CS4513
Distributed Computer

]

Systems
File Systems
[nes]
O wer
Outline
° Files <«
° Directories
° Disk space management
° Misc
WP

C R N

File System Concepts

° Files - store the data

° Directories - organize files

® Partitions - separate collections of
directories (also called "volumes")
- all directory information kept in partition
—mount file system to access

* Protection - allow/restrict access for files,
directories, partitions

WPl

Motivation

° Processes store, retfrieve information

® Process capacity restricted o vmem size
° When process terminates, memory lost

° Multiple processes share information

° Requirements:
- large
- persistent

Solution? File
System!

- concurrent access

WP

- "The only thing friendly about a disk is that
it has persistent storage.”

- Devices may be different: tape, IDE/SCSI,
NFS

* Users
- don't care about detail
- care about interface
* 0s
- cares about implementation (efficiency)

File Systems
° Abstraction to disk (convenience)

]

Files: The User's Point of View

° Naming: how do I refer to it?
- blah, BLAH, Blah
- file.c, file.com
® Structure: what's inside?
- Sequence of bytes (most modern OSes)
- Records - some internal structure
- Tree - organized records

R NS W .

WPl

Files: The User's Point of View

* Type:

- ascii - human readable

- binary - computer only readable

- “magic number” or extension (executable, c-file ...)
* Access Method:

- sequential (for character files, an abstraction of
I/0 of serial device such as a modem)

- random (for block files, an abstraction of I/0 to
block device such as a disk)

° Aftributes:
- time, protection, owner, hidden, lock, size ...

-
i

Example: Unix open()

int open(char *path, int flags [, int mode])

®path is name of file
®flags is bitmap to set switch
- O_RDONLY, O_WRONLY..

- O_CREATE then use mode for perms
\;' success, retfurns index

W .

HANDLE CreateFile (
IpFileName, // name of file
dwShareMode, // shared or not

IpSecurity, // permissions

Example: WinNT/2k CreateFile()
° Returns file object handle:
dwDesiredAccess, // read-write
i

e

° File objects used for all: files,
directories, disk drives, ports, pipes,
sockets and console

WPl

File Operations

° Create ° Seek - for random access
° Delete ° Get attributes

* Truncate ° Set attributes

° Open

° Read

° Write

Append

-
g

Unix open() - Under the Hood

int fid = open(“blah”, flags);
read(fid, .);

User Space

System Space

W, -

File Structure —— -

(where
blocks are)

(index) (attributes)
(Per process) (Per device)

]
le'-‘O

File System Implementation

Process Open File File Descriptor Disk
Control Block Table Table

Open
File
Pointer
Array

(per process) (in memory

. copy,

one per

device)
I Next up: file descriptors! WPl

- Contiguous

- Linked List

- Linked List with Index
- I-nodes

File System Implementation
° Which blocks with which file?
° File descriptor implementations:
i

Descriptor

File ==
| | |

Linked List Allocation
° Keep a linked list with disk blocks

Physical
Block 4 7 2 6 3

I * Good:
- Easy: remember 1 number (location)
- Efficient: no space lost in fragmentation
- . Bad:
I - Slow: random access bad

Contiguous Allocation

° Store file as contiguous block

- ex: w/ 1K block, 50K file has 50 conseq
blocks
File A: start 0, length 2
File B: start 14, length 3

* Good:
- Easy: remember location with 1 number
- Fast: read entire file in 1 operation (length)
° Bad:
- Static: need to know file size at creation
* or tough to grow!
- Fragmentation: remember why we had

paging? wp

I-nodes

. single
i-node indirect block

* Fast for small
files
* Can hold big files
* Size?
- 4 kbyte block

attributes

Disk blocks

triple indirect
block

WPl

Linked List Allocation with Index

Physical
Block
o Il ° Table in memory
1 - - faster random access
2 [- can be large!
3 - * 1k blocks, 500K disk
4 - * = 2MB!
s - MS-DOS FAT, Win98
6 - VFAT
7
WBL
Outline
* Files (done)
* Directories <«
° Disk space management
* Misc
WP

Directories

° Just like files, only have special bit set so
you cannot modify them (what?/)

- data in directory is information / links to
files

- modify through system call
- (See 1s.c)
° Organized for:
- efficiency - locating file quickly
- convenience - user patterns
* groups (.c, .exe), same hames
B - Tree structure directory the most flexible

- aliases allow files to appear at more than-one
location

Simple Directory

* No hierarchy (all “root")
° Entry

- name

- block count

- block numbers

! el

block numbers

Hierarchical Directory (Unix)

® Tree
* Entry:

- name

- inode number (try “Is -I" or "“Is -iad .")
° example:

/usr/bob/mbox

WPl

Directories

° Before reading file, must be opened

° Directory entry provides information to
get blocks
- disk location (block, address)
- i-node number

° Map ascii name to the file descriptor

Hierarchical Directory (MS-DOS)

* Tree

° Entry:
- hame - date
- type (extension) - block number (w/FAT)
- time

WPl
Unix Directory Example

Root Directory Block 132 Block 406

T-node 6 . T-node 26 .
. Ahal

I Looking up I I-node 60
Looking up bob gives has confents

o usr gives Relevant I-node 26 /usr/bob is of mbox

I-node 6 data (/usr) in block 406 m
isin
block 132

WPl

Storing Files

No longer a tree:
- Directed Acyclic

i Graph
‘ “alias"

How to manage aliases? Possibilities:
a) Directory entry contains disk blocks?

b) Directory entry points to attributes
structure?

c) Have new type of file "link"?

-
i

Outline
* Files (done)
* Directories (done)
#= ° Disk space management «—
* Misc

C N
3

Choosing Block Size

° Large blocks

- faster throughput, less seek time

- wasted space (internal fragmentation)
* Small blocks

- less wasted space

- more seek time since more blocks

Disk Space
Utilization

Data Rate

Block size =—» WP

S NS W

Problems

a) Directory entry contains disk blocks?
- contents (blocks) may change
b) Directory entry points to file descriptor?
- if removed, refers to non-existent file
- must keep count, remove only if O
- hard link
- Similar if delete file in use (show example)
¢) Have new type of file “link"?
- contains alternate name for file
- overhead, must parse tree second time
- soft link
- often have max link count in case loop (show example)

WP

]

Disk Space Management

nbytes
- contiguous
- blocks
Similarities with memory management
- contiguous is like variable-sized partitions
* but moving on disk very slow!
* so use blocks
- blocks are like paging
* how to choose block size?
(Note, disk block size typically 512 bytes, but file
system logical block size chosen when formatting)

WP

N -

]

Keeping Track of Free Blocks

* Two methods
- linked list of disk blocks
* one per block or many per block
- bitmap of disk blocks
° Linked List of Free Blocks (many per block)
- 1K block, 16 bit disk block number
= 511 free blocks/block
* 200 MB disk needs 400 free blocks = 400k
° Bit Map
* 200 MB disk needs 20 Mbits
* 30 blocks = 30k
* 1bit vs. 16 bits

(note, these are
stored on the disk)

WPl

R NS W .

Tradeoffs

° Only if the disk is nearly full does linked
list scheme require fewer blocks

° If enough RAM, bitmap method preferred

° If only 1 "block” of RAM, and disk is full,
bitmap method may be inefficient since

have to load multiple blocks
\; - linked list can take first in line

- free i-nodes

]
I WP
Modified LRU
° Is the block likely to be needed soon?
- if no, put at beginning of list
° Is the block essential for consistency of
file system?
- write immediately
* Occasionally write out all
- sync
]
I WPl
Partitions
®mount, unmount
- load “super-block"” from disk
- pick “access point” in file-
system / (root)
S8 ° Super-block ya ‘ \
- file system type uSr e P
- block size =
= -
- free blocks = .
]

WPl

]

File System Performance

Disk access 100,000x slower than memory
- reduce number of disk accesses needed!
Block/buffer cache

- cache to memory

Full cache? FIFO, LRU, 2nd chance ...

- exact LRU can be done (why?)

LRU inappropriate sometimes

- crash w/i-node can lead to inconsistent
State

- some rarely referenced (double indirect
block)

N -

]

WP
Outline
® Files (done)
* Directories (done)
* Disk space management (done)
* Misc <«
- partitions (fdisk, mount)
- mainfenance
- quotas
° Linux and WinNT/2000
WP

R NS W .

Partitions: fdisk

Partition is large group of sectors allocated for a
specific purpose

- IDE disks limited to 4 physical partitions

- logical (extended) partition inside physical partition
* Specify number of cylinders to use

° Specify type

- magic humber recognized by OS

(Hey, show example)

WPl

]

File System Maintenance

* Format:
- create file system structure: super block, I-nodes
— format (Win), mke2fs (Linux)
° "Bad blocks"
- most disks have some
— scandisk (Win) or badblocks (Linux)
- add to "bad-blocks" list (file system can ignore)
° Defragment
- arrange blocks efficiently
° Scanning (when system crashes)
- lost+found, correcting file descriptors...

AN m

o o
& L

]

Linux Filesystem: ext2fs

° “Extended
(from minix) ook
file system R
vers 2"

* Uses inodes
- mode for

file,
directory,
symbolic link

Timestamps

Ditect Blacks

o
g

Tndivect blogks I =

Dauble Indirect

Triple Indirect

S NS W

Linux Filesystem: directories

° Special file with names and inodes

o 15 E

[]i=]5 Jeie] 2[40 [14] very Jong_rame |

incde table

WPl

]

Disk Quotas

° Table 1: Open file table in memory
- when file size changed, charged to user
- user index to table 2

° Table 2: quota record

- soft limit checked, exceed allowed
w/warning

- hard limit never exceeded
Overhead? Again, in memory
° Limit: blocks, files, i-nodes

N -

]

Linux filesystem: blocks

° Default is 1 Kb blocks
- smalll

* For higher performance
- performs I/0 in chunks (reduce requests)
- clusters adjacent requests (block groups)

° Group has:
- bit-map of
free blocks
and I-nodes
- copy of
super block

Block
Groupo

P

ook
imap

Block
Gronp N1

Block
GoupN

T

oo
Blocks

Tnode
Biuap

Tnede
Table

Super
Block.

G
Descipiors

R NS W .

Linux Filesystem: proc
contents of “files" not stored, but
computed
provide interface to kernel statistics
allows access to
“text" using Unix tools
enabled by
“virtual file system”
(NT/2k has perfmon)

WinNT/2000 Filesystem: NTFS

° Basic allocation unit called a c/uster (block)
° Each file has structure, made up of attributes
- attributes are a stream of bytes (including data)
- attributes stored in extents (file descriptors)
° File information stored in Master File Table, 1 entry
per file
- each has unique ID
* part for MFT index, part for “version” of file for
caching and consistency
- if number of extents small enough, whole entry stored
in MFT (faster access)

WP

]

NTFS Recovery

° Many file systems lose metadata (and data) if
powerfailure
- Fsck, scandisk when reboot
- Can take a looong time and lose data
* lost+found
°* Recover via "transaction” model
- Log file with redo and undo information
- Start transactions, operations, commit
- Every 5 seconds, checkpoint log to disk
- If crash, redo successful operations and undo those
[that don't commit
I ° Note, doesn't cover user data, only meta data

AN m

WP

NTFS Directories

° Name plus pointer to extent with file
system entry

° Also cache attributes (name, sizes, update)
for faster directory listing
° Info stored in B+ tree
- Every path from root to leaf is the same
- Faster than linear search (O(logeN)
- Doesn't need reorganizing like binary tree

WP

