Journal File Systems
(Modern File System)

Juan I. Santos Florido

Linux Gazette
Issue 55
July 2000

http://www.linuxgazette.com/issue55/florido. html

Introduction (1 of 2)

° Linux increasingly heterogeneous, so taking
on features to satisfy other environments

- micro-controllers, routers, 3-D hardware
speedup, multi-head Xfree, games, window
managers...

° Huge step forward for Linux server needs

- Getting most important commercial UNIX
and large server's features

B - Support for server-quality file systems

Introduction (2 of 2)

® Linux servers must ...
- Deal with large hard-disk partitions
- Scale up easily with thousands of files
- Recover quickly from crash
- Increase I/0 performance
- Behave well with both small and large files

- Decrease internal and external
fragmentation

° This article introduces basics of Journal
B File Systems:
I - Examples: JFS, XFS, Ext3FS, and ReiserFS

- Spread out blocks create slowdown

- (How is this different than in memory?)
° Extents (next)
® B+ Tree (next, next)

Glossary
* Internal Fragmentation
- Allocated but unused
\ - (Same as in memory)
* External Fragmentation
|

WPI

Outline

* Introduction (done)
° Glossary (next)
* Problems

- System crashes

- Scalability

- Dir entries

- Free blocks

- Large files
° Other Enhancements

n . Summary

Extents

° Sets of contiguous logical blocks
- Beginning - block addr where extent begins
- Size - size in blocks
- Offset - first byte the extent occupies

file extents

r q-
s Moo, oo

° Benefits
* Enhance spatial locality, reducing external frag, having
better scan times, since more blocks kept spatially
together
* Improve multi-sector transfer chances and reduce hard
disk cache misses

B+Tree

° Heavily used in databases for data indexing
° Insert, delete, search all O(logs N')
- F=fanout, N = # leaves
- tree is height-balanced.
° Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries
- dis called the order of the tree
- Typically d = (3 pagesize) / (entry size)

Index Entries
(Direct search)

Data Entries
("Sequence set")

Example B+Tree

° Search begins at root, and key comparisons
direct it to a leaf

* Search for 5* or 15* ...

—
‘24" 17'129" ‘ ‘33" 34"35"39"

I U Based on the search for 15*, we know it is not in the tree!

Inserting a Data Entry into a B+Tree

° Find correct leaf L.
* Put data entry onto L.
- If L has enough space, done!

- Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

° This can happen recursively

- To split index node, redistribute entries evenly,
but push up middle key. (Contrast with leaf splits.)

* Splits "grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

g

Example B+Tree After Inserting
8*

Root\A
LTI

A Py m/r\!r\l\

‘z" a" ‘ [s[7[8] [r#]re]] J[of20{22] | [24]27f2e]][38fs4{38]3%]

= Notice root split, leading to increase in height.

= In this example, we can avoid split by re-
distributing entries; however, this is usually not
done in practice. WP!

Inserting 8* into Example B+Tree

—— Entry to be inserted in parent node.
(Note that 5 is copied up and
continues to appear in the leaf.)

* Observe how -5
minimum
occupancy is —
guaranteed in ‘2. ‘3‘ ‘ ‘ ‘5. ‘7*‘5-‘ ‘
both leaf and
index splits.

* Note
difference

between copy-
up and push-up I

| S T R 2 I
Ve P

Entry to be inserted in parent node.

5 (Note that 17 is pushed up and only

appears once in the index. Contrast
this with a leaf split.)

Deleting a Data Entry from a B+Tree

Start at root, find leaf L where entry belongs.
* Remove the entry.
- IfLis at least half-full, done!
- If L has only d-1 entries,
* Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).
* If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

Merge could propagate to root, decreasing height.

WP

Deleting 19* and then 20*

Root\‘
[T LI
[of=l 11
r“th znT 221 ‘/‘\“241 17‘1 19'1 rﬁ:z“ 34‘1 38“ JS‘W

A oA
I L el

Deletion of 19* - leaf node is not below the minimum number of
entries after the deletion of 19*. No re-adjustments needed.

Deletion of 20* ->leaf node falls below minimum number of entries
* re-distribute entries
+ copy-up low key value of the second node

Example Tree After (Inserting 8%,
Then) Deleting 19* and 20* ...

Root

LT
[l 1

s ey e s =
I 2 O O 5 6 S

° Deleting 19* is easy.
° Deleting 20* is done with re-distribution. Notice
how middle key is copied up.

L DN W A .

Bulk Loading of a B+ Tree

* Large collection of records, and we want to create a B+ tree
- could do repeated insert, but slow
* Bulk Loading more efficient
* Initialization: Sort all data entries, insert pointer to first
(leaf) page in a new (root) page.

Root™s

Sorted pages of data entries; not yet in B+ tree

g

Summary of Bulk Loading

° Option 1: multiple inserts
- Slow.

- Does nhot give sequential storage of leaves.
° Option 2: Bulk Loading

- Has advantages for concurrency control.

- Fewer I/Os during build.

- Leaves will be stored sequentially (and
linked, of course).

- Can control “fill factor” on pages.

WPI

* Index entries

Bulk Loading (Contd.)
for leaf pages

s
Roo o] o]
always entered IE w2]| [z

into right-most / j / L / J

index page just_# ; /

above toaf * [51# 6] ifi i e lsfor] s sfo o]
level. When
this fills up, it
splits. (Split
may go up
right-most
path to the
root.)

Data entry pages
not yet in B+ tree

Data entry pages
notyet in B+ tree

A1 2 A 3 | | ECI

ANV RN —

i

B+ Trees in Practice (db)

* Typical fill-factor: 67%.
- average fanout = 133
° Typical capacities:
- Height 3: 1333 = 2,352,637 records
- Height 4: 1334 = 312,900,700 records
° Can often hold top levels in buffer pool:
- Level 1= 1page = 8 Kbytes
- Level 2= 133 pages= 1 MByte
- Level 3= 17,689 pages = 133 MBytes

WP

Outline

(done)
(done)

Introduction
Glossary

Problems

- System crashes

- Scalability

- Dir entries

- Free blocks

- Large files

Other Enhancements
Summary

(hext)

Problem : System Crashes

Memory cache to improve disk
performance

System crash causes inconsistent state

- Example: block added to i-node but not
flushed to disk

Upon reboot, must repair whole file system

Problematic for systems with 100
Gigabytes or even Terabytes

Solution? > Journaling

L DN W A .

.

.

The Journal : How it Works

Atomicity - All operations in transaction are:
- completed without errors, or ...

- cancelled, producing no changes

Log every operation to log file

- Operation name

- Before and after values

Every transaction has commit operation

- Write buffers to disk

System crash?

- Trace log to previous commit statement

- Weriting values back to disk

Note, unlike databases, file systems tend to log
metadata only

- i-nodes, free block maps, i-nodes maps, etc.

L NS W

Problem : Scalability

UNIX File Systems (ext2fs) for smaller hard
disks

Disks growing in capacity

- Leads to bigger files, directories and partitions
File system structures have fixed bits to store
file size info, logical block number, etc.

- Thus, file sizes, partition sizes and the number of
directory entries are limited

Even if can manage sizes, performance suffers

WPI

X
Y

Transaction : Example

Record action plus old and new values

=0; Log Log Log
=0;

BEGIN_TRANSACTION;

X=x+1; [x=0/1] [x=0/1] [x=0/1]
y=y+2 [y=0/2] [y=0/2]
x=y*y; [x=1/4]

END_TRANSACTION;

(a) (b) () (d)

a) A fransaction

b) - d) Record to log before each statement is executed
If transaction commits, nothing to do
If transaction is aborted, use log to rollback

Solution : Scalability
Solving the Size Limitations

Max filesys size Block sizes Max. file size
T 18 thousand 512 bytes to 9 thousand petabytes
petabytes 64KB
512 bytes 512 Tb with 512 bytes blocks
blocks / 4 512, 1024,
JFS netahutes 2048, 4096
4KB blocks / bytes 4 petabytes with 4KB blocks
32 petabytes
10 1 1
Up to 64KB 4GB, 20 petabytes in ReiserFS
Reiser gl Currently fixed Bom)
blocks, 16 Tb 4KB
Ext3 4Tb 1KB-4KB 2GB

WP

Problem : Obtaining Free Blocks

° UFS and ext2fs use bitmap,
- As file system grows, bitmap grows
- Sequential scan for free blocks results in
performance decrease (O(num_blocks))
* (Notice not bad for moderate size file
systeml)
° Solution? > Use extents and/or B+Trees

Solution : Obtaining Free Blocks

° Extents

- Locate several free blocks at once, avoiding multiple
searches

- Reduce the structure's size, since more logical
blocks are tracked with less than a bit for each
block

- Free block's structure size no longer depends on
the file system size (structure size would depend on
the number of extents maintained)

° B+Trees

- Organize free blocks in B+tree instead of lists
B+Trees and Extents

- Organize extents in B+tree

- Indexing by extent size also by extent position

° To find file, traverse the directory entries

Problem: Large Number of
Directory Entries
° Directories entries are pairs (i-node, file name).
directory into a list
- Sequential scan for free blocks results in
performance decrease (O(hum_entries))
* (Notice not bad for moderate size file system!)
[|

* Solution? > B+Trees for directory entries

- Some have B+Trees for each dir, while others have
B+Tree for the whole file system directory tree.

Problem : Large Files

° Ext2fs and UFS
were designed with
the idea that the
file systems would
contain small files
mainly.

- Large files use
more indirect
pointers, so a
|

higher more disk
Solution? > B+Trees
and modified i-nodes

Example: B+Tree for Dir Entries

Example: find resolv.conf in /etc directory

{1}to Tocate the fie resolv.conf (3) we got the final leaf node.
we begin al the ree's roat. Nﬂwwt‘srhwammsca: %
scan sequentizlly, and find sequentially thraughaut the

P ascending ardered keys of
m:hll:sr:‘:s ;;lk Z%Eal:i {he node. Finally, found the
the last poinier (in red)

{2} got directed to anather intemal node
Lef's do the same. Scan through e node's
keys and realise fhat "securetty” is a greater
key than "resolv.conf", We use the
accompanying pointer (in blug).

desired key, we shoild use
the accompanying pointer
tothe "resolv.conf” named
fle.

Jete entries indexed

Solution : Large Files

* i-node use for small files
- Direct block pointers
- Or even data in i-node (good for symbolic links)
° B+Trees to organize the file blocks for larger files

- indexed by the offset within the file; then, when a
certain offset within the file is requested, the file
system routines would traverse the B+Tree to
locate the block required.

WP

Outline

* Introduction (done)

® Glossary (done)
‘ ° Problems

- System crashes (done)

- Scalability (done)

- Dir entries (done)

- Free blocks (done)

- Large files (done)

° Other Enhancements (hext)
° Summary

Other Enhancements : Sparse Files

° Support for sparse files

- New file, write 2 bytes, then write offset
10000. Would need blocks to cover gap.

- Solution? > Extents

extent desciptor
st black | extent size i blocks | ffset of the block within the fle Return
" "
file extents gap belween null If

offset 1.and 10 read

between
extents

PSS 46 0t MR ARG LS

block sze = 1 Firswie, 2 s nfo lock 24 Seoond e,
ofsel 10000 ->{10000-1024} 1024 =87 gap e nblocks =5
el 10000 i e mide o e tenh black of e fle

Other Enhancements : Internal
Fragmentation Solution

° Large blocks == large int. fragmentation

* Small blocks == more disk I/0

°* Solution? > Leaf nodes of B+Tree can have
data itself

- Allow multiple file tails o be allocated
together

- However, can increase external
fragmentation

- Made an option for system administrators

[¥
%
bt

upon system crash
° B+Trees and Extents to improve
performance for large file systems
* Misc other system features in some
- Sparse file support
- Combat internal fragmentation
- Dynamic i-nodes

Modern File System Summary
° Built to operate on today's large disks
‘ ° Journaling to reduce costs of “fixing" disks
|

WPI

Other Enhancements : Dynamic I-
node Allocation

° Typically on UFS, fixed number of i-nodes
- Created during disk format
- Can run out, even if disk space left!
* Solution? > Dynamic allocation of i-nodes
- Allocate i-nodes as needed
- Need data structures to keep track of
* Store allocated i-nodes in B+Tree
- Access a bit slower, since no direct table
* Overall, dynamic i-nodes more complex and time
consuming, but help broaden the file system limits

Future Work
* Performance
- Read/Write
- Search operations
- Directoriy operations
° Robustness
WP

