
1

Application Performance in the 
QLinux Multimedia Operating 

System

Sundaram, A. Chandra, P. Goyal, 
P. Shenoy, J. Sahni and H. Vin

Umass Amherst, U of Texas Austin

ACM Multimedia, 2000

Introduction
• General purpose operating systems handline 

diverse set of tasks
– Conventional best-effort with low response time

+ Ex: word processor

– Throughput intensive applications
+ Ex: compilation

– Soft real-time applications
+ Ex: streaming media

• Many studies show can do one at a time, but 
when do two or more grossly inadequate
– MPEG-2 when compiling has a lot of jitter

Introduction

• Reason? Lack of service differentiation
– Provide ‘best-effort’ to all

• Special-purpose operating systems are 
similarly inadequate for other mixes

• Need OS that:
– Multiplexes resources in a predictable manner
– Service differentiation to meet individual 

application requirements

Solution: QLinux

• Solution: QLinux (the Q is for Quality)
– Enhance standard Linux
– Hierarchical schedulers

+ classes of applications or individual applications

– CPU, Network, Disk

Outline

• QLinux philosophy
• CPU Scheduler

– Evaluation

• Packet Scheduler
– Evaluation

• Disk Scheduler
– Evaluation

• Lazy Receiver Processing
– Evaluation

• Conclusion

QLinux Design Principles
• Support for Multiple Service Classes

– Interactive, Throughput -Intensive, Soft Real-time
– Low average response times, high aggregate 

throughput, performance guarantees

• Predictable Resource Allocation
– Priority not enough (starvation of others)
– Ex: mpeg_decoder at highest can starve kernel
– QLinux uses rate-based rather than priority based

+ Weight based on rate for each: wi / Σj wj

– Not static partitioning since unused can be used 
by others



2

QLinux Design Principles

• Service Differentiation
– Within a class, applications treated differently
– Uses hierarchical schedulers
– Top level gives resources to class
– In each class, can allocate resources 

appropriately among all applications

• Support for Legacy Applications
– Support binaries of all existing applications (no 

special system calls required)
– No worse performance (but may be better)

QLinux Design Principles

• Proper Accounting of Resource Usage
– Application level CPU easy
– Kernel resources hard 

+ Load from interrupts difficult to charge to process
+ Many kernel tasks are system-wide

– Lazy receiver processing
+ Defer packet processing when receiver asks

– CPU scheduler allocation holds even when kernel 
uses up various amounts of CPU

QLinux Components
Hierarchical Start-time Fair 
Queuing
(H-SFQ) CPU Scheduler• Uses a tree

• Each thread 
belongs to 1 leaf

• Each leaf is an 
application class

• Weights are of 
parent class

• Each node has own 
scheduler

• Uses Start-Time Fair 
Queuing at top for time for 
each

(Typical OS?)

H-SFQ CPU Scheduler
• Nodes can be created on the fly
• Threads can move from node to node

• Defaults to top-level fair scheduler if not 
specified

• Utilities to do external from application
à Allow support of legacy apps without modifying source

Experimental Setup (for all)

• Cluster of PCs
– P2-350 MHz
– 64 MB RAM
– RedHat 6.1
– QLinux based on Linux 2.2.0

• Network
– 100 Mb/s 3-Com Ethernet
– 3Com Superstack II switch (100 Mb/s)

• “Assume” machines and net lightly loaded



3

Experimental Workloads
• Inf : executes infinite loop 

– Compute-intensive, Best effort

• Mpeg_play : Berkeley MPEG-1 decoder
– Compute-intensive, Soft real-time

• Apache Web Server and Client
– I/O intensive, Best effort

• Streaming media server
– I/O intensive, Soft real-time

• Net_Inf : send UDP as fast as possible
– I/O instensive, Best effort

• Dhrystone: measure CPU performance
– Compute-instensive, Best effort

• Lmbench: measure I/O, cache, memory … perf

CPU Scheduler Evaluation-1

• Two classes, run Inf for each
• Assign weights to each (ex: 1:1, 1:2, 1:4)
• Count the number of loops

CPU Scheduler Evaluation-1 
Results

“count” is proportional to CPU bandwidth
allocated

CPU Scheduler Evaluation-2

• Two classes, equal weights (1:1)
• Run two Inf
• Suspend one at t=250 seconds
• Restart at t=330 seconds
• Note count

CPU Scheduler Evaluation-2 
Results

(Counts twice as fast when other suspended)

CPU Scheduler Evaluation-3

• Two classes: soft real-time & best effort (1:1)
• Run:

– MPEG_PLAY in real-time (1.49 Mbps)
– Dhrystone in best effort

• Increase Dhrystone’s from 1 to 2 to 3 …
– Note MPEG bandwidth

• Re-run experiment with Vanilla Linux



4

CPU Scheduler Evaluation-3 
Results CPU Scheduler Evaluation-4

• Explore another best-effort case
• Run two Web servers (representing, say 2 

different domains)
• Have clients generate many requests
• See if CPU bandwidth allocation is 

proportional

CPU Scheduler Evaluation-4 
Results

CPU Scheduler Overhead 
Evaluation
• Scheduler takes some overhead since 

recursively called
• Run Inf at increasing depth in scheduler 

hierarchy tree
• Record count for 300 seconds

CPU Scheduler Overhead 
Evaluation Results QLinux Components



5

H-SFQ Packet Scheduler
• Typical OS uses FIFO scheduler for outgoing 

packets
• Use H-SFQ (Fair Queue) to schedule
• Each leaf is one or more queues of packets

• Weights for 
queues

• Unused bandwidth 
to others

H-SFQ Packet Scheduler
• Operations on the fly
• Associate with queue via setsockopt()

Packet Scheduler Evaluation-1

• Two classes using Net_inf
• Run two receivers to count received packets
• 8KB packets

Packet Scheduler Evaluation-1 
Results

(Different packets sizes?)

Packet Scheduler Evaluation-2 
Results Packet Scheduler Evaluation-3

• Real-world applicatis
• Streaming media server in soft real-time class
• Increasing number of Net_inf apps
• Compare QLinux with Vanilla Linux



6

Packet Scheduler Evaluation-3 
Results

(Me … note, degradation not linear)

Packet Scheduler Overhead 
Evaluation Results

Combined Packet and Scheduler 
Evaluation
• Web server and several I/O intensive apps
• Two classes in CPU and Packet scheduler

– Web server in one
– All I/O intensive Net_inf in other

• Web server driven by trace (ClarkNet)
• Increase number of Net_inf
• Compare to Vanilla Linux

Packet/CPU Evaluation Results 

Qlinux degrades at 8 … ideas why?

QLinux Components Cello Disk Scheduler
• Typical OS uses SCAN for disk
• Cello 2 levels: class independ, class specific

• 3 classes
• Class specific 

decides when 
and how many to 
move

• Class ind puts 
where

• Lastly moved 
FCFS (Badri’s thesis)



7

Cello Disk Scheduler Evaluation

• (None in this paper)
• (Previous paper at SIGMetrics)

QLinux Components

Lazy Receiver Processing (LRP)

• Process A running
• Packet arrives for process B

– Interrupt, IP, TCP, Enqueue gets charged to A!

• LRP postpones until process does a read
• Tricky! Some steps, e.g. TCP ack, requires it 

to happen right away
– Special thread for each process for packets

• QLinux uses special queues, decodes only as 
far as needed
– Special queue for ICMP, ARP …

LRP Evaluation and Results

• Run 2 Apache Web Servers
– Lightly loaded, retrieve 2KB file in 51ms

• Bombard 1 server with DoS by sending 300 
requests/sec
– Other server load went to 70ms

• Re-run with Vanilla Linux
– Other server load went to 80ms

QLinux Total System Evaluation

• Run lmbench
– System call overhead
– Context switch times
– Network I/O
– File I/O
– Memory perofrmance

• QLinux vs. Vanilla Linux

QLinux Total System Evaluation 
Results

•Not much overall.
•Context switch overhead, but 100 ms time slice
•QLinux untuned , so could be better



8

Conclusion

• Qlinux provides
– CPU scheduler
– Packet scheduler
– Disk scheduler
– Proper I/O processing

• Provide fair and predictable allocation
• Multimedia and Web applications can benefit
• Overhead is low
• All conventional operating systems should 

incorporate

Future Work?

Future Work

• Disk scheduler results
• Multiprocessors
• Fair allocation of other I/O interrupts
• Other devices since Cello disk specific

– RAID, tape, 


