
1

CS4513
Distributed Computer

Systems

File Systems

Motivation

• Processes store, retrieve information
• Process capacity restricted to vmem size
• When process terminates, memory lost
• Multiple processes share information

• Requirements:
– large
– persistent
– concurrent access

Solution? File
System!

Outline

• Files ←
• Directories
• Disk space management
• Misc

File Systems

• Abstraction to disk (convenience)
– “The only thing friendly about a disk is that

it has persistent storage.”
– Devices may be different: tape, IDE/SCSI,

NFS
• Users

– don’t care about detail
– care about interface

• OS
– cares about implementation (efficiency)

File System Concepts

• Files - store the data
• Directories - organize files
• Partitions - separate collections of

directories (also called “volumes”)
– all directory information kept in partition
– mount file system to access

• Protection - allow/restrict access for files,
directories, partitions

Files: The User’s Point of View

• Naming: how do I refer to it?
– blah, BLAH, Blah
– file.c, file.com

• Structure: what’s inside?
– Sequence of bytes (most modern OSes)
– Records - some internal structure
– Tree - organized records

2

Files: The User’s Point of View

• Type:
– ascii - human readable
– binary - computer only readable
– “magic number” or extension (executable, c-file …)

• Access Method:
– sequential (for character files, an abstraction of

I/O of serial device such as a modem)
– random (for block files, an abstraction of I/O to

block device such as a disk)
• Attributes:

– time, protection, owner, hidden, lock, size ...

File Operations

• Create
• Delete
• Truncate
• Open
• Read
• Write
• Append

• Seek - for random access
• Get attributes
• Set attributes

Example: Unix open()

int open(char *path, int flags [, int mode])

•path is name of file
•flags is bitmap to set switch

– O_RDONLY, O_WRONLY…
– O_CREATE then use mode for perms

• success, returns index

Unix open() - Under the Hood
int fid = open(“blah”, flags);

read(fid, …);
User Space
System Space

stdin
stdou
tstder
r

...

0
1
2
3

File Structure

...

...

File
Descriptor

(where
blocks are)(attributes)(index)

(Per process) (Per device)

Example: WinNT/2k CreateFile()
• Returns file object handle:

HANDLE CreateFile (
lpFileName, // name of file
dwDesiredAccess, // read-write
dwShareMode, // shared or not
lpSecurity, // permissions
...

)
• File objects used for all: files,

directories, disk drives, ports, pipes,
sockets and console

File System Implementation
Process

Control Block

Open
File

Pointer
Array

Open File
Table

File Descriptor
Table

(in memory
copy,

one per
device)

(per process)

Disk

File sys info

File
descriptors

Copy fd
to mem

Directories

Data

Next up: file descriptors!

3

File System Implementation

• Which blocks with which file?
• File descriptor implementations:

– Contiguous
– Linked List
– Linked List with Index
– I-nodes

File
Descriptor

Contiguous Allocation
• Store file as contiguous block

– ex: w/ 1K block, 50K file has 50 conseq
blocks

File A: start 0, length 2
File B: start 14, length 3

• Good:
– Easy: remember location with 1 number
– Fast: read entire file in 1 operation (length)

• Bad:
– Static: need to know file size at creation

• or tough to grow!
– Fragmentation: remember why we had

paging?

Linked List Allocation
• Keep a linked list with disk blocks

• Good:
– Easy: remember 1 number (location)
– Efficient: no space lost in fragmentation

• Bad:
– Slow: random access bad

File
Block

0

File
Block

1

File
Block

2
Physical

Block

null

4 7 2

File
Block

0

File
Block

1

null

6 3

Linked List Allocation with Index

• Table in memory
– faster random access
– can be large!

• 1k blocks, 500K disk
• = 2MB!

– MS-DOS FAT, Win98
VFAT

Physical
Block

0

1

null2

null3

74

5

36

27

I-nodes

• Fast for small
files

• Can hold big files
• Size?

– 4 kbyte block

D
is

k
bl

oc
ks

i-node

attributes

single
indirect block

double indirect
block

triple indirect
block

Outline

• Files (done)
• Directories ←
• Disk space management
• Misc

4

Directories
• Just like files, only have special bit set so

you cannot modify them (what?!)
– data in directory is information / links to

files
– modify through system call
– (See ls.c)

• Organized for:
– efficiency - locating file quickly
– convenience - user patterns

• groups (.c, .exe), same names
• Tree structure directory the most flexible

– aliases allow files to appear at more than one
location

Directories

• Before reading file, must be opened
• Directory entry provides information to

get blocks
– disk location (block, address)
– i-node number

• Map ascii name to the file descriptor

Simple Directory

• No hierarchy (all “root”)
• Entry

– name
– block count
– block numbers

name block count

block numbers

Hierarchical Directory (MS-DOS)

• Tree
• Entry:

– name - date
– type (extension) - block number (w/FAT)
– time

name type attrib time date block size

Hierarchical Directory (Unix)

• Tree
• Entry:

– name
– inode number (try “ls –I” or “ls –iad .”)

• example:
/usr/bob/mbox

inode name

Unix Directory Example

1 .

1 ..

4 bin

7 dev

14 lib

9 etc

6 usr

8 tmp

132

Root Directory

Looking up
usr gives
I-node 6

6 .

1 ..

26 bob

17 jeff

14 sue

51 sam

29 mark

Block 132

Looking up
bob gives
I-node 26

26 .

6 ..

12 grants

81 books

60 mbox

17 Linux

Aha!
I-node 60

has contents
of mbox

I-node 6

406

I-node 26

Relevant
data (/usr)

is in
block 132

Block 406

/usr/bob is
in block 406

5

Storing Files

• How to manage aliases? Possibilities:
a) Directory entry contains disk blocks?
b) Directory entry points to attributes

structure?
c) Have new type of file “link”?

B C

B ? B B

No longer a tree:
Directed Acyclic

Graph

“alias”

Problems
• a) Directory entry contains disk blocks?

– contents (blocks) may change
• b) Directory entry points to file descriptor?

– if removed, refers to non-existent file
– must keep count, remove only if 0
– hard link
– Similar if delete file in use (show example)

• c) Have new type of file “link”?
– contains alternate name for file
– overhead, must parse tree second time
– soft link
– often have max link count in case loop (show example)

Outline

• Files (done)
• Directories (done)
• Disk space management ←
• Misc

Disk Space Management
• n bytes

– contiguous
– blocks

• Similarities with memory management
– contiguous is like variable-sized partitions

• but moving on disk very slow!
• so use blocks

– blocks are like paging
• how to choose block size?

• (Note, disk block size typically 512 bytes, but file
system logical block size chosen when formatting)

Choosing Block Size

• Large blocks
– faster throughput, less seek time
– wasted space (internal fragmentation)

• Small blocks
– less wasted space
– more seek time since more blocks

Data Rate

Disk Space
Utilization

Block size

Keeping Track of Free Blocks
• Two methods

– linked list of disk blocks
• one per block or many per block

– bitmap of disk blocks
• Linked List of Free Blocks (many per block)

– 1K block, 16 bit disk block number
= 511 free blocks/block
•200 MB disk needs 400 free blocks = 400k

• Bit Map
•200 MB disk needs 20 Mbits
• 30 blocks = 30k
• 1 bit vs. 16 bits

(note, these are
stored on the disk)

6

Tradeoffs

• Only if the disk is nearly full does linked
list scheme require fewer blocks

• If enough RAM, bitmap method preferred
• If only 1 “block” of RAM, and disk is full,

bitmap method may be inefficient since
have to load multiple blocks
– linked list can take first in line

File System Performance
• Disk access 100,000x slower than memory

– reduce number of disk accesses needed!
• Block/buffer cache

– cache to memory
• Full cache? FIFO, LRU, 2nd chance …

– exact LRU can be done (why?)
• LRU inappropriate sometimes

– crash w/i-node can lead to inconsistent
state

– some rarely referenced (double indirect
block)

Modified LRU

• Is the block likely to be needed soon?
– if no, put at beginning of list

• Is the block essential for consistency of
file system?
– write immediately

• Occasionally write out all
– sync

Outline

• Files (done)
• Directories (done)
• Disk space management (done)
• Misc ←

– partitions (fdisk, mount)
– maintenance
– quotas

• Linux and WinNT/2000

Partitions
•mount, unmount

– load “super-block” from disk
– pick “access point” in file-

system
• Super-block

– file system type
– block size
– free blocks
– free i-nodes

/ (root)

usr
home tmp

Partitions: fdisk

• Partition is large group of sectors allocated for a
specific purpose
– IDE disks limited to 4 physical partitions
– logical (extended) partition inside physical partition

• Specify number of cylinders to use
• Specify type

– magic number recognized by OS

(Hey, show example)

7

File System Maintenance
• Format:

– create file system structure: super block, I-nodes
– format (Win), mke2fs (Linux)

• “Bad blocks”
– most disks have some
– scandisk (Win) or badblocks (Linux)
– add to “bad-blocks” list (file system can ignore)

• Defragment
– arrange blocks efficiently

• Scanning (when system crashes)
– lost+found, correcting file descriptors...

Disk Quotas

• Table 1: Open file table in memory
– when file size changed, charged to user
– user index to table 2

• Table 2: quota record
– soft limit checked, exceed allowed

w/warning
– hard limit never exceeded

• Overhead? Again, in memory
• Limit: blocks, files, i-nodes

Linux Filesystem: ext2fs
• “Extended

(from minix)
file system
vers 2”

• Uses inodes
– mode for

file,
directory,
symbolic link
...

Linux filesystem: blocks
• Default is 1 Kb blocks

– small!
• For higher performance

– performs I/O in chunks (reduce requests)
– clusters adjacent requests (block groups)

• Group has:
– bit-map of
free blocks
and I-nodes
– copy of
super block

Linux Filesystem: directories

• Special file with names and inodes

Linux Filesystem: proc
• contents of “files” not stored, but

computed
• provide interface to kernel statistics
• allows access to

“text” using Unix tools
• enabled by

“virtual file system”
(NT/2k has perfmon)

8

WinNT/2000 Filesystem: NTFS
• Basic allocation unit called a cluster (block)
• Each file has structure, made up of attributes

– attributes are a stream of bytes (including data)
– attributes stored in extents (file descriptors)

• File information stored in Master File Table, 1 entry
per file
– each has unique ID

• part for MFT index, part for “version” of file for
caching and consistency

– if number of extents small enough, whole entry stored
in MFT (faster access)

NTFS Directories

• Name plus pointer to extent with file
system entry

• Also cache attributes (name, sizes, update)
for faster directory listing

• Info stored in B+ tree
– Every path from root to leaf is the same
– Faster than linear search (O(logFN)
– Doesn’t need reorganizing like binary tree

NTFS Recovery

• Many file systems lose metadata (and data) if
powerfailure
– Fsck, scandisk when reboot
– Can take a looong time and lose data

• lost+found
• Recover via “transaction” model

– Log file with redo and undo information
– Start transactions, operations, commit
– Every 5 seconds, checkpoint log to disk
– If crash, redo successful operations and undo those

that don’t commit
• Note, doesn’t cover user data, only meta data

