• Foundations
• TFRC
• Experimental Evaluation

– Simulation
+ Fairness and Smoothness (CoV) (done)
+ Long Duration (done)
+ On-Off flows

– Implementation

• Related Work
• Conclusions

Performance with On-Off Flows

• 50 – 150 On/Off UDP flows
– On 1 second, off 2 seconds (mean)
– Send at 500 kbps rate

• Monitor TCP, Monitor TFRC

Equivalence with TCP with
Background Traffic

•At high loss rates, less equivalent (40% more, less)
•(Me, room for improvement)

7

CoV with Background Traffic

•TFRC rate has less variance,
especially at high loss rates

Effect on Queue Dynamics

•40 flows, staggered start times
•TCP (top) has 4.9% loss and TFRC (bottom) has 3.5% loss
•99% utilization for all
•Basically, look the same
•Extensive tests, w/RED and background look the same

(Bursty?)

Outline

• Intro
• Foundations
• TFRC

• Experimental Evaluation
– Simulation (done)
– Implementation

+ Internet

• Related Work
• Conclusions

Implementation Results

• TFRC on Internet
– Microwave
– T1
– OC3
– Cable modem
– Dialup modem

• Generally fair
• (See tech report for details)

London to Berkeley

• 3 TCP flows, 1 TFRC flow
• TFRC slightly lower bandwidth but smoother
• Typical loss rates .1% to 5%

TCP Equivalence over Internet

8

CoV over Internet TFRC unfair to TCP when …

• When flows have one packet per RTT
– TFRC can get far more than its fair share
– Due to ‘conservative’ clock (500ms) in FreeBSD?

• Some TCP variants are ‘buggy’
– Linux vs. Solaris
– (Me, a neat project)

• Real-world “Phase Effect” (?)

Testing the Loss Predictor
• How effective do X intervals predict

immediate future loss rate?

• But not just great prediction but reaction, too

Related Work

• TCP Emulation At Receiver (TEAR)
– Compute window at receiver, convert to rate

• Rate Adaptation Protocol (RAP)
– AIMD approach
– No slow start, no timeout

• Other equation based
– One ties with MPEG (application)
– One TFRCP direct comparison

Issues for Multicast Congestion
Control
• Still feedback every RTT

– Must change to aggregate or hierarchical
– Or lowest transmission rate

• Slowstart especially problematic as needs
very timely feedback

• Synchronized clocks needed so receivers can
determine RTT in scalable manner

Conclusions

• TFRC gives TCP-fair allocation of bandwidth
over wide range of environments

• TFRC smoother than TCP
• Evaluated over wide range of network

conditions

9

Future Work

• What is some retransmission?
– How to divide up T

• What if some extra repair information?
– How to divide up T?

• Duplex TFRC?
• ECN and TFRC?

Evaluation of Science?

• Category of Paper
• Science Evaluation (1-10)?
• Space devoted to Experiments?

