Operating Systems

Processes
(Ch 4.1)

Processes
• “A program in execution”
• Modern computers allow several at once
 – “pseudoparallelism”

A

B

C

Program Counter

Conceptual View

Processes

• “A program in execution”
• “more” than a program: ls, tcsh
• “less” than a program: gcc blah.c
 (cpp, cc1, cc2, ln …)
• “A sequential stream of execution in its own address space”

Design Technique: State Machines

• Process states
• Move from state to state based on events
 – Reactive system
• Can be mechanically converted into a program
• Other example:
 – string parsing, pre-processor

Process States

• Consider:
cat /etc/passwd | grep claypool

(Hey, you, show states in top!)

Unix Process Creation

• System call: fork ()
 – creates (nearly) identical copy of process
 – return value different for child/parent
• System call: exec ()
 – over-write with new process memory
• Shell
 – uses fork () and exec ()
 – simple!
• (Hey, you, show demos!)
Process Scheduler

- All services are processes
- Small scheduler handles interrupts, stopping and starting processes

<table>
<thead>
<tr>
<th>cat</th>
<th>ls</th>
<th>...</th>
<th>disk</th>
<th>vid</th>
</tr>
</thead>
</table>

Process Control Block

- Each process has a PCB
 - state
 - program counter
 - registers
 - memory management
 - ...
- OS keeps a table of PCB’s, one per process
- (Hey! Simple Operating System, "system.h")

Question

- Usually the PCB is in OS memory only.
- Assume we put the PCB into a process address space.
- What problems might this cause?

Interrupt Handling

- Stores program counter (hardware)
- Loads new program counter (hardware)
 - jump to interrupt service procedure
- Save PCB information (assembly)
- Set up new stack (assembly)
- Set “waiting” process to “ready” (C)
- Re-schedule (probably awakened process) (C)
- If new process, called a context-switch

Context Switch

- Pure overhead
- So … fast, fast, fast
 - typically 1 to 1000 microseconds
- Sometimes special hardware to speed up
- How to decide when to switch context to another process is process scheduling

Processes in Linux

- PCB in struct task_struct
 - states: RUNNING, INTERRUPTIBLE, UNINTERRUPTIBLE
 - priority: when it runs
 - counter: how long it runs
- Environment inherited from parent
- NR_TASKS max, 2048
 - 1/2 is max per user
Processes in NT/2000

- States: ready, standby (first in line), running, waiting, transition, terminated
- priority - when it runs
- Processes are composed of threads
 – (revisit threads after scheduling)

Misc Process Stuff

- Getrusage()
 – Get process resources
- Zombie
 – Child died, resources not cleaned up
 - make-zombie.c
- Orphan
 – Parent dies, child needs new parent
 - make-orphan.c