Equation-Based Congestion
Control for Unicast Applications

Sally Floyd, Mark Handley
AT&T Center for Internet Research (ACIRI)

Jitendra Padhye
Umass Ambherst
Jorg Widmer

International Computer Science Institute (ICSI)

Proceedings of ACM SIGCOMM, 2000

wpP

g

Introduction
° TCP

— Dominant on Internet
— Needed for stability
— AIMD

— Window-based
® “Bulk-data” applications fine with TCP
— But real-time find window fluctuations annoying
® Equation-based congestion control to the
rescue!
— Smooth the rate
— (Note, class-based isolation beyond this paper)

WP

uiding Basics for Equation-Based
otocol

® Determine maximum acceptable sending rate
— Function of loss event rate
— Round-trip time

® |f competing with TCP (like Internet) should
use TCP response equation during steady
state

® There has been related work (see later
sections) but still far away from deployable
protocol

® This work presents one such protocol

- TFRC

WP

Outline

® Intro

® Foundations

®* TFRC

® Experimental Evaluation
® Related Work

® Conclusions

wP

But don’'t we need TCP?

® Practical
— Primary threat are from unresponsive flows
+ Choose UDP over TCP
— Give others protocol so they have something!
® Theoretical
— Internet does not require reduction by %
+ Other rates have been 7/8 (DECbit)
— Even ‘fairness’ to TCP doesn't require this
— Needs some control to avoid high sending rate
during congestion

L L

TN IL = %

TFRC Goals

® Want reliable and as quick as possible?
— Use TCP

® Slowly changing rate?
— Use TFRC (ms. vs. s.)

® Tackle tough issues in equation-based
— Responsiveness to persistent congestion
— Avoiding unnecessary oscillations
— Avoiding unnecessary noise
— Robustness over wide-range of time scales
— Loss-event rate is a key component!

® Multicast
— If all receivers change rates a lot, never can Wp

Foundations of Equation-Based
Congestion Control

® TCP-Friendly Flow

— In steady-state, uses no more bandwidth than
conformant TCP running under same conditions

® One formulation:

T a
R"/%+fRT0(3J¥}p(1 +32p7)

® s — packetsize R — Round Trip Time
® p—loss eventrate ty;,— TCP timeout
® (Results from analytic model of TCP) | YW

Outline

® Intro

® Foundations

®*TFERC

® Experimental Evaluation
® Related Work

® Conclusions

wP

TN I8 & %

TFRC Basics

® Maintain steady sending rate, but still
respond to congestion

® Refrain from aggressively seeking out
bandwidth
— Increase rate slowly

® Do not respond as rapidly
— Slow response to one loss event
— Halve rate when multiple loss events

® Receiver reports to sender once per RTT
— If it has received packet

® If no report for awhile, sender reduces ragy

TN IL = &

Protocol Overview

® Compute p (at receiver)

® Compute R (at sender)

® RTO and s are easy (like TCP and fixed)

® Computations could be split up many ways
— Multicast would favor ‘fat’ receivers

® TFRC has receiver only compute p and send
it to sender

® Next:
— Sender functionality
— Receiver functionality

L L

TN I8 & %

Sender Functionality

® Computing RTT
— Sender time-stamps data packets
— Smooth with exponentially weighted avg
— Echoed back by receiver

® Computing RTO
— From TCP: RTO =RTT + 4 * RTT,,,
— But only matters when loss rate very high
— So, use: RTO=4*R

® When receive p, calculate new rate T
— Adjust application rate, as appropriate

WP

TN IL = %

Recelver Functionality

® Compute loss event rate, p
— Longer means subject to less ‘noise’
— Shorter means respond to congestion
® After “much testing™:

— Loss event rateinstead of packet loss rate
+ Multiple packets may be one event

— Should track smoothly when steady loss rate

— Should respond strongly when multiple loss
events

® Different methods:

— Dynamic History Window, EWMA Loss Interval,
Average Loss Interval

Computing Loss Event Rate

® Dynamic History Window
— Window of packets
— Even at ‘steady state’ as packets arrive and leave
window, added ‘noise’ could change rate
® Exponentially Weighted Moving Average
— Count packets between loss events
— Hard to adjust weights correctly
® Average Loss Interval
— Weighted average of packets between loss events
over last n intervals
— The winner! (Comparison not in paper here) wp

Average Weighted Loss Intervals

Sequence
Numiger

Inite: rval
since most
recentinss

weight 1
weighled
interval |

|nte:[va\ 2 LEdiE

Facket interval 1

Arival

interyal 2

V4 ! |

& [] I

|n$vva\ n Ej}lvelghhed
interval n

=
i igght

Loss Interval Computation
S = Licy wits
o e
w;=1forl<=1<=n/2
w,=1-(1-n/2)/(n/2 + 1)
1,1,1,1,08,0.6,0.4,0.2
Rate depends upon n

— n=8works well during increase in congestion (Later section
validates)

— Have not investigated relative weights
History discounting for sudden decreases in
congestion

— Interval s, is a lot larger

— Can speed up
Loss event rate, p, is inverse of loss interval wp

TN I8 & %

[llustration of Average Loss

I ntarval
300 T T T T T T T T T T T T T
260 |- Gurront loss intorval {s0) ——]
estimated loss inferval —-——

200 -
150 -

100 g -
50 s
0 L =

W16 16 Tmels:

" olimated loss tate ——
squars roct of ssfimated loss rate ——

TH Fata (KByles's)

WP

Less Rate Less Intenal
-
E: RS
Bok .
o
-
"
‘H; ~
i
e
i
1w
pa
rd N
7] eh
4 ™ Y
@ !

Instability from RTT Variance

® Inter-packet time varies with RTT
— Fluctuations when RTT changes

Send Rate
(KByteds)

300

h 160
a 4 160
140
120

100

time (s}
buffersize

o we

Improving Stability

® Take square root of current RTT (M is sqrt of
average)

s
tinter—packet = T M

Send Rate
(KEytels)

300

huffer size

Slowstart

® TCP slowstart can no more than double
congestion bottleneck
— 2 packets for each ack

® Rate-based could more than double

— Actual RTTs getting larger as congestion but
measured RTTs too slow

® Have receiver send arrival rate
- T\+1 = min(2'|j, 2Trecv)
— Will limit it to double cong bwidth

® Loss occurs, terminate “slowstart”
— Loss intervals? Set to ¥z of rate for all
— Fill in normally as progress

wpP

TN I8 & %

Loss Fraction vs. Loss Event
Fraction

® Obvious is packets lost/packets received
— But different TCP’s respond to multiple losses in
one window differently
+ Tahoe, Reno, Sack all halve window
+ New Reno reduces it twice
® Use loss event fraction to ignore multiple
drops within one RTT
® Previous work shows two rates are within
10% for steady state queues
— But DropTail queues are bursty

WP

Outline

® Intro
® Foundations
®*TFERC
— Mechanics (done)
— Discussion of features
® Experimental Evaluation
® Related Work
® Conclusions

wP

TN IL = &

Increasing the Transmission Rate

® What if T, is a lot bigger than T,,?
— May want to dampen the increase amount
® Typically, only increase 0.14 packets / RTT
— History discounting provides 0.22 packets / RTT
® Theoretical limit on increase
— Ais number of packets in interval, w is weight

§r = 1.&(\.1',’: bl A \,-l'_i)

— So ... no need to dampen more

L L

TN I8 & %

Response to Persistent
Congestion

® To be smooth, TFRC does not respond as
fast as does TCP to congestion
— TFRC requires 4-8 RTTs to reduce by %2

® Balanced by milder increase in sending rate
— 0.14 packets per RTT rather than 1

® Does respond, so will avoid congestion
collapse

® (Me, but about response to bursty traffic?)

WP

Response to Quiescent Senders

® Assume sender sending at maximum rate
— Like TCP

® But if sender stops, and later has data to
send
— the previous estimated rate, T, may be too high
® Solution:
— if sender stops, receiver stops feedback
® Sender % rate every 2 RTTs
® (Me, what about just a reduced rate that is
significantly less than T?
— May happen for coarse level MM apps)

WP

Outline

® Intro
® Foundations
®* TFRC

® Experimental Evaluation

— Simulation

— Implementation
+ Internet
+ Dummynet

® Related Work
® Conclusions

wpP

Simulation Results (NS)

® TFRC co-exist with many kinds of TCP traffic
— SACK, Reno, NewReno...
— Lots of flows

® TFRC works well in isolation
— Or few flows
® Many network conditions

wP

TFRC vs. TCP, DropTail

g Mumber of Flows
(TCP + TFRC)

TFRC ws TCP, DropTall Queuing

® Mean TCP throughput (want 1.0)

=

Bumber of TCP Flows. Mumber of TEAC Flows,
ks RED

® Fair (?) wp
Fair Overall, but what about
\ / ari anr~rnD
TCP Flows : ; ' '
TFRLC: Flows .
Mean TCP -
E 1,5 o hiean TFRC . . x
F X & t i A
B s * ® 39
E .
. r] 1:} 2Ilf| i:lfl d:lfl 5I|:| ;ﬂ T
£ .
¥F 0w 2 A
I; R ._ . , .
- 3 [W@ 3 40 ¥ G M

wP

Variance increases with loss rate, flows

TFRCvs. TCP, RED

g Murrber of Flows
(TCP+TFRC)

8
Link Rate (Mb/
ink Rate (Mb/s) o :

TFRC ws TCP, RED Queuing

® Even more fair
® Not fair for small windows
® (Me ... bursty traffic with many flows?)

L L

CoV

CoV of Flows (Std Dev / Mean)
1.4 T TCPCov! o T T TTT T TTTT
1.2 TFRCCoV @& r

1 Mean TCP CoV --------
Mean TFRC CoV -t

z 3 4 5 10 20

A fairness measure Loss Rate

Average of 10 runs
TFRC less fair for high loss rates (above typical)

Same w/Tahoe and Reno, SACK does better WP
—_timer granularity is better with SACK

Individual Throughputs over

Thirgughput
Dropped Packet

TCF4
TFRC vs TCP Sackl, 32 floves, 150b's link, RED Gueue

« .15 second interval (about multimedia sensitivit

*Smoother rate from TFRC

Wwp

Equivalence at Different
Timescale

® Compare two flows

® Number between 0 and 1 (equation (4))

¢ Cases
— Long duration flows in background
— On-Off flows in background

WP

Ereaganse rwiy

4 Wir

=

EquIvalence
S for Long
o Duration
) | *Single bottleneck
il S Ry +32 flows
TG TP i 15 Mbpslink
. A L. *Monitor 1 flow

*95% confidence interval

timescales

* Results hold over
Broad range of

WP

TN IL = &

Outline

® Intro
® Foundations
®* TFRC

® Experimental Evaluation

— Simulation
+ Fairness and Smoothness (CoV) (done)
+ Long Duration (done)
+ On-Off flows

— Implementation

® Related Work
® Conclusions

WP

TN I8 & %

Performance with On-Off Flows

Mean Loss Rate {percent)

50 — 150 On/Off UDP flows
— On 1 second, off 2 seconds (mean)
— Send at 500 kbps rate

Monitor TCP, Monitor TFRC

50

a0 -
30 -
20
0

o

Mumber of OnfOff sources

50 100 150

WP

TN IL = %

Equivaence with TCP with
Backaround Traffic

50 on/off sources ——
100 on/off sources —-—
130 on/off sources —-e-—

08 180 onfoff sources —s—

=3}

o
g
P 0.6t
o
S 7
£ oat H ,_,%‘j}r
= LI |
g 1«1‘('1” L
g2l 17 o o e
e =l
0.5 1 z g 10 z0 50 100

Measurement Timescale (seconds)

*At high lossrates, less equivalent (40% more, |
*(Me, room for improvement)

€ss) wp

—E CoV with Background Traffic

20 F 60 on/off sources —— > k
100 on/off sources ——»-— 3

130 onfoff sources ----#---
150 onfoff sources —e— N,

Coefficient of Variation
=
T

5 e T%_ i]
: i i
1 10 100 1 10 100
TFREC heasurement Timescale (seconds) TCP
*TFRC rate hasless variance,
especially at high loss rates WP

—E Effect on Queue Dynamics

250
200
150 b
100 b
50 queue size 4

Queue (in Pkts)

250
200
150
100

queue size
1 1 1 1 1

5 10 15 z0 25 Time (s

Queue {in Pkts)
0
oo

40 flows, staggered start times

Bl -TcP (top) has 4.9% loss and TFRC (bottom) has 3.5% loss
-99% utilization for all (Bursty?)
*Basically, look the same
*Extensivetests, w/RED and background look the same

® Related Work
® Conclusions

Outline
® Intro
® Foundations
® TFRC
® Experimental Evaluation
— Simulation (done)
— Implementation
+ Internet
[|
- wp

I mplementation Results

® TFRC on Internet
— Microwave
-T1
- 0C3
— Cable modem
— Dialup modem
® Generally fair
® (See tech report for details)

WP

London to Berkeley

UGL -= AUGIRL 3 X 1GH, 1 x |FRG

200
180
160
140
120
100

80

throughput (KByteis)

60
40
20

80 B‘O 1&)0 1é0 ‘H‘LO 1é0 180
firme (s)

*«3 TCPflows, 1 TFRC flow

* TFRC slightly lower bandwidth but smoother

[|
. « Typical lossrates .1% to 5% wp

TCP Equivaence over Internet

1

08

T At

0.4

Equivalance Ratio

UCL ——
Mannheim —--s—
0.2 UMASS (Linux) - 1
UMASS (Solaris) —s—

Mokia, Boston -

0.5 1 4 5 10 20 50 100
heasurement Timescale (seconds)
we

TN IL = %

Coefficient of Variance

CoV over Internet

1 g

UCL ——
Mannheim ——
8 F UMASS [Linux) -

UMASS (Solaris
Mokia, Boston -—s--

oo

1 IS ETT
1 mn 100 1 10 100
TFRC Ieasurement Timescale (seconds) TCP

| wp

avy. loss prediction error

Testing the Loss Predictor

® How effective do X intervals predict
immediate future loss rate?

error avg. —+—
0.01 L error std. dev.

oes \i—
0.008 | \//‘ _/
0.004
0.002

a

2 4 =] 16 =22 2 4 =1 1e 22
history size {(constant weights (L), decreasing weights (R})

« But not just great prediction but reaction, too

WP

TFRC unfair to TCPwhen ...

® When flows have one packet per RTT

— TFRC can get far more than its fair share

— Due to ‘conservative’ clock (500ms) in FreeBSD?
® Some TCP variants are ‘buggy’

— Linux vs. Solaris

— (Me, a neat project)
® Real-world “Phase Effect” (?)

WP

TN IL = &

Related Work

® TCP Emulation At Receiver (TEAR)

— Compute window at receiver, convert to rate
® Rate Adaptation Protocol (RAP)

— AIMD approach

— No slow start, no timeout
® Other equation based

— One ties with MPEG (application)

— One TFRCP direct comparison

WP

Issues for Multicast Congestion
Control

® Still feedback every RTT
— Must change to aggregate or hierarchical
— Or lowest transmission rate

® Slowstart especially problematic as needs
very timely feedback

® Synchronized clocks needed so receivers can
determine RTT in scalable manner

WP

TN IL = %

Conclusions

® TFRC gives TCP-fair allocation of bandwidth
over wide range of environments

® TFRC smoother than TCP

® Evaluated over wide range of network
conditions

WP

Future Work

® What is some retransmission?
— How to divide up T

® What if some extra repair information?
— How to divide up T?

® Duplex TFRC?

® ECN and TFRC?

wpP

Evaluation of Science?

® Category of Paper
® Science Evaluation (1-10)?
® Space devoted to Experiments?

wP

