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Introduction
° TCP

— Dominant on Internet
— Needed for stability
— AIMD

— Window-based
® “Bulk-data” applications fine with TCP
— But real-time find window fluctuations annoying
® Equation-based congestion control to the
rescue!
— Smooth the rate
— (Note, class-based isolation beyond this paper)
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uiding Basics for Equation-Based
otocol

® Determine maximum acceptable sending rate
— Function of loss event rate
— Round-trip time

® |f competing with TCP (like Internet) should
use TCP response equation during steady
state

® There has been related work (see later
sections) but still far away from deployable
protocol

® This work presents one such protocol

- TFRC
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But don’'t we need TCP?

® Practical
— Primary threat are from unresponsive flows
+ Choose UDP over TCP
— Give others protocol so they have something!
® Theoretical
— Internet does not require reduction by %
+ Other rates have been 7/8 (DECbit)
— Even ‘fairness’ to TCP doesn't require this
— Needs some control to avoid high sending rate
during congestion
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TFRC Goals

® Want reliable and as quick as possible?
— Use TCP

® Slowly changing rate?
— Use TFRC (ms. vs. s.)

® Tackle tough issues in equation-based
— Responsiveness to persistent congestion
— Avoiding unnecessary oscillations
— Avoiding unnecessary noise
— Robustness over wide-range of time scales
— Loss-event rate is a key component!

® Multicast
— If all receivers change rates a lot, never can Wp




Foundations of Equation-Based
Congestion Control

® TCP-Friendly Flow

— In steady-state, uses no more bandwidth than
conformant TCP running under same conditions

® One formulation:

T a
R"/%+fRT0(3J¥}p(1 +32p7)

® s — packetsize R — Round Trip Time
® p—loss eventrate ty;,— TCP timeout
® (Results from analytic model of TCP) | YW
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TFRC Basics

® Maintain steady sending rate, but still
respond to congestion

® Refrain from aggressively seeking out
bandwidth
— Increase rate slowly

® Do not respond as rapidly
— Slow response to one loss event
— Halve rate when multiple loss events

® Receiver reports to sender once per RTT
— If it has received packet

® If no report for awhile, sender reduces ragy
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Protocol Overview

® Compute p (at receiver)

® Compute R (at sender)

® RTO and s are easy (like TCP and fixed)

® Computations could be split up many ways
— Multicast would favor ‘fat’ receivers

® TFRC has receiver only compute p and send
it to sender

® Next:
— Sender functionality
— Receiver functionality
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Sender Functionality

® Computing RTT
— Sender time-stamps data packets
— Smooth with exponentially weighted avg
— Echoed back by receiver

® Computing RTO
— From TCP: RTO =RTT + 4 * RTT,,,
— But only matters when loss rate very high
— So, use: RTO=4*R

® When receive p, calculate new rate T
— Adjust application rate, as appropriate
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Recelver Functionality

® Compute loss event rate, p
— Longer means subject to less ‘noise’
— Shorter means respond to congestion
® After “much testing™:

— Loss event rateinstead of packet loss rate
+ Multiple packets may be one event

— Should track smoothly when steady loss rate

— Should respond strongly when multiple loss
events

® Different methods:

— Dynamic History Window, EWMA Loss Interval,
Average Loss Interval




Computing Loss Event Rate

® Dynamic History Window
— Window of packets
— Even at ‘steady state’ as packets arrive and leave
window, added ‘noise’ could change rate
® Exponentially Weighted Moving Average
— Count packets between loss events
— Hard to adjust weights correctly
® Average Loss Interval
— Weighted average of packets between loss events
over last n intervals
— The winner! (Comparison not in paper here) wp

Average Weighted Loss Intervals
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Rate depends upon n

— n=8works well during increase in congestion (Later section
validates)

— Have not investigated relative weights
History discounting for sudden decreases in
congestion

— Interval s, is a lot larger

— Can speed up
Loss event rate, p, is inverse of loss interval wp
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Instability from RTT Variance

® Inter-packet time varies with RTT
— Fluctuations when RTT changes
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Improving Stability

® Take square root of current RTT (M is sqrt of
average)
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Slowstart

® TCP slowstart can no more than double
congestion bottleneck
— 2 packets for each ack

® Rate-based could more than double

— Actual RTTs getting larger as congestion but
measured RTTs too slow

® Have receiver send arrival rate
- T\+1 = min(2'|j, 2Trecv)
— Will limit it to double cong bwidth

® Loss occurs, terminate “slowstart”
— Loss intervals? Set to ¥z of rate for all
— Fill in normally as progress
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Loss Fraction vs. Loss Event
Fraction

® Obvious is packets lost/packets received
— But different TCP’s respond to multiple losses in
one window differently
+ Tahoe, Reno, Sack all halve window
+ New Reno reduces it twice
® Use loss event fraction to ignore multiple
drops within one RTT
® Previous work shows two rates are within
10% for steady state queues
— But DropTail queues are bursty
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Increasing the Transmission Rate

® What if T, is a lot bigger than T,,?
— May want to dampen the increase amount
® Typically, only increase 0.14 packets / RTT
— History discounting provides 0.22 packets / RTT
® Theoretical limit on increase
— Ais number of packets in interval, w is weight

§r = 1.&(\.1',’: bl A \,-l'_i)

— So ... no need to dampen more
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Response to Persistent
Congestion

® To be smooth, TFRC does not respond as
fast as does TCP to congestion
— TFRC requires 4-8 RTTs to reduce by %2

® Balanced by milder increase in sending rate
— 0.14 packets per RTT rather than 1

® Does respond, so will avoid congestion
collapse

® (Me, but about response to bursty traffic?)
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Response to Quiescent Senders

® Assume sender sending at maximum rate
— Like TCP

® But if sender stops, and later has data to
send
— the previous estimated rate, T, may be too high
® Solution:
— if sender stops, receiver stops feedback
® Sender % rate every 2 RTTs
® (Me, what about just a reduced rate that is
significantly less than T?
— May happen for coarse level MM apps)
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Simulation Results (NS)

® TFRC co-exist with many kinds of TCP traffic
— SACK, Reno, NewReno...
— Lots of flows

® TFRC works well in isolation
— Or few flows
® Many network conditions
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TFRC vs. TCP, DropTail
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Variance increases with loss rate, flows

TFRCvs. TCP, RED
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TFRC ws TCP, RED Queuing

® Even more fair
® Not fair for small windows
® (Me ... bursty traffic with many flows?)
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CoV of Flows (Std Dev / Mean)
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A fairness measure Loss Rate

Average of 10 runs
TFRC less fair for high loss rates (above typical)

Same w/Tahoe and Reno, SACK does better WP
—_timer granularity is better with SACK




Individual Throughputs over

Thirgughput
Dropped Packet

TCF4
TFRC vs TCP Sackl, 32 floves, 150b's link, RED Gueue

« .15 second interval (about multimedia sensitivit

*Smoother rate from TFRC
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Equivalence at Different
Timescale

® Compare two flows

® Number between 0 and 1 (equation (4))

¢ Cases
— Long duration flows in background
— On-Off flows in background
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* Results hold over
Broad range of
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Performance with On-Off Flows

Mean Loss Rate {percent)

50 — 150 On/Off UDP flows
— On 1 second, off 2 seconds (mean)
— Send at 500 kbps rate

Monitor TCP, Monitor TFRC
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Equivaence with TCP with
Backaround Traffic
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*At high lossrates, less equivalent (40% more, |
*(Me, room for improvement)
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—E CoV with Background Traffic
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*TFRC rate hasless variance,
especially at high loss rates WP

—E Effect on Queue Dynamics
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40 flows, staggered start times

Bl -TcP (top) has 4.9% loss and TFRC (bottom) has 3.5% loss
-99% utilization for all (Bursty?)
*Basically, look the same
*Extensivetests, w/RED and background look the same
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® Conclusions
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I mplementation Results

® TFRC on Internet
— Microwave
-T1
- 0C3
— Cable modem
— Dialup modem
® Generally fair
® (See tech report for details)
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London to Berkeley
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* TFRC slightly lower bandwidth but smoother
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TCP Equivaence over Internet
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Coefficient of Variance

CoV over Internet
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avy. loss prediction error

Testing the Loss Predictor

® How effective do X intervals predict
immediate future loss rate?

error avg. —+—
0.01 L error std. dev.

oes \i—
0.008 | \//‘ \\_/
0.004
0.002

a

2 4 =] 16 =22 2 4 =1 1e 22
history size {(constant weights (L), decreasing weights (R})

« But not just great prediction but reaction, too
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TFRC unfair to TCPwhen ...

® When flows have one packet per RTT

— TFRC can get far more than its fair share

— Due to ‘conservative’ clock (500ms) in FreeBSD?
® Some TCP variants are ‘buggy’

— Linux vs. Solaris

— (Me, a neat project)
® Real-world “Phase Effect” (?)
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Related Work

® TCP Emulation At Receiver (TEAR)

— Compute window at receiver, convert to rate
® Rate Adaptation Protocol (RAP)

— AIMD approach

— No slow start, no timeout
® Other equation based

— One ties with MPEG (application)

— One TFRCP direct comparison
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Issues for Multicast Congestion
Control

® Still feedback every RTT
— Must change to aggregate or hierarchical
— Or lowest transmission rate

® Slowstart especially problematic as needs
very timely feedback

® Synchronized clocks needed so receivers can
determine RTT in scalable manner
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Conclusions

® TFRC gives TCP-fair allocation of bandwidth
over wide range of environments

® TFRC smoother than TCP

® Evaluated over wide range of network
conditions
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Future Work

® What is some retransmission?
— How to divide up T

® What if some extra repair information?
— How to divide up T?

® Duplex TFRC?

® ECN and TFRC?
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Evaluation of Science?

® Category of Paper
® Science Evaluation (1-10)?
® Space devoted to Experiments?
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