1500 Archers on a 28.8:
Network Programming in Age
of Empires and Beyond

J. Smed, T. Kaukoranta and H. Hakonen

Gamasutra

(First appeared at the Game Developer's
Conference, 2001)

March 22, 2001

WP

Age of Empires - Real Time Strategy

iy

;. Build

Age of Empires - Promo

http://www.microsoft.com/games/empires/multimedia.htm

WP

Outline

* Introduction (done)
° Implementation (next)
° Lessons Learned

° Improvements for AoE 2

® RTS3

® Summary

WPl

Introduction

° This page explains Age of Empires (AoE) 1
and 2 multiplayer implementation.
° Explains:
- Design Architecture
- Implementation
- Lessons learned
° Also for the “future” RTS by Ensemble
- (Age of Mythology, AoM)

AoE: Multiplayer Design Goals

° Support for 8 players

* Smooth simulation over modem, Internet,
LAN

° Target platform: 16 MB P-90, 28.8 modem
- (AoM is PX-450, 56.6 modem)

- At 15 frames per second (one frame every
67 ms)

° Use (existing) Genie engine
- hext

WPl

AoE in Early Stages (1 of 2)

Game engine was running

- 2d, single-threaded game loop

- Sprites in 256 colors

- Reasonably stable

Large map, thousands of objects, trees could be
chopped, animals ran around ...

Breakdown:

- 30% graphic rendering

- 30% AT
- 30% simulation
“Compelling" single-player game already

- (ie- "Don't ruin it!")

- Synchronized game time

- Synchronized random number generators
° Still

- Internet latency from 20 to 1000

milliseconds
- Variable time to process each step
@ ° Needed a more responsive approach

Simultaneous Simulations
* Each PC ran exact same simulation

The Need for Speed Control

J

machine

- Process
communications,

new commands
'Y \\Lagﬂ if

- Delayed or lost
Internet data

* Since all machines in
“lock step”, can only
run as fast as slowest

render turn, send out

- One machine slows
down and others wait

WPl

:

AoE in Early Stages (2 of 2)

* Wanted: army on army, large supporting structure,
.. ("1500 archers on a ..")
* Time to complete each simulation step varied:
- Render time changes with humber of units
- When scrolling
- AI computation time varied with units or time
- As much as 200 ms (larger than a frame time!)
° Bandwidth a critical resource:
- Passing x,y coordinates, status, action, facing
damage ... limit of 250 moving units at most
- (MLC: 1 bytes each - 6 actions x 250 units x 15
updates per second ~ 160 Kbps)

E

]

Communication Turns

° Separate communications turns from frame
rendering
° Schedule commands for later time
- Allows for some variance in network and turn
processing
° Turns typically 200 ms in length

- Send all commands entered that turn, but schedule
them for 2 turns later

- Process any scheduled turns

290

1000 1001 1002 1003
current fum

R NS W .

Speed Control

Each client calculates frame rate

- Since varies with game state, use moving average

- Send with "Turn Done" message

- Use to achieve "minimum” frame rate

Each client measures round-trip "ping" time

- Since varies with Internet traffic, use largest for
all players (MLC: assume moving average)

fps + rtt > 2-bytes total overhead

After getting "Turn Done" messages

- Adjust target frame rate (based on local PC render
rate)

- Adjust communication turn (based on ping-times +
remote PC render rates)

- Weighted, so only "laggy" during worst spikes
(Examples next)

WPl

Speed Control

Comrmunications turn (200 msec) - scaled o round-trip ping' time estimates

Pracass il mestapes Frams

Frame Frame |
Frame - scaled torendering speed
£0 msec 50 msec &0 msec S0mMsEc 204

1) Typical communication turn

Commurications tum (1000 msac)- scaled to ‘round-trip ping' time estimates

Pooces all 6
essages | Tame | Frame | Frame | QOO

Frame | Frame | Fame | Fame | Frame r..m.l

S0msec 20 frarmes, 50 msec each 20
2) High latency, normal machine

Communications tun (200 msec)

staled o ‘round-trip ping' time estimates

Frogess all mesages _ Frame
Frarme - =caled to rendering sp2ed

100 msec 100 msec Wons

3) High latency, slow machine

WP

identical
° If there is a discrepancy, game stopped
* Prevents cheaters from using hacked client
° But there still could be cheating via

information exposure
WP

Side Benefit - Cheat Prevention
° Simultaneous simulations means games are

* Improvements for AoE 2
° RTS3
® Summary

Outline
* Introduction (done)
° Implementation (done)
° Lessons Learned (next)
i

WPl

Transport Protocol - UDP

* Unreliable, so each client handles command
ordering, drop detection and re-sending

- "When in doubt, assume it dropped”

° Messages arriving from past turns are
discarded

° If out of order message received, request
a resend of supposedly “missing” messages

- Note, if really out of order, will get
duplicate so must account for

* If ack is “late”, then assume lost so resend

WP

]

Side Problems - Out of Synch

“In every project, there is one stubborn bug
that goes all the way to the wire...”
— Microsoft product manager

° Subtle, since small errors multiply
- Example - a deer slightly out of alignment,
causes villager to "miss" so no meat, causing
different food amounts
° Checksums (objects, pathing, targeting ..),
but always something
- Wade through 50 MB of message traces
- (MLC: different game states when
commands are lost or are too late?)

N -

CIm
3

Lesson: Know Your User

° Each genre is different
- RTS
- FPs
- Sports
- MMORPG

1) Know latency expectations
2) Prototype multiplayer aspects early

3) Watch for behavior that hurts multiplayer
performance

R NS W .

WPl

Know Your User - Expectations

Simulated latency with single-player engine
- Look for: good, sluggish, jerky, horrible

For AoE

- 250 milliseconds (ms) not noticed

- 250-500 ms playable

- 500+ ms noticeable

Consistent slow (500 ms) better than
“jerky” (80 ms - 500 ms)

- Suggested picking conservative turn length
- Make change to new turn length gradually

WP

]

Lesson: Metering is King

* Make performance meters human readable
and understood by testers
- Need to educate testers

- Testers can notice differences, help
determine where problems are

° Keep running all the time
- Low impact
- Early development measurements may

W .

change in later game

i
3

- Does product have hidden bottlenecks?
° Create simulations and stress tests
- Isolated connection flooding, simultaneous
connections, dropping of guaranteed packefts...
° Test with modems as early as possible
- Hard to isolate network problems (ex: could be ISP)
- Helps make sure not the networking part

- Although tests harder (and not as fun), do as many
modem tests as LAN tests

Misc Lessons
* Verify 3rd party code (AoE used Microsoft's
DirectPlay)
- Is "guaranteed delivery” guaranteed?
i
I WP

]

Know Your User - Actions

Users clicked once per 1.5 - 2 seconds
During battle, spikes of 3-4 clicks per
second

Many of the commands are repeats

- Turn is longer than command

- Unit takes several turns to process

Add “filter” to remove repeat commands

W -

]

Lesson: Educating the Developers

Get programmers to think about

multiplayer (distributed systems!)

Multiple, independent processing

- Command request might happen later (or not
at all)

Additional calls to random numbers can

throw of f synchronization

- Random sounds or animations on high-perf
computers need to save and re-seed to keep
random in-synch

R NS W .

WPl
Outline
* Introduction (done)
° Implementation (done)
* Lessons Learned (done)
* Improvements for AoE 2 (hext)
* RTS3
° Summary
WPI

Improvements for Age of Empires 2
- the Age of Kings

° New multiplayer features

- Recorded games

- File transfer (custom maps)

- Statistics tracking (on "The Zone")
° Recorded games helps in debugging

- Can replay exactly to spot problems
WP

Ensemble RTS (probably Age of Mythology)
° Add 3-d capability (used BANG!)
° Multiplayer requirements

- Again, complex maps, thousands of units,
Internet play

- More than 8 players (AoM allows 12)
- Still modem, but 56.6k

RTS3 - Beyond AoE
° RTS3 is "codename” for next generation

i} - May be firewalls and NAT boxes so peer-to-
peer harder

WP
An OO Approach
T 1] Protocol Speific
opol)’ur.r ic
I'l Clent I
I (Make protocol specific parts as small as possible) | WPL

Outline
* Introduction (done)
° Implementation (done)
* Lessons Learned (done)
° Improvements for AoE 2 (done)
° RTS3 (next)

- Overview
- New features and tools
Summary

-
g

RTS3

Forget DirectPlay > created own library

- Use in subsequent games

- Integrated with BANG!

Fully 3-d world meant frame rate maybe an

issue

- Overall smoothness from frame rate
impacted

- Also more variation

Realized play-testing was iterative, so

wanted multiplayer running earlier

W -

e
5

Peer-to-Peer Topology

° Strengths
- Reduces latency

- No central point of
failure (can continue
game if one client
leaves)

* Weaknesses

- More active
connections (n)

- Impossible to support
some NATs

R NS W .

WPl

]

Net.lib (1 of 2)

* Level 1: Socks

(Game Communication|
- Fundamental C APT, Multiplayer
Berkeley sockets Link
* Level 2: Link Sooks

- Transport layer services

- Packet, Link, Listener,
Data stream, Network
Address, Ping

AN m

New Tools and Features

* Improved synch

- Geared towards rapid turn around time
from out-of-synch bugs

- Compile-out extra synch debugging code
upon release

* Console commands and config
- Simple text “hooks" to game engine

- In multiplayer, passed to other clients and
executed there

- Testing without writing additional code

]

Net.lib (2 of 2)

° Level 3: Multiplayer (Game Communication
- Client, Session, Channel MRS
(ordered or unordered), Time Sk
Sync Sooes
° Level 4: Game Communications
- RTS functionality (could
define others for different
genres)
WP

N -

Summary

° Peer-to-Peer for responsiveness

° Synchronous simulation for scalability

° Compensation for heterogeneity in clients
and variability in networking

° Overall
- Multiplayer “feels" like single player
- Success!

