Dynamic-CBT and ChIPS -
Router Support for Improved
Multimedia Performance on the
Internet

Jae Chung and Mark Claypool
Department of Computer Science
WPI

In Proceedings of ACM Multimedia
November 2000

The Internet and Multimedia

- Internet routers are best effort
 - No timing constraints
 - Packet loss, which indicates congestion
- TCP
 - Completely reliable delivery through retransmission
 - Respond to loss as congestion
- But … TCP often unsuitable for interactive multimedia
 - Full reliability not needed
 - Window-based rate fluctuations

Multimedia Using TCP

Multimedia Using UDP

Multimedia on the Internet

- Multimedia often uses UDP
 - Avoid delay and jitter from retransmission
 - Rate-based
 - Unresponsive!
- Router queue management goals
 - Congestion Control
 - Fairness
 - Reduce Jitter

Current Router Queue
Management

Drop Tail (FIFO)

Resource Reservation

Active Queue Mgmt

CBQ

RED

FRED
Class-Based Threshold (CBT)
AQM Support for Multimedia - Jeffay, 99

Outline
- Introduction
- CBT and D-CBT
 - Design
 - Evaluation
- ChIPS
 - Design
 - Evaluation
- Conclusion

CBT Concepts
- CBQ + RED: Class-based isolation on RED
- Use Class Thresholds and Avg. # of enqueued packets on a single FIFO Queue
- Three classes: TCP, MM UDP (flow controlled) and Unresponsive UDP

CBT Design

CBT - Pros and Cons
- **Pros**: RED + Class-Based Isolation
 - Early Congestion Notification
 - Protect TCP, and protect (distinguish) MM UDP
 - Different flows coexist with predefined fairness.
 - Dividing bandwidth assigned is up to the class.
- **Cons**: CBQ function w/o admission control
 - Might not work well for certain traffic mixes
 - Arguable that it’s not fair (as in the case of CBQ)

Dynamic-CBT
Dynamic-CBT and ChIPS

- **Drop Tail (FIFO)**
- **ChIPS**
- **Resource Reservation**
- **Active Queue Mgmt**
 - CBQ
 - RED
 - FRED
- **Class-Based Threshold (CBT)**
- **Dynamic-CBT**

D-CBT Design

Flow Counting in D-CBT

- For every incoming packet, insert or update `<dest-addr, flow-id, local-time>` info and update count
 - Sorted Linked List - \(O(n)\)
 - Hash Table - \(O(1)\)
- Every \(\Delta ns\), delete old info and update count
 - Sorted Linked List - \(O(n)\)
 - Hash Table - \(O(n)\)
- (How are flows counted in FRED?)

Evaluation in NS

- Developed responsive multimedia application (for tagged UDP class)
 - AIMD Media Scaling (5 discrete rates)
 - “MPEG-1 like” transmission rates
 - [CC00a], MM-Flow
- Implemented and validated CBT
- Implemented D-CBT and measured congestion time fairness
 - RED vs. CBT vs. D-CBT

Validation of CBT on NS

Aggregate TCP Throughput under RED

- X axis: Seconds, Y axis: Kbyte/Sec

- RED Settings:
 - \(qsize = 60\) pkts
 - \(max-th = 30\) pkts
 - \(min-th = 15\) pkts
 - \(qweight = 0.002\)
 - \(max-pro = 0.1\)

- CBT Settings:
 - \(mm-th = 10\) pkts
 - \(udp-th = 2\) pkts

(Our setup is ok, so now can check our CBT test)
Aggregate TCP Throughput under CBT
X axis: Seconds, Y axis: Kbyte/Sec

PJS99 Experimental Results
NS Simulated Results

Jain’s Fairness Index (f) - Jain, 91

\[f(x_0, x_1, x_2, \ldots, x_n) = \frac{(\sum_{i=0}^{n} x_i)^2}{n \sum_{i=0}^{n} x_i^2} \]

• Examples:
 - 1 flow
 - 2 flows, 5 Kbps each
 - 2 flows, 9 Kbps and 1Kbps

Simulation (RED, CBT, D-CBT)

Fairness: RED

Fairness: CBT

Fairness: D-CBT
Outline

• Introduction

• CBT and D-CBT
 – Design
 – Evaluation

• ChIPS
 – Design
 – Evaluation

• Conclusion

Cut-In Packet Scheduling (ChIPS) Design

ChIPS Evaluation - Jitter

ChIPS Evaluation - Fairness

Conclusion

Future Work

• Active Flow Counting (Overhead)
 – For every incoming packet, update flow info
 + Hash Table - O(1)
 – Every Δms, delete old flows
 + Hash Table - O(n)

• Measure Overhead
 – Processing Time and Memory Usage
Future Work

• How many different classes are needed?
 – Example
 + 1 class is RED
 + 1 class per flow is FRED
 – Overhead per class

• Effects of D-CBT and ChIPS on Perceptual Quality

Evaluation of Science?

• Category of Paper
• Science Evaluation (1-10)?
• Space devoted to Experiments?