
1

File System Design for and
NSF File Server Appliance

Dave Hitz, James Lau, and
Michael Malcolm

Technical Report TR3002
NetApp
2002

http://www.netapp.com/tech_library/3002.html

(At WPI: http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html)

Introduction

• In general, an appliance is a device
designed to perform a specific function

• Distributed systems trend has been to use
appliances instead of general purpose
computers. Examples:
– routers from Cisco and Avici
– network terminals
– network printers

• New type of network appliance is an
Network File System (NFS) file server

Introduction : NFS Appliance

• NFS File Server Appliance file systems
have different requirements than those of
a general purpose file system
– NFS access patterns are different than

local file access patterns
– Large client-side caches result in fewer

reads than writes
• Network Appliance Corporation uses a

Write Anywhere File Layout (WAFL) file
system

Introduction : WAFL

• WAFL has 4 requirements
– Fast NFS service
– Support large file systems (10s of GB) that can

grow (can add disks later)
– Provide high performance writes and support

Redundant Arrays of Inexpensive Disks (RAID)
– Restart quickly, even after unclean shutdown

• NFS and RAID both strain write performance:
– NFS server must respond after data is written
– RAID must write parity bits also

Outline

• Introduction (done)
• Snapshots : User Level (next)
• WAFL Implementation
• Snapshots: System Level
• Performance
• Conclusions

Introduction to Snapshots
• Snapshots are a copy of the file system at a given

point in time
– WAFL’s “claim to fame”

• WAFL creates and deletes snapshots
automatically at preset times
– Up to 255 snapshots stored at once

• Uses Copy-on-write to avoid duplicating blocks in
the active file system

• Snapshot uses:
– Users can recover accidentally deleted files
– Sys admins can create backups from running system
– System can restart quickly after unclean shutdown

• Roll back to previous snapshot

2

User Access to Snapshots
• Example, suppose accidentally removed file named

“todo”:
spike% ls -lut .snapshot/*/todo
-rw-r--r-- 1 hitz 52880 Oct 15 00:00 .snapshot/nightly.0/todo
-rw-r--r-- 1 hitz 52880 Oct 14 19:00 .snapshot/hourly.0/todo
-rw-r--r-- 1 hitz 52829 Oct 14 15:00 .snapshot/hourly.1/todo
-rw-r--r-- 1 hitz 55059 Oct 10 00:00 .snapshot/nightly.4/todo
-rw-r--r-- 1 hitz 55059 Oct 9 00:00 .snapshot/nightly.5/todo

• Can then recover most recent version:

spike% cp .snapshot/hourly.0/todo todo

• Note, snapshot directories (.snapshot) are
hidden in that they don’t show up with ls

Snapshot Administration
• The WAFL server allows commands for sys admins

to create and delete snapshots, but typically done
automatically

• At WPI, snapshots of /home:
– 7:00 AM, 10:00, 1:00 PM, 4:00, 7:00, 10:00, 1:00 AM
– Nightly snapshot at midnight every day
– Weekly snapshot is made on Sunday at midnight every

week
• Thus, always have: 7 hourly, 7 daily snapshots, 2 weekly

snapshots

claypool 32 ccc3=>>pwd
/home/claypool/.snapshot
claypool 33 ccc3=>>ls
hourly.0/ hourly.3/ hourly.6/ nightly.2/ nightly.5/ weekly.1/
hourly.1/ hourly.4/ nightly.0/ nightly.3/ nightly.6/
hourly.2/ hourly.5/ nightly.1/ nightly.4/ weekly.0/

Outline

• Introduction (done)
• Snapshots : User Level (done)
• WAFL Implementation (next)
• Snapshots: System Level
• Performance
• Conclusions

WAFL File Descriptors

• Inode based system with 4 KB blocks
• Inode has 16 pointers
• For files smaller than 64 KB:

– Each pointer points to data block
• For files larger than 64 KB:

– Each pointer points to indirect block
• For really large files:

– Each pointer points to doubly-indirect block
• For very small files (less than 64 bytes), data kept

in inode instead of pointers

WAFL Meta-Data

• Meta-data stored in files
– Inode file – stores inodes
– Block-map file – stores free blocks
– Inode-map file – identifies free inodes

Zoom of WAFL Meta-Data
(Tree of Blocks)

• Root inode must be in fixed location
• Other blocks can be written anywhere

3

Snapshots (1 of 2)
• Copy root inode only, copy on write for changed

data blocks

• Over time, old snapshot references more and more data
blocks that are not used
• Rate of file change determines how many snapshots
can be stored on the system

Snapshots (2 of 2)
• When disk block modified, must modify

indirect pointers as well

• Batch, to improve I/O performance

Consistency Points (1 of 2)

• In order to avoid consistency checks after
unclean shutdown, WAFL creates a special
snapshot called a consistency point every
few seconds
– Not accessible via NFS

• Batched operations are written to disk
each consistency point

• In between consistency points, data only
written to RAM

Consistency Points (2 of 2)
• WAFL use of NVRAM (NV = Non-Volatile):

– (NVRAM has batteries to avoid losing during
unexpected poweroff)

– NFS requests are logged to NVRAM
– Upon unclean shutdown, re-apply NFS requests to

last consistency point
– Upon clean shutdown, create consistency point and

turnoff NVRAM until needed (to save batteries)
• Note, typical FS uses NVRAM for write cache

– Uses more NVRAM space (WAFL logs are smaller)
• Ex: “rename” needs 32 KB, WAFL needs 150 bytes
• Ex: write 8KB needs 3 blocks (data, inode, indirect

pointer), WAFL needs 1 block (data) plus 120 bytes
for log

– Slower response time for typical FS than for WAFL

Write Allocation
• Write times dominate NFS performance

– Read caches at client are large
– 5x as many write operations as read

operations at server
• WAFL batches write requests
• WAFL allows write anywhere, enabling

inode next to data for better perf
– Typical FS has inode information and free

blocks at fixed location
• WAFL allows writes in any order since uses

consistency points
– Typical FS writes in fixed order to allow

fsck to work

Outline

• Introduction (done)
• Snapshots : User Level (done)
• WAFL Implementation (done)
• Snapshots: System Level (next)
• Performance
• Conclusions

4

The Block-Map File
• Typical FS uses bit for each free block, 1 is

allocated and 0 is free
– Ineffective for WAFL since may be other

snapshots that point to block
• WAFL uses 32 bits for each block

Creating Snapshots
• Could suspend NFS, create snapshot,

resume NFS
– But can take up to 1 second

• Challenge: avoid locking out NFS requests
• WAFL marks all dirty cache data as

IN_SNAPSHOT. Then:
– NFS requests can read system data, write

data not IN_SNAPSHOT
– Data not IN_SNAPSHOT not flushed to

disk
• Must flush IN_SNAPSHOT data as quickly

as possible

Flushing IN_SNAPSHOT Data
• Flush inode data first

– Keeps two caches for inode data, so can copy
system cache to inode data file, unblocking most
NFS requests (requires no I/O since inode file
flushed later)

• Update block-map file
– Copy active bit to snapshot bit

• Write all IN_SNAPSHOT data
– Restart any blocked requests

• Duplicate root inode and turn off IN_SNAPSHOT
bit

• All done in less than 1 second, first step done in
100s of ms

Outline

• Introduction (done)
• Snapshots : User Level (done)
• WAFL Implementation (done)
• Snapshots: System Level (done)
• Performance (next)
• Conclusions

Performance (1 of 2)

• Compare against NFS systems
• Best is SPEC NFS

– LADDIS: Legato, Auspex, Digital, Data
General, Interphase and Sun

• Measure response times versus throughput
• (Me: System Specifications?!)

Performance (2 of 2)

(Typically, look for “knee” in curve)

5

NFS vs. New File Systems

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000
Generated Load (Ops/Sec)

R
es

po
ns

e
Ti

m
e

(M
se

c/
O

p)

10 MPFS Clients

5 MPFS Clients &
5 NFS Clients
10 NFS Clients

• Remove NFS server as bottleneck
• Clients write directly to device

Conclusion

• NetApp (with WAFL) works and is stable
– Consistency points simple, reducing bugs in

code
– Easier to develop stable code for network

appliance than for general system
•Few NFS client implementations and limited

set of operations so can test thoroughly
• WPI bought one ☺

