Operating Systems

Memory Management
(Ch8.1-8.6)

Overview

+ Provide Services
— processes
—files

+ Manage Devices
— processor
— memory
—disk

Simple Memory Management

+ One process in memory, using it all
— each program needs |/O drivers
— until 1960

1/0 drivers

. i

Simple Memory Management

+ Small, protected OS, drivers
-DOS
— “Mono-programming” -- No multiprocessing

Multiprocessing w/Fixed Partitions
Simplel
900k

500k

300k
200k

@

« Unequal queues
« Skip small jab

‘ Hey, processes can be in different memory locati

Address Binding

+ Compile Time
— maybe absolute binding (. com) Compile
+ Link Time
— dynamic or static libraries
+ Load Time
— relocatable code
+ Run Time
— relocatable memory segments
—overlays
— paging

Logical vs. Physical Addresses

+ Compile-Time + Load Time addresses same
+ Run time addresses different

Logical Relocation

Address Register
ol R

MMU

+ User goes from 0 to max
+ Physical goes from R+0 to R+tmax —

Relocatable Code Basics

+ Allow logical addresses
+ Protect other processes

F

. physical

address

yes
error

+ Addresses must be contiguous!

Object Module

+ Information required to “load” into memory
+ Header Information

+ Machine Code

+ Initialized Data

+ Symbol Table

+ Relocation Information
+ (see SOS sample)

Linking an Object Module

+ Combines several object modulesinto load
module

+ Resolve external references

+ Relocation - each object module assumes starts
at 0. Must change.

+ Linking - modify addresses where one ohj
refersto another (example - external)

Loading an Object
+ Resolve references of object module
On Disk In Memory

Normal Linking and Loading
| Printr.c|

gce gce
; —
ar Linker X Window code:
- 500K minimum
- 450K librasigs
Loader

Load Time Dynamic Linking
| Pritt.c|

l gce

« Save disk space.
« Libraries move?
« Moving code?
signs?

Run-Time Dynamic Linking

Save disk space.
Startup fast.

Memory Linking Performance
Comparisons

Linking Disk Load Run Run RunTime
Method Space Time Time Time (0 used)
(4used) (2 used)

Design Technique: Static vs. Dynamic

+ Static solutions
— compute ahead of time
— for predictable situations
+ Dynamic solutions
— compute when needed
— for unpredictable situations

checking, static variables

Variable-Sized Partitions

+ |dea: want to remove “wasted” memory that
is not needed in each partition

+ Definition:
— Hole - ablock of available memory
— scattered throughout physical memory

large enough to fit it

Variable-Sized Partitions

+ OS keeps track of:
— alocated partitions
— free partitions (holes)
— queues!

Variable-Sized Partitions

+ Given alist of free holes:

N B N -

+ How do you satisfy arequest of sizes?
— 20k, 130k, 70k

Variable-Sized Partitions

BN =

+ Requests: 20k, 130k, 70k
— First-fit: alocate first hole that is big enough
— Best-fit: alocate smallest hole that is big erough
— Worst-fit: allocate largest hole (say, 120K)

Variable-Sized Partitions

+ First-fit: might not search the entire list
+ Best-fit: must search the entire list
+ Worst-fit: must search the entire list

+ First-fit and Best-ft better than Worst-fit in

Memory Request?

+ What if arequest for additional memory?

Internal Fragmentation

+ Have some “empty” space for each
processes

Allocated to A Room for growth

may be slightly larger than requested
memory and not being used.

+ Internal Fragmentation - allocated ’
L 5 ,

External Fragmentation

+ External Fragmentation - total memory
space exists to satisfy request but it is not
contiguous

Analysis of External Fragmentation

+ Assume:
— system at equilibrium
— processin middle
—if N processes, 1/2 time process, 1/2 hole
+==>1/2 N holes!
— Fifty-percent Rule
— Fundamental:

+ adjacent holes combined
« adjacent processes not combined

Compaction

+ Shuffle memory contentsto place all free
memory together in one large block

+ Only if relocation dynamic!
+ Same |/O DMA problem

50k

90k
125k

50k

100k

@

Cost of Compaction
+ Compaction of Memory vs. Swap (Disk)

50k
90k

50k
100k

+ Disk much slower!

Solution?

+ Want to minimize external fragmentation
— LargeBlocks
— But internal fragmentation!

+ Tradeoff

— Sacrifice some internal fragmentation for
reduced external fragmentation

— Paging

Paging

+ Logical address space of a process can be
noncontiguous; process is allocated memory
wherever latter is available

— Divide physical memory into fixed-size blocks
« sizeisapower of 2, between 512 and 8192 bytes
« called Frames

— Divide logical memory into bocks of
« called Pages

Paging
+ Address generated by CPU divided into:

— Page number (p) - index to page table
+ page table contains base address of each page in
physical memory (frame)

— Page offset (d) - offset into page/frame

page table

Paging Example

+ Page size 4 bytes
+ Memory size 32 bytes (8 pages)

0
1
2
3

Logical Page Table
Memory

Paging Example

Offset

Paging Hardware

+ address space 2™

+ pagesize 2"
+ page offset 2m™n
iie number iﬁe offset
mn n

+ note: not losing any bytes!

o 000
D
§ 001
— 010
D
§ 00 011
2 o1 100
§ 10 101
2 1 I 110
§ 111
Page Table
Logical Physical
Memory Memory
Paging Example

+ Consider:

— Physical memory = 128 bytes

— Physical address space = 8 frames
+ How many bits in an address?
+ How many bits for page number?
+ How many bits for page offset?
+ Can alogical address space have onI

pages? How big would the page table

Page Table Example ©-7

d |
1]

Process B Page Table
iie number iie offset
mn=3 n=4
d
8
Process A Page Table

Paging Tradeoffs

+ Advantages

— no external fragmentation (no compaction)

— relocation (now pages, before were processes)
+ Disadvantages

— internal fragmentation

« consider: 2048 byte pages, 72,766 byte proc
— 35 pages + 1086 hytes = 962 bytes

* avg: 1/2 page per process
« small pages!

— overhead
« page table / process (context switch + space)
« lookup (especialy if page to disk) —

I mplementation of Page Table

+ Page table kept in registers

+ Fadt!

+ Only good when number of framesis small
+ Expensivel

I mplementation of Page Table

+ Page table kept in main memory
+ Page Table Base Register (PTBR)

0
1

Logical
Memory Page Table

PTBR

+ Page Table Length

+ Two memory accesses per datalinst &
— Solution? Associative Registers

Associative Registers

logical
addresg

10-20% mem time

page frame
number number hit

associative
registers

page table

Associative Register Performance

+ Hit Ratio - percentage of timesthat a page
number is found in associative registers

Effective accesstime =
hit ratio x hit time + miss ratio x miss time
+ hit time = reg time + mem time

+ misstime =reg time + memtime* 2
+ Example:

— 80% hit ratio, reg time = 20 nanosec,
= 100 nanosec

—.80* 120 + .20 * 220 = 140 nanoseconds e

Protection
+ Protection bits with each frame
+ Storein page table Protection
+ Expand to more perms Bit
0
0
1
1
2
2
3 -
) 3
Logical Page Table
Memory

Large Address Spaces

+ Typical logical address spaces:
— 4 Gbytes => 232 gddress hits (4-byte address)
+ Typical page size:
— 4 Kbytes = 212 bits
+ Page table may have:
— 232/ 212 = 220 = Imillion entries
+ Each entry 3 bytes => 3MB per proc
+ Do not want that all in RAM
+ Solution? Page the page table
— Multilevel paging P==—=N

Multilevel Pagin

iie number iie offset

10 10 12

Table

/i\rg-
' |

H

Memory Outer Page
===

Page Table

Multilevel Paging Translation

e number e offset

outer page

Multilevel Paging Performance

+ 2 memory access if miss
+ Effective access time?
—90% hit rate
—.80* 120 + .20 * 320 = 160 nanoseconds

Memory View

+ Paging lost users’ view of memory

+ Need “logical” memory units that grow and
contract

ex: stack,
shared library

« Solution?
« Segmentation!

table inner page
table
Inverted Page Table

+ Page table maps to physical addresses

+ Still need page per process --> backing ;
+ Memory accesses longer! (search +

Segmentation
+ Logical address. <segment, offset>

+ Segment table - maps two-dimensional user
defined address into one-dimensional
physical address
— base - starting physical location
— limit - length of segment

+ Hardware support
— Segment Table Base Register
— Segment Table Length Register

Segmentation

logical
addr

Memory Management Outline
+ Basic

— Fixed Partitions

— Variable Partitions
+ Paging

—Basic

— Enhanced

SSNSKSKS

+ Specific
—WInNT
— Linux

+ Virtual Memory

J

Memory Management in WinNT

+ 32 bit addressess (2%2 = 4 GB address space)
— Upper 2GB shared by all processes (kernel mode)
— Lower 2GB privater per process

+ Page sizeis 4 KB (2%2, so offset is 12 hits)

+ Multilevel paging (2 levels)
— 10 bits for outer page table (page dir
— 10 bitsfor inner page table
— 12 hits for offset

Memory Management in WinNT

+ Each page-table entry has 32 bits
— only 20 needed for address trandlation
— 12 bits “left-over”
+ Characteristics
— Access: read only, read-write
— States: valid, zeroed, free ...
+ Inverted page table
— points to page table entries
— list of free frames

Memory Management in Linux

+ Page size:
— Alpha AXP ha 8 Kbyte page
— Intel x86 has 4 Kbyte page
+ Multilevel paging (3 levels)
— Even though hardware support on x86!

Memory Management in Linux

+ Buddy-heap

+ Buddy-blocks are combined to larger block
+ Linked list of free blocks at each size

+ If not small enough, broken down

Review

+ What isarelocation register?
+ What is external fragmentation? How to fix?

+ Given fixed partitions. List three waysto
handle ajob that requests too much memory.

10

