
1

Measuring and Analyzing the
Characteristics of Napster

and Gnutella Hosts

S. Saroiu, P. Gummadi, and S. Gribble

Multimedia Systems Journal
Volume 8, Issue 5

November 2002

Introduction (1 of 2)

• Peer-to-Peer (P2P) file sharing have
created interest in P2P architectures

• Exact definition debatable, but P2P
– Lacks centralized infrastructure
– Depends upon voluntary participation for

resources
• Membership ad-hoc and dynamic

– Capacity, latency, availability of peers
change
Æ Must be aware of when deciding suitable

peer for allocating resources

Introduction (2 of 2)

• However, few architectures are evaluated
considering suitability of peers
– Due do lack of characteristics on hosts

• This paper
– Studies Napster and Gnutella

(were the two most popular)
– Seeks to precisely

characterize the population of
end-user hosts
• Typically home machines on

the “edge” of the Internet
http://www.slyck.com/

This Paper
• Characterization

– Bottleneck capacities
– Latencies
– Availability
– Number of files
– Correlations between above stats

• Lessons
– Heterogeneity – 3-5 orders of magnitude
– Peers deliberately mis-report information if

they have incentive to do so. Need:
•Built-in incentives to tell the truth
•Ability for system to verify peer information

Outline

• Introduction (done)
• Methodology (next)
• Results
• Recommendations
• Conclusions

Measurement Methodology

• Periodically crawl each system
– Gather snapshots:

• IP and port and reported information
•Do some active measurements

• Sub-sections
– Architectures
– Crawling
– Active Measurements
– Limitations

2

Napster and Gnutella Architectures

• Napster has centralized server index
– Servers keep track of peer information

• Gnutella has overlay network
– floods requests (TTL to limit scope)
– ping and pong messages to discover peers

• Peers function as client server
• Query for file, download from peer

The Napster Crawler
• Server architecture

– ~160 Napster servers, peers connect to 1
– Server reports “local” and “remote” users

• Actively query popular song artists, see what peers
responded (do in parallel, so only takes 3-4 min.)
– By comparing to global server stats, captured 40-60%

of peers with 80-90% of traffic
– Distribution of remainder traffic stats similar

• For each peer discovered, request
– Capacity of peer as reported by peer
– Number of files being shared
– Number of uploads and downloads in progress
– Names and sizes of files
– IP address of peer

The Gnutella Crawler (1 of 2)

• Connect to several well-known peers
– gnutellahosts.com, router.limewire.com

• Send ping messages with large TTL
• Add new peers based on pong messages

– Gives IP, number and total size of files
• Should be no bias since not using “popular”

songs
• Allow ~2 minutes, report peers

– Usually, about 8000-10000 hosts

The Gnutella Crawler (2 of 2)

• Based on clip2 (gnutella measurement)
– about 25-50% of hosts at that ime

Measurement Methodology

• Periodically crawl each system
– Gather snapshots:

• IP and port and reported information
•Do some active measurements

• Sub-sections
– Architectures
– Crawling
– Active Measurements
– Limitations

Active Measurements
• P2P sys only report limited info (and

sometimes not accurate) about peers
– Peers may choose not to report capacity
– Peers may lie to discourage downloads

• For each snapshot, gather direct data
– Capacity, latency, num files, lifetime

• Next, discuss:
– Bottleneck capacity measurements
– Latency measurements
– Lifetime Measurements

3

Bottleneck Capacity Measurements

• Real number would be available capacity
– But would require TCP connection, so costly

• Instead, try to measure maximum capacity
– An approximation of available
– Report bottleneck (lowest) capacity

• Existing techniques (flood one packet, or several
packet-pairs) not acceptable
– “flood” causes too much traffic
– Several packet pairs can not take 1 minute, so 1

week for 10k measurements
– Cannot deploy custom software on all hosts
Æ Design SProbe

SProbe (1 of 4)

• Dispersion of two large packets gives measure of
bottleneck
– The larger, the slower the link

• How to get peers to report? Rely upon response

SProbe (2 of 4)
• Send two TCP SYN packets

back-to-back
– Add large payload
– If port inactive, get RTS

packet back
• Measure dispersion of RTS

packets

• Note, some firewalls drop
SYN to inactive port
– SProbe cannot tell

difference

SProbe (3 of 4)
• Cross traffic can interfere with dispersion

– Current approaches send lots, but doesn’t scale and
takes too long

• Send packet train, small at ends, large in middle

• If dispersion of small is larger than large, assume
there may be cross traffic and return “unknown”

SProbe (4 of 4)

• For upstream,
need peer to
send

• Initiate
Gnutella
handshake

• Wait so build
up large
packets

• When send,
measure
dispersion

Latency Measurements

• TCP throughput directly dependent upon
latency (round-trip time)
– T = k / [RTT x sqrt(p)]

• Measure time for 40 byte TCP packet
exchange (minimize bottleneck
transmission)

• While P2P may be different than P2Server,
distribution to well-connected server still
of interest

4

Lifetime Measurements

• States:
– Offline – not connected or behind firewall
– Inactive – connected but not doing P2P
– Active – participating in P2P

• Send TCP SYN to P2P port
– If no packet, then offline
– If RST then inactive
– If SYN/ACK then active

Summary of Active Measurements

• Lifetime - random subset of peers
– 17,125 Gnutella peers over 60 hours, every

7 minutes
– 7,000 Napster peers over 25 hours, every 2

minutes
• Bottleneck and Latency

– Tried 595,974 Gnutella peers, only 223,552
reliable downstream, 16,252 upstream,
339,502 latency

– Tried 4079 Napster peers, with 2049
successful (complaints of “intrusive” forced
to stop early)

Limitations of Methodology

• Ideal should include workload
– So could see how to tune system

• Ideal should know “birth” rate so know how will
scale

• May incorrectly classify peers
– IP addresses may be shared (multiple hosts behind

NAT box), but think are one
– IP addresses may be re-used (DHCP), so “same”

peer moves
• Little (scientific) knowledge about broadband so

unclear of effects on performance
– Packet loss, congestion … (queues! ☺)

Outline

• Introduction (done)
• Methodology (done)
• Results (next)
• Recommendations
• Conclusions

Peers with Server-Like Capacity?
(Measured)

Gnutella Peers

Upstream
-Only 8% > 10Mbps
-22% < 100Kbps

Asymmetric
-Good for downloads
-Bad for server

Measured Download Capacity

Broadband
-Napster 50%
-Gnutella 60%

Modems
-Napster 25%
-Gnutella 8%

-Gnutella needs flooding, so more capacity
-Gnutella rumor is more technical, and they have more capacity

5

Reported Capacities for Napster

Unknowns may be mis-reporting to avoid downloads
(MLC: maybe they don’t know? Other ratios match)

Measured Latencies for Gnutella

20% > 280ms
20% < 70ms
Æ 4x closer!
5% > 1000ms

Server Like Gnutella Peers?

Europe

East Coast

Peers with Server-Like Uptimes?
(Measured)

(Uptime percentage)

IP uptimes
similar

Napster peers participate more. Perhaps due to “chat”
and “MP3” in Napster? Or maybe more useful?

Session Durations

- ½ have uptime < 1 hour
+ About the time to download some songs

- Since number of peers constant, the
½ is replaced by another ½

Number of Shared Files - Gnutella

25% “free riders”
7% > 1000
+ Offer more than all the

others combined

(Don’t have data on 0 files
for Napster)

6

Number of Shared Files
(“Zero” Files Removed)

-Slightly more consistent in Napster
-Still, suggests many free riders
in Napster, too

Number of Shared Files – Napster
(Reported Capacity)

-Capacity has little correlation
with number of files shared

Number of Downloads
-Lower bandwidth users
do most of the downloads?

Downloads versus Sharing -
Napster

-Users that share less
perhaps are less interested

Shared Files versus Total Size

-Slope is about 3.7 MB (typical
MP3)

-Gnutella allows any file, so varies
more

Napster

Gnutella

Measured Downstream Bottleneck
-30% report modem but over 100k
+ Intentional?

-Only 10% T1’s low

-Correlation between Sprobe
and Reported is good

7

Measured Downstream Bottleneck

-Suggests “unknown” users
really do not know

Resiliency in the Face of Failure

- Predicted resiliency based on measured connectivity
- Uses power-law that is based on degree of connectivity

+ But nodes “prefer” good nodes so some well-connected
-But what if a “malicious” attack at best connected nodes?

Gnutella Topologies

1771 Peers, 02/16/01 30% randomly removed

4% best connected removed

-Malicious, well-placed
attack can shatter even
reslient P2P networks!

Recommendations

• P2P systems assume equal peers
– But extreme heterogeneity across capacity,

latencies, lifetimes and shared data
Æ Instead, should delegate across hosts based on

physical characteristics
• P2P systems assume equal participation

– But clearly some download most, serve least
Æ Maybe impose equality if want equal performance

• P2P systems assume users want to cooperate
– But users will misrepresent if it gives them

advantage
Æ Instead, should try to measure instead of trusting

Conclusions

• Measured popular P2P file sharing systems
with many voluntary users

• Lessons:
– Significant heterogeneity
– Clear asymmetric behavior in users
– Peers deliberately mis-report information if

it helps them to do so

Future Work (MLC)

• Other systems: KaZaa, E-Donkey,
BitTorrent…

• New P2P systems based on lessons from
this paper
– Delegate based on capabilities, for example

• Measure total downloads, characteristics
of content

