
1

Operating Systems

Operating System Support for 
Multimedia

Why Study Multimedia?

• Improvements:
– Telecommunications
– Environments
– Communication
– Fun

• Outgrowth from industry
– telecommunications
– consumer electronics
– television

Continuous Media

• Subset of multimedia
• Includes timing relationship between server 

and client
• Stream:

– video: mpeg, H.261, avi, QuickTime, 
MediaPlayer

– audio: MP3, µ-law

Multimedia Resource Requirements
B

yt
es

 fo
r 1

 P
ag

e

text graphics color audio video

38K
2K

300K

720K

7000K

• Step up in media requires more bytes
• But not as much as some applications!

– Graphics or transaction processing

Influences on Quality

Server

Client

S0 S2S1 S3

time

C0 C1

S4

C2 C3

t0

t0

Delay Jitter
Data
Loss

An End-To-End Problem

• Server Application
• Operating System
• Network Protocol

• Client Application
• Operating System
• Network Protocol

---
160
148
190
...

160
160
160
160
...

S
e
r
v
e
r C

l
i
e
n
t

Network
Routers



2

Application Performance in the 
QLinux Multimedia Operating 

System

Sundaram, A. Chandra, P. Goyal, 
P. Shenoy, J. Sahni and H. Vin

UMass Amherst, U of Texas Austin

In Proceedings of ACM Multimedia Conference
November 2000

Introduction

• General purpose operating systems handling 
diverse set of tasks
– Conventional best-effort with low response time

+ Ex: word processor
– Throughput intensive applications

+ Ex: compilation
– Soft real-time applications

+ Ex: streaming media

• Many studies show can do one at a time, but when 
do two or more grossly inadequate
– MPEG-2 when compiling has a lot of jitter

Introduction

• Reason? Lack of service differentiation
– Provide ‘best-effort’ to all

• Special-purpose operating systems are 
similarly inadequate for other mixes

• Need OS that:
– Multiplexes resources in a predictable manner
– Service differentiation to meet individual 

application requirements

Solution: QLinux

• Solution: QLinux (the Q is for Quality)
– Enhance standard Linux
– Hierarchical schedulers

+ classes of applications or individual applications
– CPU, Network, Disk

Outline
• QLinux philosophy
• CPU Scheduler

– Evaluation
• List of other topics in paper

– Packet Scheduler
– Disk Scheduler
– Lazy Receiver Processing

• Conclusion

QLinux Design Principles

• Support for Multiple Service Classes
– Interactive, Throughput-Intensive, Soft Real-time

• Predictable Resource Allocation
– Priority not enough (starvation of others)
– Ex: mpeg_decoder at highest can starve kernel
– Not static partitioning since unused can be used 

by others



3

QLinux Design Principles

• Service Differentiation
– Within a class, applications treated differently
– Uses hierarchical schedulers

• Support for Legacy Applications
– Support binaries of all existing applications (no 

special system calls required)
– No worse performance (but may be better)

QLinux Components

Hierarchical Start-time Fair Queuing
(H-SFQ) CPU Scheduler

• Uses a tree
• Each thread 

belongs to 1 leaf
• Each leaf is an 

application class
• Weights are of 

parent class
• Each node has own 

scheduler
• Uses Start-Time Fair 

Queuing at top for time for 
each

(Typical OS?)

CPU Scheduler System Calls
• Nodes can be created on the fly
• Processes can move from node to node

• Defaults to top-level fair scheduler if not 
specified

• Utilities to do external from application
! Allow support of legacy apps without modifying source

Experimental Setup 

• Cluster of PCs
– P2-350 MHz
– 64 MB RAM
– RedHat 6.1
– QLinux based on Linux 2.2.0

• Network
– 100 Mb/s 3-Com Ethernet
– 3Com Superstack II switch (100 Mb/s)

• “Assume” machines and net lightly loaded

Experimental Workloads
• Inf: executes infinite loop 

– Compute-intensive, Best effort
• Mpeg_play: Berkeley MPEG-1 decoder

– Compute-intensive, Soft real-time
• Apache Web Server and Client

– I/O intensive, Best effort
• Streaming media server

– I/O intensive, Soft real-time
• Dhrystone: measure CPU performance

– Compute-instensive, Best effort



4

CPU Scheduler Evaluation-1

• Two classes, run Inf for each
• Assign weights to each (ex: 1:1, 1:2, 1:4)
• Count the number of loops

CPU Scheduler Evaluation-1 Results

“count” is proportional to CPU bandwidth
allocated

CPU Scheduler Evaluation-2

• Two classes, equal weights (1:1)
• Run two Inf
• Suspend one at t=250 seconds
• Restart at t=330 seconds
• Note count

CPU Scheduler Evaluation-2 Results

(Counts twice as fast when other suspended)

CPU Scheduler Evaluation-3

• Two classes: soft real-time & best effort 
(1:1)

• Run:
– MPEG_PLAY in real-time (1.49 Mbps)
– Dhrystone in best effort

• Increase Dhrystone’s from 1 to 2 to 3 …
– Note MPEG bandwidth

• Re-run experiment with Vanilla Linux

CPU Scheduler Evaluation-3 Results



5

CPU Scheduler Evaluation-4

• Explore another best-effort case
• Run two Web servers (representing, say 2 

different domains)
• Have clients generate many requests
• See if CPU bandwidth allocation is 

proportional

CPU Scheduler Evaluation-4 Results

CPU Scheduler Overhead 
Evaluation

• Scheduler takes some overhead since 
recursively called

• Run Inf at increasing depth in scheduler 
hierarchy tree

• Record count for 300 seconds

CPU Scheduler Overhead Evaluation 
Results

QLinux Components

Disk
- Not evaluated
Packets
- Sending and “Lazy” Processing for Receiving

Conclusion

• Some improvement and some ideas
• Still Much work to be done

– scheduling
– memory management
– network
– disk

• M.S. Thesis
– One piece in OS support puzzle


