
1

CS4513
Distributed Computer

Systems

Introduction

Outline

• Overview
• Goals
• Software
• Client Server

The Rise of Distributed Systems

• Computer hardware prices falling, power increasing
– If cars the same, Rolls Royce would cost 1 dollar and

get 1 billion miles per gallon (with 200 page manual to
open the door)

• Network connectivity increasing
– Everyone is connected with fat pipes

• It is easy to connect hardware together
• Definition: a distributed system is

– A collection of independent computers that appears
to its users as a single coherent system.

Definition of a Distributed System

A distributed system organized as middleware.
Note that the middleware layer extends over multiple machines.

Users can interact with the system in a consistent way, regardless
of where the interaction takes place.

Note: Middleware may be “part” of application in practice.

Examples:
-The Web
-Processor Pool
-Airline
Reservation

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Hide whether a (software) resource is in memory or on diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several competitive
usersConcurrency

Hide that a resource may be shared by several competitive
usersReplication

Hide that a resource may be moved to another location while
in useRelocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a resource is
accessedAccess

DescriptionTransparency

Scalability Problems
• As distributed systems grow, centralized solutions

are limited
– Consider LAN name resolution vs. WAN

Doing routing based on complete
informationCentralized algorithms

A single on-line telephone bookCentralized data

A single server for all usersCentralized services

ExampleConcept

• Sometimes, hard to avoid (consider a bank)
• Need to collect information in distributed fashion

and distributed in a distributed fashion
• Challenges:

– geography, ownership domains, time synchronization

2

Scaling Techniques: Hiding
Communication Latency

• Especially important for interactive applications
• If possible, do asynchronous communication

- Not always possible when client has nothing to do

• Instead, can hide latencies

Scaling Techniques: Distribution

1.5

Example: DNS name space into zones
(nl.vu.cs.fluit – z1 gives address of vu gives
address of cs)

Scaling Techniques: Replication
• Copy of information to increase availability

and decrease centralized load
– Example: P2P networks (Gnutella +)

distribute copies uniformly or in proportion
to use

– Example: CDNs (akamai)
– Example: Caching is a replication decision

made by client
• Issue: Consistency of replicated

information
– Example: Web Browser cache

Outline

• Overview (done)
• Goals (done)
• Software ←
• Client Server

Software Concepts

• DOS (Distributed Operating Systems)
• NOS (Network Operating Systems)
• Middleware

Provide distribution
transparency

Additional layer atop of NOS implementing
general-purpose servicesMiddleware

Offer local services
to remote clients

Loosely-coupled operating system for
heterogeneous multicomputers (LAN and
WAN)

NOS

Hide and manage
hardware resources

Tightly-coupled operating system for multi-
processors and homogeneous multicomputersDOS

Main GoalDescriptionSystem

Uniprocessor Operating Systems

• Separating applications from operating
system code through a microkernel
– Can extend to multiple computers

3

Distributed Operating Systems

• But no longer have shared memory
– Provide message passing
– Can try to provide distributed shared memory

• But tough to get acceptable performance

Network Operating System

• OSes can be different (Windows or Linux)
• Typical services: rlogin, rcp

– Fairly primitive way to share files

Network Operating System

• Can have one computer provide files transparently
for others (NFS)
– (try a “df” on the WPI hosts to see. Similar to a “mount

network drive” in Windows)

Network Operating System

• Different clients may mount the servers in different places
• Inconsistencies in view make NOSes harder, in general for

users than DOSes.
– But easier to scale by adding computers

Positioning Middleware
• Network OS not transparent. Distributed OS not

independent of computers.
– Middleware can help

• Much middleware built in-house to help use networked
operating systems (distributed transactions, better comm,
RPC)

• Unfortunately, many different standards

Outline

• Overview (done)
• Goals (done)
• Software (done)
• Client Server ←

4

Clients and Servers
• Thus far, have not talked about organization of

processes
– Again, many choices but most agree upon is client-server

• If can do so without connection, quite simple
• If underlying connection is unreliable, not trivial
• Resend. What if receive twice?

• Use TCP for reliable connection (most Inet apps)
• Not always appropriate for high-speed LAN connection or

interactive applications

Client-Server Implementation Levels

• Example of an Internet search engine
– UI on client
– Processing can be on client or server
– Data level is server, keeps consistency

Multitiered Architectures

• Thin client (a) to Fat client (e)
– (d) and (e) popular for NOS environments

Multitiered Architectures: 3 tiers

• Server may act as a client
– Example would be transaction monitor across

multiple databases

Modern Architectures: Horizontal

• Rather than vertical, distribute servers across
nodes
– Example of Web server “farm” for load balancing
– Clients, too (peer-to-peer systems)

