Multimedia Overview

谈话关于连续媒体
– RealAudio, RealVideo, Internet Phone

通常被认为是高带宽
– 原始视频 30 Mbps
– 但不完全是这样
 * 压缩音频 8 Kbps
 * 压缩视频 2 Mbps

新计算机是“多媒体准备”的
– 大量的CPU功率
– 特殊设备（MMX, 视频芯片等）

那么... 问题是什么？
Internet Shortcomings

- Designed for “text-based” applications
 - without strict timing constraints
 - with strict loss constraints
- “Bursty” traffic
 - high variance in delay
 - periods of heavy packet loss
- Limited network protocols for applications

Internet Protocols

- **TCP**
 - delivers every byte
 - unbounded delay!
 - stream semantics
 - fixed flow control
 - unicast
 - … big bleah!
- **UDP**
 - “best-effort” delivery
 - unbounded loss!
 - packet semantics
 - no flow control
 - multicast add-on
 - … bleah!

“Sigh. I guess I’ll use UDP since it is better than TCP. Or … not?”

The Internet Today

- Mostly TCP traffic
 - 96%: ftp, telnet, nntp, smtp… (tcplib’92)
- Optimized for TCP
 - “Thinner” OS protocol stacks
 - Vegas, Reno, Tahoe …
- Punish “non-responsive” flows
 - UDP
 - RED, ECN

Receiver-driven Layered Multicast

Steven McCanne, Van Jacobson and Martin Vetterli

ACM SIGCOMM, Stanford CA, August 1996

Problem

- Network heterogeneity
- One output to multiple users with varied capabilities
- Who decides the rate?
- What is the network capacity?

Solution?

- Multiple levels of quality across multiple network channels
- Receivers decide their own rates of reception
- Note, requires layered media streams
Layered Stream

- High level abstraction
 - on congestion, drop a layer
 - on spare capacity, add a layer

Q: How does the receiver decide?
- detection time
- capacity inference

Event Sequence

- At a well-chosen time conduct a join experiment
- If congestion is experienced, leave the new group
- If no congestion, try to join next higher group

Tiny Movies

- Text-based frames
- One frame per second
 - sleep! alarm! setitimer!

The RLM Protocol

- **Q**: How does the receiver decide?
 - detection time
 - capacity inference