Operating System

Introduction
(Ch 1)

Topics

• What is an OS?
• OS History
• OS Concepts
• OS Structures
Let’s Get Started!

• What are some OSes you know?
 – Guess if you are not sure
• Pick an OS you know:
 – What are some things you like about it?
 – What are some things you don’t like about it?

What is an Operating System?

<table>
<thead>
<tr>
<th>Bank Program</th>
<th>Reservation</th>
<th>Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilers</td>
<td>Editors</td>
<td>Shell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microprogramming</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications
System Programs
Hardware
What is an Operating System?

• An Extended Machine (Top-down)
 – Transforming - new resource
 + ex: Windows device manager
• A Resource Manager (Bottom-up)
 – Multiplexing - illusion of several resources
 + ex: browse the web AND read email
 – Scheduling - deciding who gets what when
 + ex: compile fast OR edit fast
• Why have an OS?
 – Convenient and Efficient
 + Programming hardware difficult
 + Idle hardware “wasteful”

Topics

• What is an OS? (done)
• OS History (next)
• OS Concepts
• OS Structures
OS History

• Helps understand key requirements
 – Not one brilliant design
 + (despite what Gates or Torvalds might say)
 – Fixed previous problems, added new ones
 – Tradeoffs

• Closely tied to:
 – Hardware history
 – User history

Hardware History

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>1999</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>$/Power</td>
<td>$100K</td>
<td>$45</td>
<td>2200</td>
</tr>
<tr>
<td>Memory</td>
<td>128K</td>
<td>128M</td>
<td>1000</td>
</tr>
<tr>
<td>Disk Capacity</td>
<td>10M</td>
<td>10G</td>
<td>1000</td>
</tr>
<tr>
<td>Net Bandwidth</td>
<td>9600b/s</td>
<td>155Mb/s</td>
<td>15K</td>
</tr>
<tr>
<td>Users / Mach.</td>
<td>10s</td>
<td><=1</td>
<td>10</td>
</tr>
</tbody>
</table>

• Comments? Change!
OS History

- Supplement to book
- My version is a brief narrative

Hardware Very Expensive
Humans Cheap

- Single program execution (no OS)
- Hardwire “programming”
- Programming slow, not “offline”!
 - Punch cards
Hardware Very Expensive
Humans Cheap

- Punch cards
- Fortran or assembler
- Waste computer time walking!
 - Batch programs on tape

Hardware Very Expensive
Humans Cheap

- Programs read in from tape
- Two applications:
 - Scientific
 - Data processing
- CPU idle during I/O!
 - Multiprogramming with partitions
 - Spooling as jobs finished
Hardware is Cheap
Humans Expensive

• Turn around time 1/2 day
• Programmer time wasted!
 “Sigh. In the good old days….”
 – Time-sharing
 – Multics (sorta)
 – New problems
 + response time
 + thrashing
 + file-systems

Hardware Very Cheap
Humans Very Expensive

• Personal computers
 – Network operating systems
 – Distributed operating systems
• OSes today
 – size
 + small == 1 million
 + large == 10 million
 – need to evolve quickly
 + hardware upgrades, new user services, bug fixes
 – efficient and/or modular kernels
Windows XP History

- 1988, v1
 - split from joint work with IBM OS/2
 - Win32 API
- 1990, v3.1
 - Server and Workstation versions
- 1997(?), v4
 - Win95 interface
 - Graphics to kernel
 - More NT licenses sold than all Unix combined

Windows 2000 History

- 2000 v5, called “Windows 2000”
 - Micro-kernel
 - Multi-user (with terminal services)
- Four versions (all use same core code)
 - Professional
 + desktop
 - Server and Advanced Server
 + Client-server application servers
 - Datacenter Server
 + Up to 32 processors, 64 GB RAM
Windows XP History

- Released in 2001
- Replacement to 95/98
- Same code-base as Windows 2000
- Client version and Server version
 - Server version called .NET
- Simultaneous users via Windows Terminal Services
- 64-bit version

Windows Today

- Microsoft has 80% to 90% of OS market
 - mostly PC’s
- 800 MHz Intel Pentium
- Aiming at robust, server market
 - network, web and database
- Platforms
 - Intel 386+ only (IA32 or IA64)
- WinNT is 12 million lines of code
- Win2000 is 18 million lines of code
- WinXP is 20 million lines of code
Linux History

- **Open Source**
 - Release Early, Release Often, Delegate
 - “The Cathedral or the Baazar”
- **Bday 1991, Linus Torvalds, 80386 processor**
 - v.01, limited devices, no networking,
 - with proper Unix process support!
- **1994, v1.0**
 - networking (Internet)
 - enhanced file system (over Minix)
 - many devices, dynamic kernel modules

<table>
<thead>
<tr>
<th>Year</th>
<th>Version</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>v0.1</td>
<td>limited devices, no networking, with proper Unix process support!</td>
</tr>
<tr>
<td>1994</td>
<td>v1.0</td>
<td>networking (Internet), enhanced file system (over Minix), many devices, dynamic kernel modules</td>
</tr>
<tr>
<td>1995</td>
<td>v1.2</td>
<td>more hardware, 8086 mode (DOS emulation) included, Sparc, Alpha, MIPS support started</td>
</tr>
<tr>
<td>1996</td>
<td>v2.0</td>
<td>multiple architectures, multiple processors, threads, memory management ….</td>
</tr>
</tbody>
</table>

Development convention

- Odd numbered minor versions “development”
- Even numbered minor versions “stable”

- **1995, v1.2**
 - more hardware
 - 8086 mode (DOS emulation) included
 - Sparc, Alpha, MIPS support started
- **1996, v2.0**
 - multiple architectures, multiple processors
 - threads, memory management ….
Linux Today

- v2.6
- 3 million lines of code
- 29 million users
- Growing by 25%/year through 2003
 - all others, 10% combined

Outline

- Operating System Concepts
 - Processes
 - Memory management
 - Input/Output
 - Files
 - System Calls
 - Shells
- Operating System Structures
The Process

- Program in execution
- Running -> Suspended -> Running
- Example: the Shell
- Process “Tree”
- Signals
- UID (GID)
- (4 hours)

Memory Management

- One chunk of physical memory
- Needs to be shared with all processes
 - multiprocessing
- 32 bit architecture, 2^{32} bytes \Rightarrow 4GB!
 - virtual memory
- (8 hours)
Input/Output

- OS manage resources, including other devices
- Significant fraction of code
 - Up to 90% (complete distribution source)
- Want to be simple to use
- (2 hours)

Files

- Store data on disk
- Directory “Tree”
- Working directory
- Protection bits
 - 9 in Unix: **rw* bits**, ex: `rw-x-x-x-x`
- Abstraction of I/O device
 - terminal, printer, network, modem
- Pipe
- (4 hours)
System Calls

• Way processes communicate with OS
• example:
 \[\text{write(file, string, size)}\]
• OS specific!
• POSIX (1980s)
 – Portable Operating System (UNIX-ish)
• (Most of the projects use them)

Shells

• User’s interface to OS
• Simple commands
 “cd”, “cat”, “top”
• Modifiers
 ‘&’, ‘|’, ‘>’
• (Hey, do some process and shell examples!)
Outline

• Operating System Structure
 – Simple Systems
 – Virtual Machines
 – Micro Kernels

Simple Systems

• Started small and grew, no hardware support
• MS-DOS

- Application
 - Resident system program
 - Device drivers
 - ROM BIOS device drivers

• Protection!
Simple Systems

- Unix (see /vmunix)
- “The Big Mess”
- Some move towards a more modular kernel

Applications

Signals, File Sys, Swapping, Scheduling ...

Terminal Device Memory

Virtual Machines

- IBM VM/370 → VMWare

Process	Process	Process
Process | Process | Process
Operating Sys | Operating Sys | Operating Sys
Virtual Machine
Hardware

- Complete protection
- OS development, emulation
- Performance!
- (Exokernel says can have subset of kernel)
Virtual Machines

• Java Virtual Machine

<table>
<thead>
<tr>
<th>Java program</th>
<th>Java OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java VM</td>
<td>Process</td>
</tr>
<tr>
<td>Operating System</td>
<td>Process</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
</tbody>
</table>

• Platform independence!

Micro Kernel

• Mach

<table>
<thead>
<tr>
<th>User Process</th>
<th>File Server</th>
<th>Mem Server</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kernel</td>
</tr>
</tbody>
</table>

• Client-Server
• Good performance
• Adaptable to distributed OS
• Robust
• Careful about mechanism!
WinXP Structure

User Level Space
- Netscape
- Win32 Subsystem
- Security

Executive / Privileged Space
- I/O
- File System

Kernel Space
- Graphics
- Scheduler
- Memory Manager
- IPC
- Window Manager

“Micro Kernel?”
- Hardware Abstraction Layer

Linux Structure

- “Simple” system
 - Applications, User Space
 - System Libraries
 - Kernel
 - Terminal

- Loadable Modules
 - done after “boot”
 - allow 3rd party vendors
 - easier for development