

- Describe each of the following in terms of network layers
 - Repeater
 - Hub/Switch
 - Bridge
 - Router

- + Goals
 - services independent of subnet technology
 - shield transport layer from topology
 - uniform number of network addresses, across
- + Lots of freedom, but two factions
 - connection-oriented and connectionless

Connectionless

✦ Internet camp

- 30 years of experience with real networks
- subnet is unreliable, no matter how well designed
- hosts should accept this and do error control and flow control
- SEND_PACKET and RECV_PACKET
- each packet full information on source,
- no ordering or flow control since will be redundant with transport layer

Connection-Oriented

- ✦ Telephone company camp
 - 100 years of international experience
 - set up connection between end hosts
 - negotiate about parameters, quality and cost $% \left({{{\left({{{\left({{{\left({{{\left({{{c}}} \right)}} \right.}$
 - communicate in both directions
 - all packets delivered in sequence
 some might still be lost
 - flow control to help slow senders

Connected Vs Connectionless

- + Really, where to put the complexity
 - transport layer (connectionless)
 - computers cheap
 - \bullet don't clutter network layer since relied upon for years
 - some applications don't want all those services
 - subnet (connected)
 - most users don't want complex protocols on their machines
 embedded systems don't
 - real-time services much better on connected
- ◆ (Un) Connected, (Un) Reliable
- 4 classes, but two are the most popular

Internal Organization

- ♦ Virtual Circuit
 - do not choose new route per packet
 - establish route and re-use
 - terminate route when terminate connection
- ✦ Datagrams
 - no advance routes

- more work but more robust

- each packet routed independently

lssue	Datagram subnet	VC subnet
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Subnet does not hold state information	Each VC requires subnet table space
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow this route
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Congestion control	Difficult	Easy if enough buffers can be allocated in advance for each VC

Two Classes of Routing Algorithms

- ✤ Non-Adaptive algorithms
 - decisions not based on measurements
 - routes computed offline in advance
 - also called Static Routing
- \bullet Adaptive algorithms
 - $-\ensuremath{\text{change}}$ routes based on topology and traffic
 - info: locally, adjacent routers, all routers
 - freq: every ΔT seconds, load change, topolog
- ✦ Metric?
 - distance, number of hops, transit time

Static Routing - Start Simple

- ♦ Shortest path routing
- + How do we measure shortest?
- + Number of hops
- ✦ Geographic distance
- Mean queuing and transmission delay
- + Combination of above

Computing the Shortest Path

- + Dijkstra's Algorithm (1959)
- Label each node with distance from source
 if unknown, then ∞
- ✦ As algorithm proceeds, labels change – tentative at first
 - permanent when "added" to tree

Flooding

- Send every incoming packet on every outgoing link
 problems?
- Vast numbers of duplicate packets
 infinite, actually, unless we stop. How?
- + Hop count: decrease each hop
- + Sequence number: don't flood twice
- + Selective flooding: send only in about the right direction

Link State Routing • Used (w/variations) on Internet since 1979 • Basically

- Experimentally measure distance
- Use Dijkstra's shortest path
- + Steps
 - Discover neighbors
 - Measure delay to each
 - Construct a packet telling what learned
 - Send to all other routers
 - Compute shortest path

Network to Data Link Adress Translation

- + Internet hosts use IP
- Data link layer does not understand IP
 Ethernet uses 48-bit address
 - ex: ifconfig gives 00:10:4B:9E:B3:E6
- Q: How do IP addresses get mapped onto data link layer addresses, such as Etherner?
- ♦ A: The Address Resolution Protocol (ARP)

- Internet made up of Autonomous Systems (AS)
- Standard for routing inside AS
 - interior gateway protocol
 - OSPF
- Standard for routing outside AS
 - exterior gateway protocol
 - -BGP

OSPF, continued

- + Every AS has a *backbone*, area 0
 - all areas connect to backbone, possibly by a tunnel
- Routers are nodes and links are arcs with weights
- + Computes "shortest" path for each:
 - delay
 - throughput
 - reliability
- ✦ Floods link-state packets

Border Gateway Protocol (BGP)

- + Inside AS, only efficiency
- + Between AS, have to worry about politics
 - No transit traffic through some ASes
 - Never put Iraq on a route starting at the Pentagon
 - Do not use the US to get from British Columbia to Ontario
 - Traffic starting or ending at IBM should for transit Microsoft

- Types of networks
 stub: only one connection
 - multiconnected: could transit, but don't
 - transit: handle 3rd party, but with restrictions (backbones)
- ◆ BGP router pairs communicate via TCP
 − hides details in between
- Uses distance vector protocol
 but "cost" can be any metric

Closed Loop (cont)

- + Metrics to detect congestion:
 - percentage of dropped packets
 - average queue length
 - number of timed out packets
 - average packet delay (and std dev of delay)
- ✦ Transfer info:
 - router to send packet to traffic source(s)
 but this increases the load!
 - set bit in acks going back (ECN)
- + Send probe packets out to ask other routers
- ala traffic helicopters to help route cars

Congestion Control Algorithms

- ✦ Lots of them
 - taxonomy to view (Yang and Reddy 1995)
- + *Open* or *Closed* (as above)
- ♦ Source or Destination
- ✦ Explicit or Implicit feedback (for closed)
 - explicit: send congestion info back to source
 implicit: source deduces congestion (by Roking at round-trip time for acks, say)

Congestion Fix

- Load is greater than resources
 increase resources or decrease load
- ✦ Increase resources
 - adding extra leased bandwidth
 - boost satellite power
 - split traffic over multiple routes
 - use backup, fault-tolerant routers
 - ...Difficult under many systems!
- ✦ Decrease load
 - at data link, network or transport layer

Preventing Congestion

- ✦ Traffic is often bursty
 - periods of lots of traffic
 - followed by periods of little traffic
- ✤ If steady rate, easier to avoid congestion
- Open loop method to help manage congestion by forcing packets at more predicable rate
 Traffic Shaping

Traffic Shaping

- + Limit rate data is sent
- User and subnet agree upon certain pattern (shape) of traffic
 - especially important for real-time traffic
 - easier on virtual circuit, but possible on datagram
- ♦ Monitoring agreement is *traffic policing*

Leaky Enhancements Leaky bucket enforces rigid output rate instead, allow some speedup of output token bucket algorithm Token generated every *DT* seconds

- to send packet, station must capture and destroy
- ✦ Example:

Traffic Shaping with Token Bucket

- + Leaky bucket does not allow hosts to "save up" for sending later
- Token bucket host can capture up to some max n tokens
- Since hosts must stop transmitting when no tokens, then can avoid lost data
 - leaky bucket will just drop data, resulting in timeouts and retransmissions (or, just lost data)

Choke Packets (cont)

- + When source receives choke packet, reduces traffic by *X* percent
 - $-\ensuremath{\,\text{reduce}}$ window size or bucket parameters
 - decrease 0.5, 0.25, \ldots increase slowly, too
- Ignore new choke packets from destination for some time interval
 - -why?
- ✤ Increase flow at some time
- + Variations: degrees of warning

Foul Play

- + Consider A, B and C send through Router
- Router detects congestion, sends choke packet to each
- ★ A cuts back packet rate but B and C continue blasting away
 - requires voluntary cutback
- ✦ Transport protocols:
 - TCP: built in flow-control helps congestion control
 - UDP: mis-behaved flows
- ✦ Solution: fair queuing

Fair Queuing

- Multiple queues for each output line
 one per source
- ◆ Do round-robin among queues
 with *n* hosts competing, get 1/*n* of bandwidth
- + Sending more packets will not help
- ✦ Trouble?
 - More bandwidth to hosts with large packets
- + Solution: byte-by-byte round robin