
1

1500 Archers on a 28.8: 
Network Programming in Age 

of Empires and Beyond

J. Smed, T. Kaukoranta and H. Hakonen 

Gamasutra
(First appeared at the Game Developer’s 

Conference, 2001)
March 22, 2001

Age of Empires – Promo

http://www.microsoft.com/games/empires/multimedia.htm

Age of Empires – Real Time Strategy

• Build
• Combat
• Explore

Introduction

• This page explains Age of Empires (AoE) 1 
and 2 multiplayer implementation.

• Explains:
– Design Architecture 
– Implementation
– Lessons learned 

• Also for the “future” RTS by Ensemble
– (Age of Mythology, AoM)

Outline

• Introduction (done)
• Implementation (next)
• Lessons Learned
• Improvements for AoE 2
• RTS3
• Summary

AoE: Multiplayer Design Goals

• Support for 8 players
• Smooth simulation over modem, Internet, 

LAN
• Target platform: 16 MB P-90, 28.8 modem

– (AoM is PX-450, 56.6 modem)
– At 15 frames per second (one frame every 

67 ms)
• Use (existing) Genie engine

– next



2

AoE in Early Stages (1 of 2)

• Game engine was running
– 2d, single-threaded game loop
– Sprites in 256 colors
– Reasonably stable

• Large map, thousands of objects, trees could be 
chopped, animals ran around …

• Breakdown:
– 30% graphic rendering
– 30% AI
– 30% simulation

• “Compelling” single-player game already
– (ie- “Don’t ruin it!”)

AoE in Early Stages (2 of 2)

• Wanted: army on army, large supporting structure, 
… (“1500 archers on a …”)

• Time to complete each simulation step varied:
– Render time changes with number of units
– When scrolling
– AI computation time varied with units or time
– As much as 200 ms (larger than a frame time!)

• Bandwidth a critical resource:
– Passing x,y coordinates, status, action, facing 

damage … limit of 250 moving units at most
– (MLC: 1 bytes each 6 actions x 250 units x 15 

updates per second ~ 160 Kbps) 

Simultaneous Simulations

• Each PC ran exact same simulation
– Synchronized game time
– Synchronized random number generators

• Still
– Internet latency from 20 to 1000 

milliseconds
– Variable time to process each step

• Needed a more responsive approach

Communication Turns
• Separate communications turns from frame 

rendering
• Schedule commands for later time

– Allows for some variance in network and turn 
processing

• Turns typically 200 ms in length
– Send all commands entered that turn, but schedule 

them for 2 turns later
– Process any scheduled turns

The Need for Speed Control
• Since all machines in 

“lock step”, can only 
run as fast as slowest 
machine
– Process 

communications, 
render turn, send out 
new commands

• “Lag” if
– One machine slows 

down and others wait
– Delayed or lost 

Internet data

Speed Control
• Each client calculates frame rate

– Since varies with game state, use moving average
– Send with “Turn Done” message
– Use to achieve “minimum” frame rate

• Each client measures round-trip “ping” time
– Since varies with Internet traffic, use largest for 

all players (MLC: assume moving average)
• fps + rtt 2-bytes total overhead
• After getting “Turn Done” messages

– Adjust target frame rate (based on local PC render 
rate)

– Adjust communication turn (based on ping-times + 
remote PC render rates)

– Weighted, so only “laggy” during worst spikes
• (Examples next)



3

Speed Control

1) Typical communication turn

2) High latency, normal machine

3) High latency, slow machine

Transport Protocol - UDP
• Unreliable, so each client handles command 

ordering, drop detection and re-sending
– “When in doubt, assume it dropped”

• Messages arriving from past turns are 
discarded

• If out of order message received, request 
a resend of supposedly “missing” messages
– Note, if really out of order, will get 

duplicate so must account for
• If ack is “late”, then assume lost so resend

Side Benefit - Cheat Prevention

• Simultaneous simulations means games are 
identical

• If there is a discrepancy, game stopped
• Prevents cheaters from using hacked client
• But there still could be cheating via 

information exposure

Side Problems – Out of Synch

• Subtle, since small errors multiply 
– Example – a deer slightly out of alignment, 

causes villager to “miss” so no meat, causing 
different food amounts

• Checksums (objects, pathing, targeting …), 
but always something
– Wade through 50 MB of message traces
– (MLC: different game states when 

commands are lost or are too late?)

“In every project, there is one stubborn bug 
that goes all the way to the wire…”
– Microsoft product manager

Outline

• Introduction (done)
• Implementation (done)
• Lessons Learned (next)
• Improvements for AoE 2
• RTS3
• Summary

Lesson: Know Your User

• Each genre is different
– RTS
– FPS
– Sports
– MMORPG
– …

1) Know latency expectations
2) Prototype multiplayer aspects early
3) Watch for behavior that hurts multiplayer 

performance



4

Know Your User - Expectations

• Simulated latency with single-player engine
– Look for: good, sluggish, jerky, horrible

• For AoE
– 250 milliseconds (ms) not noticed
– 250-500 ms playable
– 500+ ms noticeable

• Consistent slow (500 ms) better than 
“jerky” (80 ms – 500 ms)
– Suggested picking conservative turn length
– Make change to new turn length gradually

Know Your User - Actions

• Users clicked once per 1.5 – 2 seconds
• During battle, spikes of 3-4 clicks per 

second
• Many of the commands are repeats

– Turn is longer than command
– Unit takes several turns to process

• Add “filter” to remove repeat commands 

Lesson: Metering is King

• Make performance meters human readable 
and understood by testers
– Need to educate testers
– Testers can notice differences, help 

determine where problems are
• Keep running all the time

– Low impact
– Early development measurements may 

change in later game

Lesson: Educating the Developers

• Get programmers to think about 
multiplayer (distributed systems!)

• Multiple, independent processing
– Command request might happen later (or not 

at all)
• Additional calls to random numbers can 

throw off synchronization
– Random sounds or animations on high-perf 

computers need to save and re-seed to keep 
random in-synch

Misc Lessons
• Verify 3rd party code (AoE used Microsoft’s 

DirectPlay)
– Is “guaranteed delivery” guaranteed?
– Does product have hidden bottlenecks?

• Create simulations and stress tests
– Isolated connection flooding, simultaneous 

connections, dropping of guaranteed packets…
• Test with modems as early as possible

– Hard to isolate network problems (ex: could be ISP)
– Helps make sure not the networking part
– Although tests harder (and not as fun), do as many 

modem tests as LAN tests

Outline

• Introduction (done)
• Implementation (done)
• Lessons Learned (done)
• Improvements for AoE 2 (next)
• RTS3
• Summary



5

Improvements for Age of Empires 2 
– the Age of Kings

• New multiplayer features
– Recorded games
– File transfer (custom maps)
– Statistics tracking (on “The Zone”)

• Recorded games helps in debugging
– Can replay exactly to spot problems

Outline

• Introduction (done)
• Implementation (done)
• Lessons Learned (done)
• Improvements for AoE 2 (done)
• RTS3 (next)

– Overview
– New features and tools

• Summary

RTS3 – Beyond AoE

• RTS3 is “codename” for next generation 
Ensemble RTS (probably Age of Mythology)

• Add 3-d capability (used BANG!)
• Multiplayer requirements

– Again, complex maps, thousands of units, 
Internet play

– More than 8 players (AoM allows 12)
– Still modem, but 56.6k
– May be firewalls and NAT boxes so peer-to-

peer harder

RTS3
• Forget DirectPlay created own library

– Use in subsequent games
– Integrated with BANG!

• Fully 3-d world meant frame rate maybe an 
issue
– Overall smoothness from frame rate 

impacted
– Also more variation

• Realized play-testing was iterative, so 
wanted multiplayer running earlier

An OO Approach

(Make protocol specific parts as small as possible)

Peer-to-Peer Topology
• Strengths

– Reduces latency
– No central point of 

failure (can continue 
game if one client 
leaves)

• Weaknesses
– More active 

connections (n)
– Impossible to support 

some NATs



6

Net.lib (1 of 2)
• Level 1: Socks

– Fundamental C API, 
Berkeley sockets

• Level 2: Link
– Transport layer services
– Packet, Link, Listener, 

Data stream, Network 
Address, Ping

Net.lib (2 of 2)

• Level 3: Multiplayer
– Client, Session, Channel 

(ordered or unordered), Time 
Sync

• Level 4: Game Communications
– RTS functionality (could 

define others for different 
genres)

New Tools and Features

• Improved synch
– Geared towards rapid turn around time 

from out-of-synch bugs
– Compile-out extra synch debugging code 

upon release
• Console commands and config

– Simple text “hooks” to game engine
– In multiplayer, passed to other clients and 

executed there
– Testing without writing additional code

Summary

• Peer-to-Peer for responsiveness
• Synchronous simulation for scalability
• Compensation for heterogeneity in clients 

and variability in networking
• Overall

– Multiplayer “feels” like single player
– Success!


