
1

Computer Networks

Transport Layer

Topics

F Introduction (6.1) ←←
F Connection Issues (6.2 - 6.2.3)

F TCP (6.4)

Introduction
F Efficient, reliable and cost-effective service

to users (application layer)
– despite limitations of network layer

F Features (a lot like the Network layer?)
– Connection oriented vs. Connectionless

– Addressing and Flow Control

F But Transport layer can make lower subnet
reliable (QoS), and gives standard interface

F Major boundary between user and network!
– Few users write code for network layer

– Many write code for transport layer

Transport Entity

F Logical location of transport entity

F Physical: OS, separate process, network card

Quality of Service

F Typical networks do not do all

Transport Protocol

F Like Data Link layer:
– error control, sequencing, flow control…

F But different:
– must specify router (data link layer always same)

– destination may be down

– network may store packets

– many lines and variance make buffering and flow
control different

2

Finding a Server

F “Connect to a Server” is a Transport level
service

F How do you find it?
– service mapper - names to transport layer address

– name server

F Analogy
– how do you find phone number?

Finding a Server
F Standard servers wait at well-known port

– but what if infrequently used?

Establishing a Connection

F Subnet can delay, lose, duplicate packets
– Connection can happen twice!

– Use unique sequence numbers to avoid

F When establish connection, exchange
sequence numbers
– three-way handshake

– prevents establishment of unwanted connection

Three-Way Handshake

CR = Connection
 Request

ACK = Connection
 Accepted

Three-Way Handshake Handles
Problems

Releasing a Connection

F Asymmetric
release can
result in data
loss

F Symmetric
release easy?
– “I’m done”

– “Me, too”

3

Two-Army Problem

F No safe solution

F Use 3-way handshake with timers (fig 6-14)

TCP
F Connection-oriented

F Reliable, end-to-end byte-stream
– message boundaries not preserved

F Adapt to a variety of underlying networks

F Robust in the face of failures

F Break data into segments
– 64 Kbytes max (often, only 1.5 Kbytes)

– 20 byte header

F Sliding window

TCP Segment Header TCP Transmission Policy

TCP Transmission Policy

F Do not have to send immediately
– avoid many small packets

F Nagle’s Algorithm
– only 1 outstanding byte at a time

– fill up, then send

– time delay, then send

– bad for some apps (X - with mouse
movements)

Silly Window Syndrome
F Application reads 1 byte at a time

F Fix: only send window when 1/2 full

4

TCP Congestion Control
F Even if sender and receiver agree, still problems

TCP Congestion Control

F “Receiver buffer” via receiver’s window

F “Network buffer” via congestion window

F “Effective buffer” is minimum of receiver
and network

F Ex:
– Receiver says “8k”, Network says “4k” then 8k

– Receiver says “8k”, Network says “32k” then 8k

Avoiding Congestion
F Network buffer

– starts at 1 segment

– increases exponentially (doubles)

– until timeout or receiver’s window reached

– or threshold, then increases linearly

– slow start (required by TCP)

F Internet congestion includes threshold
– linear past threshold (called congestion avoidance)

– when timeout, reduce threshold to half of current
window and restart slow start

u can go up

TCP Congestion Control

TCP Congestion Control Summary

F When below threshold, grow exponentially
– slow start

F When above threshold, grow linearly
– congestion avoidance

F When timeout, set threshold to 1/2 current
window and set window to 1

F How do you select timer values?
– Important, since timeouts restrict throughput

– Timer management

Timer Management

F Want to set timeout to minimal value where
segment is known to be lost
– should be just larger than current round-trip

time (RTT). Why?

F So, need estimate of round-trip time (RTT)
– how to get it?

F Why can’t you just measure RTT once and
fix timeout timer?

5

Timer Management
F Difficult when much variance

F RTT = αRTT + (1-α)M (α = 7/8, M ack time)

F + add variance, don’t update on retransmits

Enhancement to TCP, or …
A Trip to Nevada

F Tahoe (traditional TCP)

F Reno (most TCP implementations)

F Vegas (not yet, but may be coming)

TCP Tahoe

F Tahoe can have long flat periods
– why?

w
in

do
w

transmission number

F Can we avoid some of these long waits?
– Use duplicate acks

TCP Reno
F If see three duplicate acks, then retransmit

– fast retransmit

1
2
3
4
5
2
6

1
2
2
2
2
5

F And when 3 acks, just halve congestion
window and do congestion avoidance
– fast recovery

TCP Vegas
F Tahoe and Reno react to congestion

F Vegas attempts to avoid congestion
– detect congestion before loss occurs

– lower rate linearly

F Base detection on increasing RTT

Window increasing

Throughput not

Random Early Drop (RED)
F Traditional Internet routers

FIFO

F Limitations
– FIFO cannot detect congestion

until too late

F Instead, detect congestion
– below min, nothing

– above min, then probabilistic

– above max, drop all

F Note, red average, not instant

6

Explicit Congestion Notification
F Routers use loss as a means of indicating

congestion
– FIFO can’t help it

– RED tries to tell TCP flows congestion is
coming

– implicit

F Instead, routers can indicate congestion
with a bit
– explicit

F In acks to sender, better but tough (why?)
– so on outgoing packets

Non-Responsive Flows and
Fairness

0 20 60 110 160 180

6 ProShare - Unresponsive MM (210Kbps each)

240 FTP-TCP

1 UDP blast (10Mbps, 1KB)

F RED Settings:
qsize = 60 pkts
max-th = 30 pkts
min-th = 15 pkts
qweight = 0.002
max-pro = 0.1

F CBT Settings:
mm-th = 10 pkts

udp-th = 2 pkts

(Second)

Aggregate TCP Throughput
Aggregate TCP Throughput with

CBT

