
The Effectiveness of Request  Redirection on CDN Robustness 

Abstract 

It is becoming increasingly common to construct net- 
work services using redundant resources geographically 
distributed across the Internet. Content Distribution Net- 
works are a prime example. Such systems distribute 
client requests to an appropriate server based on a va- 
riety of factors---e.g., server load, network proximity, 
cache locality--in an effort to reduce response time and 
increase the system capacity under load. This paper ex- 
plores the design space of strategies employed to redi- 
rect requests, and defines a class of new algorithms that 
carefully balance load, locality, and proximity. We use 
large-scale detailed simulations to evaluate the various 
strategies. These simulations clearly demonstrate the ef- 
fectiveness of our new algorithms, which yield a 60-91% 
improvement in system capacity when compared with 
the best published CDN technology, yet user-perceived 
response latency remains low and the system scales well 
with the number of servers. 

1 Introduction 
As the Internet becomes more integrated into our every- 
day lives, the availability of information services built 
on top of it becomes increasingly important. However, 
overloaded servers and congested networks present chal- 
lenges to maintaining high accessibility. To alleviate 
these bottlenecks, it is becoming increasingly common 
to construct network services using redundant resources, 
so-called Content Distribution Networks (CDN) [ 1, 13, 
21]. CDNs deploy geographically-dispersed server sur- 
rogates and distribute client requests to an "appropriate" 
server based on various considerations. 

CDNs are designed to improve two performance met- 
rics: response time and system throughput. Response 
time, usually reported as a cumulative distribution of 
latencies, is of  obvious importance to clients, and rep- 
resents the primary marketing case for CDNs. System 
throughput, the average number of requests that can be 
satisfied each second, is primarily an issue when the sys- 
tem is heavily loaded, for example, when a flash crowd 
is accessing a small set of pages, or a Distributed Denial 
of Service (DDoS) attacker is targeting a particular site 
[15]. System throughput represents the overall robust- 
ness of the system since either a flash crowd or a DDoS 
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attack can make portions of the information space inac- 
cessible. 

Given a sufficiently widespread distribution of servers, 
CDNs use several, sometimes conflicting, factors to de- 
cide how to distribute client requests. For example, to 
minimize response time, a server might be selected based 
on its network proximity. In contrast, to improve the 
overall system throughput, it is desirable to evenly bal- 
ance the load across a set of servers. Both through- 
put and response time are improved if the distribution 
mechanism takes locality into consideration by selecting 
a server that is likely to already have the page being re- 
quested in its cache. 

Although the exact combination of factors employed 
by commercial systems is not clearly defined in the lit- 
erature, evidence suggests that the scale is tipped in fa- 
vor of reducing response time. This paper addresses the 
problem of designing a request distribution mechanism 
that is both responsive across a wide range of loads, and 
robust in the face of flash crowds and DDoS attacks. 
Specifically, our main contribution is to explore the de- 
sign space of strategies employed by the request redirec- 
tots, and to define a class of new algorithms that care- 
fully balance load, locality, and proximity. We use large- 
scale detailed simulations to evaluate the various strate- 
gies. These simulations clearly demonstrate the effec- 
tiveness of  our new algorithms: they produce a 60-91% 
improvement in system capacity when compared with 
published information about commercial CDN technol- 
ogy, user-perceived response latency remains low, and 
the system scales well with the number of servers. We 
also discuss several implementation issues, but evaluat- 
ing a specific implementation is beyond the scope of this 
paper. 

2 Building Blocks 
The idea of a CDN is to geographically distribute a col- 
lection of server surrogates that cache pages normally 
maintained in some set of backend servers. Thus, rather 
than let every client try to connect to the original server, 
it is possible to spread request load across many servers. 
Moreover, if a server surrogate happens to reside close 
to the client, the client's request could be served without 
having to cross a long network path. In this paper, we 
observe this general model of a CDN, and assume any 
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of the server surrogates can serve any request on behalf 
of  the original server. Where to place these surrogates, 
and how to keep their contents up-to-date, has been ad- 
dressed by other CDN research [1, 13, 21]. Here, we 
make no particular assumptions about servers' strategic 
locations. 

Besides a large set of servers, CDNs also need to pro- 
vide a set of request redirectors, which are middleware 
entities that forward client requests to appropriate servers 
based on one of the strategies described in the next sec- 
tion. To help understand these strategies, this section first 
outlines various mechanisms that could be employed to 
implement redirectors, and then presents a set of hashing 
schemes that are at the heart of redirection. 

2.1 Redirector Mechanisms 

Several mechanisms can be used to redirect requests [3], 
including augmented DNS servers, HTTP-based redi- 
rects, and smart intermediaries such as routers or proxies. 

A popular redirection mechanism used by current 
CDNs is to augment DNS servers to return different 
server addresses to clients. Without URL rewriting that 
changes embedded objects to point to different servers, 
this approach has site-level granularity, while schemes 
that rewrite URLs can use finer granularity and thus 
spread load more evenly. Client-side caching of DNS 
mappings can be avoided using short expiration times. 

Servers can perform the redirection process them- 
selves by employing the HTTP "redirect" response. 
However, this approach incurs an additional round-trip 
time, and leaves the servers vulnerable to overload by 
the redirection task itself. Server bandwidth is also con- 
sumed by this process. 

The redirection function can also be distributed across 
intermediate nodes of the network, such as routers or 
proxies. These redirectors either rewrite the outbound 
requests, or send HTTP redirect messages back to the 
client. I f  the client is not using explicit (forward mode) 
proxying, then the redirectors must be placed at choke 
points to ensure traffic in both forward and reverse di- 
rections is handled. Placing proxies closer to the edge 
yields well-confined easily-identifiable client popula- 
tions, while moving them closer to the server can result 
in more accurate feedback and load information. 

To allow us to focus on redirection strategies and to 
reduce the complexity of considering the various com- 
binations outlined in this section, we make the follow- 
ing assumptions: redirectors are located at the edge of 
a client site, they receive the full list of server surro- 
gates through DNS or some other out-of-band communi- 
cation, they rewrite outbound requests to pick the appro- 
priate server, and they passively learn approximate server 
load information by observing client communications. 
We do not rely on any centralization, and all redirec- 

tors operate independently, Our experiments show that 
these assumptions--in particular, the imperfect informa- 
tion about server load--do not have a significant impact 
on the results. 

2 .2  H a s h i n g  S c h e m e s  

Our geographically dispersed redirectors cannot eas- 
ily adapt the request routing schemes suited for more 
tightly-coupled LAN environments [17, 25], since the 
latter can easily obtain instantaneous state about the en- 
tire system. Instead, we construct strategies that use 
hashing to deterministically map URLs into a small 
range of values. The main benefit of  this approach is 
that it eliminates inter-redirector communication, since 
the same output is produced regardless of which redirec- 
tot receives the URL. The second benefit is that the range 
of resulting hash values can be controlled, trading preci- 
sion for the amount of memory used by bookkeeping. 

The choice of  which hashing style to use is one com- 
ponent of the design space, and is somewhat flexible. 
The various hashing schemes have some impact on com- 
putational time and request reassignment behavior on 
node failure/overload. However, as we discuss in the 
next section, the computational requirements of  the vari- 
ous schemes can be reduced by caching. 

Modulo Hashing - In this "classic" approach, the 
URL is hashed to a number modulo the number of  
servers. While this approach is computationally efficient, 
it is unsuitable because the modulus changes when the 
server set changes, causing most documents to change 
server assignments. While we do not expect frequent 
changes in the set of servers, the fact that the addition of 
new servers into the set will cause massive reassignment 
is undesirable. 

Consistent Hashing [19, 20] - In this approach, the 
URL is hashed to a number in a large, circular space, as 
are the names of the servers. The URL is assigned to the 
server that lies closest on the circle to its hash value. A 
search tree can be used to reduce the search to logarith- 
mic time. If a server node fails in this scheme, its load 
shifts to its neighbors, so the addition/removal of  a server 
only causes local changes in request assignments. 

Highest Random Weight [31] - This approach is the 
basis for CARP [8], and consists of generating a list of 
hash values by hashing the URL and each server's name 
and sorting the results. Each URL then has a determin- 
istic order to access the set of servers, and this list is tra- 
versed until a suitably-loaded server is found. This ap- 
proach requires more computation than Consistent Hash- 
ing, but has the benefit that each URL has a different 
server order, so a server failure results in the remain- 
ing servers evenly sharing the load. To reduce compu- 
tation cost, the top few entries for each hash value can be 
cached. 
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3 Strategies 
This section explores the design space for the request 
redirection strategies. As a quick reference, we summa- 
rize the properties of the different redirection algorithms 
in Table 1, where the strategies are categorized based on 
how they address locality, load and proximity. 

Category Strategy 

Random Random 
Static R-CHash 

R-HRW 
Static LR-CHash 
+Load LR-HRW 

CDR 
Dynamic FDR 

FDR-Global 
Network NPR-CHash 
Proximity NPLR-CHash 

NP-FDR 

Hashing Dynamic Load 
Scheme Server Set Aware 

No 
CHash No No 
HRW No No 

CHash No Yes 
HRW No Yes 
HRW Yes Yes 
HRW Yes Yes 
HRW Yes Yes 

CHash No No 
CHash No Yes 
HRW Yes Yes 

Table 1: Properties of Request Redirection Strategies 

The first category, Random, contains a single strategy, 
and is used primarily as a baseline. We then discuss 
four static algorithms, in which each URL is mapped 
onto a fixed set of server replicas--the Static category 
includes two schemes based on the best-known pub- 
lished algorithms, and the Static+Load category contains 
two variants that are aware of each replica's load. The 
four algorithms in these two static categories pay in- 
creasing attention to locality. Next, we introduce two 
new algorithms---denoted CDR and FDR-- that  factor 
both toad and locality into their decision, and each URL 
is mapped onto a dynamic set of server replicas. We 
call this the Dynamic category. Finally, we factor net- 
work proximity into the equation, and present another 
new algorithm---denoted NP-FDRwthat  considers all 
aspects of network proximity, server locality, and load. 

3.1 Random 
In the random policy, each request is randomly sent to 
one of the server surrogates. We use this scheme as a 
baseline to determine a reasonable level of performance, 
since we expect the approach to scale with the number of 
servers and to not exhibit any pathological behavior due 
to patterns in the assignment. It has the drawback that 
adding more servers does not reduce the working set of 
each server. Since serving requests from main memory is 
faster than disk access, this approach is at a disadvantage 
versus schemes that exploit URL locality. 

3.2 Static Server Set 
We now consider a set of strategies that assign a fixed 
number of server replicas to each URL. This has the ef- 
fect of improving locality over the Random strategy. 

3o2.1 Replicated Consistent Hashing 

"In the Replicated Consistent Hashing (R-CHash) strat- 
egy, each URL is assigned to a set of replicated servers. 
The number of replicas is fixed, but configurable. The 
URL is hashed to a value in the circular space, and 
the replicas are evenly spaced starting from this origi- 
nal point. On each request, the redirector randomly as- 
signs the request to one of the replicas for the URL. 
This strategy is intended to model the mechanism used 
in published content distribution networks, and is virtu- 
ally identical 1 to the scheme described in [19] and [20] 
with the network treated as a single geographic region. 

3.2.2 Replicated Highest Random Weight 

The Replicated Highest Random Weight (R-HRW) strat- 
egy is the counterpart to R-CHash, but with a different 
hashing scheme used to determine the replicas. To the 
best of our knowledge, this approach is not used in any 
existing content distribution network. In this approach, 
the set of replicas for each URL is determined by us- 
ing the top N servers from the ordered list generated by 
Highest Random Weight hashing. Versus R-CHash, this 
scheme is less likely to generate the same set of  repli- 
cas for two different URLs. As a result, the less-popular 
URLs that may have some overlapping servers with pop- 
ular URLs are also likely to have some other less-loaded 
nodes in their replica sets. 

3.3 Load-Aware Static Server Set 

The Static Server Set schemes randomly distribute re- 
quests across a set of replicas, which shares the load but 
without any active monitoring. We extend these schemes 
by introducing load-aware variants of these approaches. 
To perform fine-grained load balancing, these schemes 
maintain local estimates of server load at the redirectors, 
and use this information to pick the least-loaded member 
of the server set. The load-balanced variant of R-CHash 
is called LR-CHash,  while the counterpart for R-HRW 
is called LR-HRW. 

3.4 Dynamic Server Set 

We now consider a new category of algorithms that dy- 
namically adjust the number of replicas used for each 
URL in an attempt to maintain both good server locality 
and load balancing. By reducing unnecessary replica- 
tion, the working set of each server is reduced, resulting 
in better file system caching behavior. 

1The scheme described in these papers also includes a mechanism 
to use coarse-grained load balancing via virtual server names. When 
server overload is detected, the corresponding content is replicated 
across all sewers in the region, and the degree of replication shrinks 
over time. However, the schemes are not described in enough detail to 
replicate. 

USENIX Association 5th Symposium on Operating Systems Design and Implementation 347 



3,4.1 C oa r se  D y n a m i c  Repl ica t ion  

Coarse Dynamic Replication (CDR) adjusts the num- 
ber of replicas used by redirectors in response to server 
load and demand for each URL. Like R-HRW, CDR 
uses HRW hashing to generate an ordered list of servers. 
Rather than using a fixed number of replicas, however, 
the request target is chosen using coarse-grained server 
load information to select the first "available" server on 
the list. 

Figure 1 shows how a request redirector picks the des- 
tination server for each request. This decision process is 
done at each redirector independently, using the load sta- 
tus of the possible servers. Instead of relying on heavy 
communications between servers and request redirectors 
to get server load status, we use local load information 
observed by each redirector as an approximation. We 
currently use the number of active connections to infer 
the load level, but we can also combine this information 
with response latency, bandwidth consumption, etc. 

find_server(url, S) { 
foreach server s~ in server set S, 

weight~ = hash(url, address(sd); 
sort weight; 
foreach server sj in decreasing order of weightj { 

if satisfy_load_criteria(sj) then { 
targetServer ~-- sj; 
stop search; 

) 
} 
if targetServer is not valid then 

tar9etServer ~-- server with highest weight; 
route request url to targetServer; 

Figure 1: Coarse Dynamic Replication 

As the load increases, this scheme changes from using 
only the first server on the sorted list to spreading re- 
quests across several servers. Some documents normally 
handled by "busy" servers will also start being handled 
by less busy servers. Since this process is based on ag- 
gregate server load rather than the popularity of individ- 
ual documents, servers hosting some popular documents 
may find more servers sharing their load than servers 
hosting collectively unpopular documents. In the pro- 
cess, some unpopular documents will be replicated in 
the system simply because they happen to be primarily 
hosted on busy servers. At the same time, if some doc- 
uments become extremely popular, it is conceivable that 
all of the servers in the system could be responsible for 
serving them. 

3.4.2 F ine  D y n a m i c  Repl ica t ion  

A second dynamic algorithm--Fine Dynamic Repli- 
cation (FDR)--addresses the problem of unnecessary 
replication in CDR by keeping information on URL pop- 
ularity and using it to more precisely adjust the number 
of replicas. By controlling the replication process, the 
per-server working sets should be reduced, leading to 
better server locality, and thereby better response time 
and throughput. 

The introduction of finer-grained bookkeeping is an 
attempt to counter the possibility of a "ripple effect" in 
CDR, which could gradually reduce the system to round- 
robin under heavy load. In this scenario, a very popu- 
lar URL causes its primary server to become overloaded, 
causing extra load on other machines. Those machines, 
in turn, also become overloaded, causing documents des- 
tined for them to be served by their secondary servers. 
Under heavy load, it is conceivable that this displacement 
process ripples through the system, reducing or eliminat- 
ing the intended locality benefits of this approach. 

find_server(url, S) { 
walk_entry ~-- walkLenHash(url); 
w_len ~-- walk_entry.length; 
foreach server s~ in server set S, 

weig hti = hash( url, address(s/)); 
sort weight; 
8candidate 4 - -  least-loaded server of  top w_len servers; 
if satisfy_load_criteria(Scandidate) then { 

targetServer ~-- 8 ca n d id a t e ;  

if (w_len > 1 && 
timenowO - walk_entry.lastUpd > ehgThresh) 

walk_entry.length - - ;  
} else { 

foreach rest server sj in decreasing weight order { 
if satisfy_load_criteria(sj) then { 

targetServer ~-- sj; 
stop search; 

} 
} 
walk_entry.length ~-- actual search steps; 

} 
if walk_entry.length changed then 

walk_entry.lastUpd ~ timenowO; 
if targetServer is not valid then 

targetServer ~-- server with highest weight; 
route request url to targetServer; 

Figure 2: Fine Dynamic Replication 

To reduce extra replication, FDR keeps an auxiliary 
structure at each redirector that maps each URL to a 
"walk length," indicating how many servers in the HRW 
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list should be used for this URL. Using a minimum 
walk length of one provides minimal replication for most 
URLs, while using a higher minimum will always dis- 
tribute URLs over multiple servers. When the redirector 
receives a request, it uses the current walk length for the 
URL and picks the least-loaded server from the current 
set. If even this server is busy, the walk length is in- 
creased and the least-loaded server is used. 

This approach tries to keep popular URLs from over- 
loading servers and displacing tess-popular objects in the 
process. The size of the auxiliary structure is capped by 
hashing the URL into a range in the thousands to mil- 
lions. Hash collisions may cause some URLs to have 
their replication policies affected by popular URLs. As 
long as the the number of hash values exceeds the num- 
ber of servers, the granularity will be significantly bet- 
ter than the Coarse Dynamic Replication approach. The 
redirector logic for this approach is shown in Figure 2. 
To handle URLs that become less popular over time, with 
each walk length, we also keep the time of its last modifi- 
cation. We decrease the walk length if it has not changed 
in some period of time. 

As a final note, both dynamic replication approaches 
require some information about server load, specifically 
how many outstanding requests can be sent to a server 
by a redirector before the redirector believes it is busy. 
We currently allow the redirectors to have 300 outstand- 
ing requests per server, at which point the redirector lo- 
cally decides the server is busy. It would also be possi- 
ble to calibrate these values using both local and global 
information--using its own request traffic, the redirector 
can adjust its view of what constitutes heavy load, and 
it can perform opportunistic communication with other 
redirectors to see what sort of collective loads are be- 
ing generated. The count of outstanding requests already 
has some feedback, in the sense that if a server becomes 
slow due to its resources (CPU, disk, bandwidth, etc.) 
being stressed, it will respond more slowly, increasing 
the number of outstanding connections. To account for 
the inaccuracy of local approximation of server load at 
each redirector, in our evaluations, we also include a ref- 
erence strategy, FDR-Global,  where all redirectors have 
perfect knowledge of the load at all servers. 

Conceivably, Consistent Hashing could also be used 
to implement CDR and FDR. We tested a CHash-based 
CDR and FDR, but they suffer from the "ripple effect" 
and sometimes yield even worse performance than load- 
aware static replication schemes. Part of the reason is 
that in Consistent Hashing, since servers are mapped 
onto a circular space, the relative order of servers for 
each URL will be effectively the same. This means the 
load migration will take an uniform pattern; and the 
less-popular URLs that may have overlapping servers 
with popular URLs are unlikely to have some other less- 

loaded nodes in their replica sets. Therefore, in this pa- 
per, we will only present CDR and FDR based on HRW. 

3.5 Network Proximity 
Many commercial CDNs start server selection with net- 
work proximity matching. For instance, [19] indicates 
that CDN's hierarchical authoritative DNS servers can 
map a client's (actually its local DNS server's) IP ad- 
dress to a geographic region within a particular network 
and then combine it with network and server load infor- 
mation to select a server separately within each region. 
Other research [18] shows that in practice, CDNs suc- 
ceed not by always choosing the "optimal" server, but by 
avoiding notably bad servers. 

For the sake of studying system capacity, we m a k e  
a conservative simplicifaction by treating the entire net- 
work topology as a single geographic region. We could 
also simply take the hierarchical region approach as 
in [19], however, to see the effect of integrating prox- 
imity into server selection, we introduce three strate- 
gies that explicitly factor intra-region network proximity 
into the decision. Our redirector measures servers' geo- 
graphical/topological location information through ping, 
traceroute or similiar mechanisms and uses this infor- 
mation to calculate an "effective load" when choosing 
servers. 

To calculate the effective load, redirectors multiply the 
raw load metric with a normalized standard distance be- 
tween the redirector and the server. Redirectors gather 
distances to servers using round trip time (RTT), rout- 
ing hops, or similar information. These raw distances 
are normalized by dividing by the minimum locally- 
observed distance, yielding the standard distance. In our 
simulations, we use RTT for calculating raw distances. 

FDR with Network Proximity (NP-FDR) is the 
counterpart of FDR, but it uses effective load rather than 
raw load. Similarly, NPLR-CHash  is the proximity- 
aware version of LR-CHash. The third strategy, NPR- 
CHash, adds network proximity to the load-oblivious 
R-CHash approach by assigning requests such that each 
surrogate in the fixed-size server set of a URL will get 
a share of total requests for that URLinversely propor- 
tional tO the surrogate's distance from the redirector. As 
a result, closer servers in the set get a larger share of the 
load. 

The use of effective load biases server selection in fa- 
vor of closer servers when raw load values are compa- 
rable. For example, in standard FDR, raw load values 
reflect the fact that distant servers generate replies more 
slowly, so some implicit biasing exists. However, by ex- 
plicitly factoring in proximity, NP-FDR attempts to re- 
duce global resource consumption by favoring shorter 
network journeys. 

Although we currently calculate effective load this 
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way, other options exist. For example, effective load 
can take other dynamic load/proximity metrics into ac- 
count, such as network congestion status through real 
time measurement, thereby reflecting instantaneous load 
conditions. 

4 Evaluation Methodology 

The goal of this work is to examine how these strategies 
respond under different loads, and especially how robust 
they are in the face of flash crowds and other abnormal 
workloads that might be used for a DDoS attack. Attacks 
may take the form of legitimate traffic, making them dif- 
ficult to distinguish from flash crowds. 

Evaluating the various algorithms described in Sec- 
tion 3 on the Internet is not practical, both due to the 
scale of the experiment required and the impact a flash 
crowd or attack is likely to have on regular users. Sim- 
ulation is clearly the only option. Unfortunately, there 
has not been (up to this point) a simulator that consid- 
ers both network traffic and server load. Existing simu- 
lators either focus on the network, assuming a constant 
processing cost at the server, or they accurately model 
server processing (including the cache replacement strat- 
egy), but use a static estimate for the network transfer 
time. In the situations that interest us, both the network 
and the server are important. 

To remedy this situation, we developed a new sim- 
ulator that combines network-level simulation with 
OS/server simulation. Specifically, we combine the NS 
simulator with Logsim, allowing us to simulate net- 
work bottlenecks, round-trip delays, and OS/server per- 
formance. NS-2 [23] is a packet-level simulator that has 
been widely-used to test TCP implementations. How- 
ever, it does not simulate much server-side behavior. 
Logsim is a server cluster simulator used in previous re- 
search on LARD [25], and it provides detailed and accu- 
rate simulation of server CPU processing, memory us- 
age, and disk access. This section describes how we 
combine these two simulators, and discusses how we 
configure the resulting simulator to study the algorithms 
presented in Section 3. 

4.1 Simulator 

A model of Logsim is shown in Figure 3. Each server 
node consists of a CPU and locally attached disk(s), with 
separate queues for each. At the same time, each server 
node maintains its own memory cache of a configurablc 
size and replacement policy. Incoming requests are first 
put into the holding queue, and then moved to the active 
queue. The active queue models the parallelism of the 
server, for example, in multiple process or thread server 
systems, the maximum number of processes or threads 
allowed on each server. 

inside a server node 
r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,, 

more time needed I', 

,o eL --1 
~ ~ c a c h e  misses 

read finished 

Req 

," active holding 
,' queue queue 

/ 

i' 
/ 

I,' Node Abstt action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t 

Figure 3: Logsim Simulator 

We combined Logsim with NS-2 as follows. We keep 
NS-2's event engine as the main event manager, wrap 
each Logsim event as a NS-2 event, and insert it into the 
NS-2 event queue. All the callback functions are kept 
unchanged in Logsim. When crossing the boundary be- 
tween the two simulators, tokens (continuations) are used 
to carry side-specific information. To speed up the sim- 
ulation time, we also re-implemented several NS-2 mod- 
ules and performed other optimizations. 

On the NS-2 side, all packets are stored and for- 
warded, as in a real network, and we use two-way TCP. 
We currently use static routing within NS-2, although we 
may run simulations with dynamic routing in the future. 

On the Logsim side, the costs for the basic request pro- 
cessing were derived by performing measurements on a 
300MHz Pentium II machine running FreeBSD 2.2.5 and 
the Flash web server [24]. Connection establishment and 
tear-down costs are set at 145#s, while transmit process- 
ing incurs 40#s per 512 bytes. Using these numbers, an 
8-KByte document can be served from the main mem- 
ory cache at a rate of approximately 1075 requests/sec. 
When disk access is needed, reading a file from the disk 
has a latency of 28ms. The disk transfer time is 410#s per 
4 KBytes. For files larger than 44 KBytes, and additional 
14ms is charged for every 44 KBytes of file length in ex- 
cess of 44 KBytes. The replacement policy used on the 
servers is Greedy-Dual-Size (GDS)[5], as it appears to be 
the best known policy for Web workloads. 32MB mem- 
ory is available for caching documents on each server 
and every server node has one disk. This server is inten- 
tionally slower than the current state-of-the-art (it is able 
to service approximately 600 requests per second), but 
this allows the simulation to scale to a larger number of  
nodes. 

The final simulations are very heavy-weight, with over 
a thousand nodes and a very high aggregate request rate. 
We run the simulator on a 4-processor/667MHz Alpha 
with 8GB RAM. Each simulation requires 2-6GB of 
RAM, and generally takes 20-50 hours of wall-clock 
time. 

350 5th Symposium on Operating Systems Design and Implementation USENIX Association 



402 N e t w o r k  Topo l logy  

It is not easy to find a topology that is both realistic and 
makes the simulation manageable. We choose to use 
a slightly modified version the NSFNET backbone net- 
work T3 topology, as shown in Figure 4. 

In this topology, the round-cornered boxes represent 
backbone routers with the approximate geographical lo- 
cation label on it. The circles, tagged as R1, R2..., are 
regional routers; a small circles with "C" stand for client 
hosts; and shaded circles with "S" are the server surro- 
gates. In the particular configuration shown in the figure, 
we put 64 servers behind regional routers R0, R1, R7, 
R8, R9, R10, R15, R19, where each router sits in front 
of 8 servers. We distribute 1,000 client hosts evenly be- 
hind the other regional routers, yielding a topology of 
nearly 1,100 nodes. The redirector algorithms run on the 
regional routers that sit in front of the clients. 

Figure 4: Network Topology 

The latencies of servers to regional routers are set ran- 
domly between lms to 3ms; those of clients to regional 
routers are between 5ms and 20ms; those of regional 
routers to backbone routers are between 1 to 10ms; la- 
tencies between backbone routers are set roughly accord- 
ing to their geographical distances, ranging from 8ms to 
28ms. 

To simulate high request volume, we deliberately pro- 
vision the network with high link bandwidth by setting 
the backbone links at 2,488Mbps, and links between re- 
gional routers and backbone routers at 622Mbps. Links 
between servers and regional routers are 100Mbps and 
those between clients and their regional servers are ran- 
domly between 10Mbps and 45Mbps. All the queues at 
routers are drop tail, with the backbone routers having 
room to buffer 1024 packets, and all other touters able to 
buffer 512 packets. 

2These can also be thought of as edge/site routers, or the boundary 
to an autonomous system 

4.3 W o r k l o a d  a n d  S t a b i l i t y  

We determine system capacity using a trace-driven sim- 
ulation and gradually increase the aggregate request rate 
until the system fails. We use a two month trace of 
server logs obtained at Rice University, which contains 
2.3 million requests for 37,703 files with a total size of 
1,418MB [25], and has properties similar to other pub- 
lished traces. 

The simulation starts with the clients sharing the trace 
and sending requests at a low aggregate rate in an open- 
queue model. Each client gets the name of the docu- 
ment sequentially from the shared trace when it needs to 
send a request, and the timing information in the trace 
is ignored. The request rate is increased by 1% every 
simulated six seconds, regardless of  whether previous re- 
quests have completed. This approach gradually warms 
the server memory caches and drives the servers to their 
limits over time. We configure Logsim to handle at most 
512 simultaneous requests and queue the rest. The sim- 
ulation is terminated when the offered load overwhelms 
the servers. 

Flash crowds, or DDoS attacks in bursty legitimate 
traffic form, are simulated by randomly selecting some 
clients as intensive requesters and randomly picking a 
certain number of hot-spot documents. These intensive 
requesters randomly request the hot documents at the 
same rate as normal clients, making them look no dif- 
ferent than other legitimate users. We believe that this 
random distribution of intensive requesters and hot doc- 
uments is a quite general assumption since we do not 
require any special detection or manual intervention to 
signal the start of a flash crowd or DDoS attack. 

We define a server as being overloaded when it can no 
longer satisfy the rate of  incoming requests and is un- 
likely to recover in the future. This approach is designed 
to determine when service is actually being denied to 
clients, and to ignore any short-term behavior which may 
be only undesirable, rather than fatal. Through exper- 
imentation, we find that when a server's request queue 
grows beyond 4 to 5 times the number of simultane- 
ous connections it can handle, throughput drops and the 
server is unlikely to recover. Thus, we define the thresh- 
old for a server failure to be when the request queue 
length exceeds five times the simultaneous connection 
parameter. Since we increase the offered load 1% every 
6 seconds, we record the request load exactly 30 seconds 
before the first server fails, and declare this to be the sys- 
tem's maximum capacity. 

Although we regard any single server failure as a sys- 
tem failure in our simulation, the strategies we evalu- 
ate all exhibit similar behavior--significant numbers of 
servers fail at the same time, implying that our approach 
to deciding system capacity is not biased toward any par- 
ticular scheme. 
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Figure 5: Capacity Comparison under Normal Load 

5 Results 

This section evaluates how the different strategies in Ta- 
ble 1 perform, both under normal conditions and under 
flash crowds or DDoS attacks. Network proximity and 
other factors that affect the performance of these strate- 
gies are also addressed. 

5.1 Normal Workload 

Before evaluating these strategies under flash crowds or 
other attack, we first measure their behavior under nor- 
mal workloads. In these simulations, all clients gener- 
ate traffic similar to normal users and gradually increase 
their request rates as discussed in Section 4.3. We com- 
pare aggregate system capacity and user-perceived la- 
tency under the different strategies, using the topology 
shown in Figure 4. 

5.1.1 O p t i m a l  Sla t ic  Replication 

The static replication schemes (R-CHash, R-HRW, and 
their variants) use a configurable (but fixed) number of 
replicas, and this parameter's value influences their per- 
formance. Using a single replica per URL perfectly par- 
titions the file set, but can lead to early failure of servers 
hosting popular URLs. Using as many replicas as avail- 
able servers degenerates to the Random strategy. To de- 
termine an appropriate value, we varied this parameter 
between 2 and 64 replicas for R-CHash when there are 
64 servers available. Increasing the number of replicas 
per URL initially helps to improve the system's through- 
put as the load gets more evenly distributed. Beyond a 
certain point, throughput starts decreasing due to the fact 
that each server is presented with a larger working set, 
causing more disk activity. In the 64-server case--the 
scenario we use throughout the rest of this section--10 
server replicas for each URL achieves the optimal sys- 
tem capacity. For all of  the remaining experiments, we 
use this value in the R-CHash and R-HRW schemes and 
their variants. 

5.1.2 Sys t em C a p a c i t y  

The maximum aggregate throughput of the various 
strategies with 64 servers are shown in Figure 5. Here 
we do not plot all the strategies and variants, but fo- 
cus on those impacting throughput substantially. Ran- 
dom shows the lowest throughput at 9,300 req/s before 
overload. The static replication schemes, R-CHash and 
R-FIRW, outperform Random by 119% and 99%, respec- 
tively. Our approximation of static schemes' best behav- 
iors, LR-CHash and LR-HRW, yields 173% better ca- 
pacity than Random. The dynamic replication schemes, 
CDR and FDR, show over 250% higher throughput than 
Random, or more than a 60% improvement over the 
static approaches and 28% over static schemes with fine- 
grained load control. 

The difference between Random and the static ap- 
proaches stems from the locality benefits of the hash- 
ing in the static schemes. By partitioning the working 
set, more documents are served from memory by the 
servers. Note, however, that absolute minimal replication 
can be detrimental, and in fact, the throughput for only 
two replicas in in Section 5.1.1 is actually lower than the 
throughput for Random. The difference in throughput 
between R-CHash and R-HRW is 10% in our simulation. 
However, this difference should not be over emphasized, 
because changes in the number of servers or workload 
can cause their relative ordering to change. Consider- 
ing load helps the static schemes gain about 25% better 
throughput, but they still do not exceed the dynamic ap- 
proaches. 

The performance difference between the static (in- 
cluding with load control) and dynamic schemes stems 
from the adjustment of the number of replicas for the 
documents. FDR also shows 2% better capacity than 
CDR. 

Interestingly, the difference between our dynamic 
schemes (with only local knowledge) and the FDR- 
Global policy (with perfect global knowledge) is mini- 
mal. These results suggest that request distribution poli- 
cies not only fare well with only local information, but 
that adding more global information may not gain much 
in system capacity. 

Examination of what ultimately causes overload in 
these systems reveals that, under normal load, the 
server's behavior is the factor that determines the perfor- 
mance limit of the system. None of the schemes suffers 
from saturated network links in these non-attack simu- 
lations. For Random, due to the large working set, the 
disk performance is the limit of the system, and before 
system failure, the disks exhibit almost 100% activity 
while the CPU remains largely idle. The R-CHash, R- 
HRW and LR-CHash and LR-HRW exhibit much lower 
disk utilization at comparable request rates; but by the 
time the system becomes overloaded, their bottleneck 
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Figure 6: Response Latency Distribution under Normal Load 

Utilization CPU (%) DISK (%) 
Scheme Mean Stddev Mean Stddev 
Random 21.03 1.36 100.00 0.00 
R-CHash 57.88 18.36 99.15 3.89 
R-HRW 47.88 15.33 99.74 1.26 

LR-CHash 59.48 18.85 97.83 12.51 
LR-HRW 58.43 16.56 99.00 5.94 

CDR 90.07 11.78 36.10 25.18 
FDR 93.86 7.58 33.96 20.38 

FDR-Global 91.93 11.81 17.60 15.43 

Table 2: Server Resource Utilization at Overload 

also becomes the disk and the CPU is roughly 50-60% 
utilized on average. In the CDR and FDR cases, at sys- 
tem overload, the average CPU is over 90% busy, while 
most of the disks are only 10-70% utilized. Table 2 sum- 
marizes resource utilization of different schemes before 
server failures (not at the same time point). 

These results suggest that the CDR and FDR schemes 
are the best suited for technology trends, and can most 

benefit from upgrading server capacities. The throughput 
of our simulated machines is lower than what can be ex- 
pected from state-of-the-art machines, but this decision 
to scale down resources was made to keep the simula- 
tion time manageable. With faster simulated machines, 
we expect the gap between the dynamic schemes and the 
others to grow even larger. 

5.1.3 Response Latency 
Along with system capacity, the other metric of interest is 
user-perceived latency, and we find that our schemes also 
perform well in this regard. To understand the latency 
behavior of these systems, we use the capacity measure- 
ments from Figure 5 and analyze the latency of all of  the 
schemes whenever one category reaches its performance 
limit. For schemes with similar performance in the same 
category, we pick the lower limit for the analysis so 
that we can include numbers for the higher-performing 
scheme. In all cases, we present the cumulative distri- 
bution of all request latencies as well as some statistics 
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Req Rate 9,300 req/s 18,478twq/s 25,407 req/s 32,582 req~ 
Latency # 50% 90% 50% 90% 50% 90% 50% 90% 

Random 
R-CHash 
R*HRW 

LR-CHash 
LR-HRW 

CDR 
FDR 

FDR-Global 

3.95 1.78 11.32 
0.79 0.53 1.46 
0.81 0.53 1.49 
0.68 0.44 1,17 
0.68 0.44 1.18 
1.16 0.52 1.47 
1.10 0.52 1,48 
0.78 0.50 1.42 

cr # 

6.99 
2.67 1.01 
2.83 1.07 
2.50 0.87 
2,50 0.90 
5.96 1.35 
5.49 1.35 
2.88 0.97 

0.57 1.98 
0.57 2.28 
0.51 1.82 
0.5l 1.89 
0.55 1.75 
0,54 1.64 
0.54 1.58 

o- tz 

3.58 
3.22 
2.74 1.19 
3.13 1.27 
6.63 1.86 
6.70 1.87 
5.69 1.11 

0.60 2.47 
0.64 2.84 
0.63 4.49 
0,62 3.49 
0.56 1.86 

3.79 
3,76 
6.62 2.37 
6.78 2.22 
5.70 1.35 

1.12 5.19 7.21 
0.87 4.88 7.12 
0.66 2.35 6.29 

Table 3: Response Latency of  Different Strategies under Normal Load. # - -  Mean, ~ - -  Standard Deviation. 

about the distribution. 

Figure 6 plots the cumulative distribution of latencies 
at four request rates: the maximums for Random, R- 
HRW, LR-HRW, and CDR (the algorithm in each cate- 
gory with the smallest maximum throughput). The z-  
axis is in log scale and shows the time needed to com- 
plete requests. The y-axis shows what fraction of  all re- 
quests finished in that time. The data in Table 3 gives 
mean, median, 90th percentile and standard deviation de- 
tails of  response latencies at our comparison points. 

The response time improvement from exploiting lo- 
cality is most clearly seen in Figure 6a. At Random's 
capacity, most responses complete under 4 seconds, but 
a few responses take longer than 40 seconds. In contrast, 
all other strategies have median times almost one-fourth 
that of  Random, and even their 90th percentile results 
are less than Random's median. These results, coupled 
with the disk utilization information, suggest that most 
requests in the Random scheme are suffering from disk 
delays, and that the locality improvement techniques in 
the other schemes are a significant benefit. 

The benefit of  FDR over CDR is visible in Figure 6d, 
where the plot for FDR lies to the left of  CDR. The statis- 
tics also show a much better median response time, in ad- 
dition to better mean and 90th percentile numbers. FDR- 
Global has better numbers in all cases than CDR and 
FDR, due to its perfect knowledge of  server load status. 

An interesting observation is that when compared to 
the static schemes, dynamic schemes have worse mean 
times but comparable/better medians and 90th percentile 
results. We believe this behavior stems from the time 
required to serve the largest files. Since these files are 
less popular, the dynamic schemes replicate them less 
than the static schemes do. As a result, these files are 
served from a smaller set o f  servers, causing them to be 
served more slowly than if they were replicated more 
widely. We do not consider this behavior to be a sig- 
nificant drawback, and note that some research explicitly 
aims to achieve this effect [10, 11]. We will revisit large 
file issues in section 5.4.2. 
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Figure 7: System Scalability under Normal Load 

5.1.4 Sca labi l i ty  

Robustness not only comes from resilience with certain 
resources, but also from good scalability with increasing 
resources. We repeat similar experiments with different 
number of servers, from 8 to 128, to test how well these 
strategies scale. The number of  server-side routers is not 
changed, but instead, more servers are attached to each 
server router as the total number of servers increases. 

We plot system capacity against the number of  servers 
in Figure 7. They all display near-linear scalability, im- 
plying all of  them are reasonably good strategies when 
the system becomes larger. Note, for CDR and FDR 
with 128 servers, our original network provision is a 
little small. The bottleneck in that case is the link be- 
tween the server router and backbone router, which is 
622Mbps. In this scenario, each server router is handling 
16 servers, giving each server on average only 39Mbps 
of  traffic. At 600 reqs/s, even an average size of  10KB 
requires 48Mbps. Under this bandwidth setup, CDR and 
FDR yield similar system capacity as LR-CHash and LR- 
HRW, and all these 4 strategies saturate server-router-to- 
backbone links. To remedy this situation, we run sim- 
ulations of 128 servers for all strategies with doubled 
bandwidth on both the router-to-backbone and backbone 
links. Performance numbers of  128 servers under these 
faster links are plotted in the graph instead. This problem 
can also be solved by placing fewer servers behind each 
pipe and instead spreading them across more locations. 
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5.2 Behavior Under Flash Crowds 

Having established that our new algorithms perform well 
under normal workloads, we now evaluate how they be- 
have when the system is under a flash crowd or DDoS 
attack. To simulate a flash crowd, we randomly select 
25% of the 1,000 clients to be intensive requesters, where 
each of these requesters repeatedly issues requests from 
a small set of pre-selected URLs with an average size of 
about 6KB. 

5.2.1 S y s t e m  C a p a c i t y  

Figure 8 depicts the system capacity of 64 servers un- 
der a flash crowd with a set of lO URLs. In general, 
it exhibits similar trends as the no-attack case shown in 
Figure 5. Importantly, the CDR and FDR schemes still 
yield the best throughput, making them most robust to 
flash crowds or attacks. Two additional points deserve 
more attention. 

First, FDR now has a similar capacity with CDR, but 
still is more desirable as it provides noticeably better la- 
tency, as we will see later. FDR's benefit over R-CHash 
and R-HRW has grown to 91% from 60% and still out- 
performs LR-CHash and LR-HRW by 22%. 

401)O01 ] ~7827 37827 38587 

R FDR Global 
Schemes 

Figure 8: Capacity Comparison Under Flash Crowds 

Second, the absolute throughput numbers tend to be 
larger than the no-attack case, because the workload is 
also different. Here, 25% of the traffic is now concen- 
trated on 10 URLs, and these attack URLs are relatively 
small, with an average size of  6KB. Therefore, relative 
difference among different strategies within each sce- 
nario yields more useful information than simply com- 
paring performance numbers across these two scenarios. 

5.2.2 R e s p o n s e  L a t e n c y  

The cumulative distribution of response latencies for all 
seven algorithms under attack are shown in Figure 9. 
Also, the statistics for all seven algorithms and FDR- 
Global are given in Table 4. As seen from the figure and 
table, R-CHash, R-HRW, LR-CHash, LR-HRW CDR 
and FDR still have far better latency than Random, and 
static schemes are a little better than CDR and FDR at 

Random, R-HRW's and LR-HRW's failure points; and 
LR-CHash and LR-HRW yields slightly better latency 
than R-CHash and R-HRW. 

As we explained earlier, CDR and FDR adjust the 
server replica set in response to request volume. The 
number of replicas that serve attack URLs increases as 
the attack ramps up, which may adversely affect serving 
non-attack URLs. However, the differences in the mean, 
median, and 90-percentile are not large, and all are prob- 
ably acceptable to users. The small price paid in response 
time for CDR and FDR brings us higher system capacity, 
and thus, stronger resilience to various loads. 

5.2.3 Scalability 

We also repeat the scalability test under flash crowd or 
attack, where 250 clients are intensive requesters that 
repeatedly request 10 URLs. As shown in Figure 10, 
all strategies scale linearly with the number of servers. 
Again, in the 128-server cases, we use doubled band- 
width on the router-to-backbone and backbone links. 
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Figure 10: System Scalability under Flash Crowds 

5.2.4 Various Flash Crowds 

Throughout our simulations, we have seen that a differ- 
ent number of intensive requesters, and a different num- 
ber of hot or attacked URLs, have an impact on system 
performance. To further investigate this issue, we carry 
out a series of simulations by varying both the number of 
intensive requesters and the number of hot URLs. Since 
it is impractical to exhaust all possible combinations, we 
choose two classes of flash crowds. One class has a sin- 
gle hot URL of size 1KB. This represents a small home 
page o fa  website. The other class has I0 hot URLs aver- 
aging 6KB, as before. In both cases, we vary the percent- 
age of the 1000 clients that are intensive requesters from 
10% to 80%. The results of these two experiments with 
32 servers are shown in Figures 11 and 12, respectively. 

In the first experiment, as the portion of intensive re- 
questers increases, more traffic is concentrated on this 
one URL, and the request load becomes more unbal- 
anced. Random, CDR and FDR adapt to this change 
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Figure 9: Response Latency Distribution under Flash Crowds 

well and yield increasing throughput. This benefit comes 
from their ability to spread load across more servers. 
However, CDR and FDR behave better than Random 
because they not only adjust the server replica set on 
demand, but also maintain server locality for less pop- 
ular URLs. In contrast, R-HRW, R-CHash, LR-HRW 
and LR-CHash suffer with more intensive requesters or 
attackers, since their fixed number of replicas for each 
URL cannot handle the high volume of requests for one 
URL. In the 10-URL case, the change in system ca- 
pacity looks similar to the 1-URL case, except that due 
to more URLs being intensively requested or attacked, 
FDR, CDR and Random cannot sustain the same high 
throughput. We continue to investigate the effects of 
more attack URLs and other strategies. 

Another possible DDoS attack scenario is to randomly 
select a wide range of URLs. In the case that these URLs 
are valid, the dynamic schemes "degenerate" into one 
server for each URL. This is the desirable behavior for 
this attack as it increases the cache hit rates for all the 

servers. In the event that the URLs are invalid, and the 
servers are actually reverse proxies (as is typically the 
case in a CDN), then these invalid URLs are forwarded 
to the server-of-origin, effectively overloading it. Servers 
must address this possibility by throttling the number of  
URL-misses they forward. 

To summarize, under flash crowds or attacks, CDR 
and FDR sustain very high request volumes, making 
overloading the whole system significantly harder and 
thereby greatly improving the CDN system's overall ro- 
bustness. 

5.3 Proximity 

The previous experiments focus on system capacity un- 
der different loads. We now compare the strategies that 
factor network closeness into server selection--Static 
(NPR-CHash), Static+Load (NPLR-CHash), and Dy- 
namic (NP-FDR)--with their counterparts that ignore 
proximity. We test the 64-server cases in the same sce- 
narios as in Section 5.1 and 5.2. 
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Req Rate 
Latency 
Random 
R-CHash 
R-HRW 

LR-CHash 
LR-HRW 

CDR 
FDR 

FDR-Global 

11,235 req/s 
# 50% 90% 

2.37 0.64 8.57 
0.73 0.53 1.45 
0.73 0,52 1.45 
0.62 0.45 1. i5 
0.63 0.45 1.18 
1.19 0.55 1.72 
1.22 0.55 1.81 
0.91 0.55 1.66 

o" /u 
5.29 
2.10 0.81 
2.11 0.76 
1.70 0.67 
1,80 0.67 
5.40 1.25 
5.71 1.18 
4.09 0.90 

19 811 reqZ~ 
50% 90% 

0,53 1.57 
0,52 1.51 
0.45 1.23 
0,46 1.26 
0.55 1.86 
0,55 1.83 
0.53 1.60 

~L 

2.59 
2.51 
2.42 0.96 
2.65 1.07 
5.51 1.80 
5.27 1.64 
4.59 0.98 

31,000 req/s 
50% 90% 

0.52 1.86 
0.53 2.19 
0.76 4.35 
0.66 3.57 
0.54 1.74 

o" # 

3.55 
3.52 
6.08 2.29 
5.95 2.18 
5.08 1.20 

37.827 req/s 
50% 90% c~ 

1.50 4.20 6.41 
1.14 4.15 6.63 
0,56 1.99 5.53 

Table 4: Response Latency of Different Strategies under Flash Crowds. # - -  Mean, (r - -  Standard Deviation. 
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Category 
Static 

Static 
+Load 

Dynamic 

System Capacity (reqs/sec) 
Scheme Normal Flash Crowds 
NPR-CHash 14409 1 4 4 0 9  

R - C H a s h  20411 19811 

NPLR-CHash 24173 30090  

LR - C t t a s h  25407 31000  

N P - F D R  31000 34933 

F D R  33237 37827  

Table 5: Proximity's Impact on Capacity 

Table 5 shows the capacity numbers of these strate- 
gies under both normal load and flash crowds of  250 in- 
tensive requesters with 10 hot URLs. As we can see, 
adding network proximity into server selection slightly 
decreases systems capacity in the case of  NPLR-CHash 
and NP-FDR. However, the throughput drop of  NPR- 
CHash compared with R-CHash is considerably large. 
Part of  reason is that in LR-CHash and FDR, server 
load information already conveys the distance of  a server. 
However, in the R-CHash case, the redirector randomly 
choosing among all replicas causes the load to be evenly 
distributed, while NPR-CHash puts more burden on 
closer servers, resulting in unbalanced server load. 

We further investigate the impact of  network prox- 
imity on response latency. In Table 6 and 7, we show 
the latency statistics under both normal load and flash 
crowds. As before, we choose to show numbers at 
the capacity limits of  Random, NPR-CHash, NPLR- 
CHash and NP-FDR. We can see that when servers 

are not loaded, all schemes with network proximity 
taken into consideration--NPR-CHash, NPLR-CHash 
and NP-FDR--yield better latency. When these schemes 
reach their limit, NPR-CHash and NP-FDR still demon- 
strate significant latency advantage over R-CHash and 
FDR, respectively. 

Interestingly, NPLR-CHash underperforms LR- 
CHash in response latency at its limit of  24,173 req/s 
and 30,090 req/s. NPLR-CHash is basically LR-CHash 
using effective load. When all the servers are not 
loaded, it redirects more requests to nearby servers, 
thus shortening the response time. However, as the load 
increases, in order for a remote server to get a share of 
load, a local server has to be much more overloaded than 
the remote one, inversely proportional to their distance 
ratio. Unlike NP-FDR, there is no load threshold 
control in NPLR-CHash, so it is possible that some 
close servers get significantly more requests, resulting 
in slow processing and longer responses. In a summary, 
considering proximity may benefit latency, but it can 
also impact capacity. NP-FDR, however, achieves a 
good balance of both. 

5.4 Other Factors 
5.4.1 Heterogeneity 
To determine the impact of  network heterogeneity on 
our schemes, we explore the impact of  non-uniform 
server network bandwidth. In our original setup, all first- 
mile links from the server have bandwidths of  100Mbps. 
We now randomly select some of  the servers and re- 
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Req Rate 
Latency 
Random 

NPR-CItash 
R-CHash 

NPLR-CHash 
LR-CHash 

NP-FDR 
FDR 

9,300 req/s 
# 50% 90% 

3.95 1.78 11.32 
0.66 0.42 1.21 
0.79 0.53 1.46 
0.57 0.36 0.93 
0.68 0.44 1.17 
0.70 0.50 1.42 
1, I0 0.52 1.48 

o" # 
6.99 
2.20 0.76 
2.67 0.82 
2.00 0,68 
2.50 0.71 
1.63 0.67 
5.49 1.25 

14,409 reqZs" 
50% 90% 

0.44 1.51 
0.56 1.63 
0.39 1.33 
0.48 1.43 
0.49 1.33 
0.54 1.71 

2.30 
2.50 
2.34 1.34 
2.19 1.04 
1.56 0,80 
5.87 1.60 

24,173 req/s 
50% 90% 

0.55 2.63 
0.50 1.95 
0.49 1.55 
0.57 2.10 

cr t ~ 

4.73 
3.44 
2.82 1.08 
6.84 1.88 

31,000 re(t/s 
50% 90% cr 

0.53 1.96 3.54 
0.59 3.72 7.25 

Table 6: Proximity's Impact on Response Latency under Normal Load. # - -  Mean, cr - -  Standard Deviation. 

Req Rate 11,235 req/s 14, 409 req/s 30, 090 req/s 34, 933 req/s 
Latency # 50% 90% o" # 50% 90% a /z 50% 90% rr /.~ 50% 90% o- 
Random 

NPR-CHash 
R-CHash 

NPLR-CHash 
LR-CHash 
NP-FDR 

FDR 

2.37 0.64 8.57 
0.61 0.42 1.15 
0.73 0.53 1.45 
0,53 0.36 0.90 
0.62 0.45 1.15 
0.70 0.50 1.45 
1.22 0.55 1.81 

5.29 
1.76 0.63 
2.10 0.73 
1,75 0.55 
1.70 0.64 
t.68 0.66 
5.71 1.07 

0.41 1.08 
0.52 1.38 
0.35 0.91 
0.44 1.13 
0.45 1.34 
0.54 1.67 

2.34 
2.50 
2.29 1.29 
2.56 0.90 
1.63 0.81 
5.47 1.60 

0.61 2.65 
0.49 1.73 
0.47 1.64 
0.66 3.49 

3.94 
3.44 
2.55 0.99 
5.90 1.84 

0.51 1.92 3.26 
0.78 4.15 6.31 

Table 7: Proximity's Impact on Response Latency under Flash Crowds. # - -  Mean, ~r - -  Standard Deviation. 

duce their link bandwidth by an order of  magnitude, to 
10Mbps. We want to test how different strategies re- 
spond to this heterogeneous environment. We pick rep- 
resentative schemes from each category: Random, R- 
CHash, LR-CHash and FDR and stress them under both 
normal load and flash crowd similar to network proxim- 
ity case. Table 8 summarizes our findings on system ca- 
pacities with 64 servers. 

Portion of  Slower Links 
Redirection Normal Load Flash Crowds 

Schemes 0% 10% 30% 0% 10% 30% 

Random 9300 8010 8010 11235 8449 8449 

R-CHash 20411 7471 7471 19811 7110 7110 

LR-CHash 25407 23697 1 9 4 2 1  31000 26703 22547 

FDR 33237 31000 25407 37827 34933 29496 

Table 8: Capacity (reqs/sec) with Heterogeneous Server 
Bandwidth, 

From the table we can see, under both normal load 
and flash crowds, Random and R-CHash are hurt badly 
because they are load oblivious and keep assigning re- 
quests to servers with slower links thereby overload them 
early. In contrast, LR-CHash and FDR only suffer slight 
performance downgrade. However, FDR still maintains 
advantage over LR-CHash, due to its dynamic expanding 
of server set for hot URLs. 

5.4.2 L a r g e  File Ef fec t s  

As we discussed at the end of section 5.1.3, the worse 
mean response times of  dynamic schemes come from 
serving large files with a small server set. Our first at- 
tempt to remedy this situation is to handle the largest 
files specially. Analysis of  our request trace indicates that 

99% of  the files are smaller than 530KB, so we use this 
value as a threshold to trigger special large file treatment. 
For these large files, there are two simple ways to redi- 
rect requests for them. One is to redirect these requests 
to a random server, which we call T-R (tail-random). The 
other is to redirect these requests to a least loaded mem- 
ber in a server set o f  fixed size (larger than one), which 
we call T-S (tail-static). Both of  these approaches enlarge 
the server set serving large files. We repeat experiments 
of  64 server cases in Section 5.1 and 5.2 using these two 
new approaches, where T-S employs a 10-replica server 
set for large files in the distribution tail. Handling the 
tail specially yields slightly better capacity than standard 
CDR or FDR, but the latency improves significantly. Ta- 
ble 9 summarizes latency results under normal load. As 
we can see, the T-R and T-S versions of  CDR and FDR 
usually generate better latency numbers than LR-CHash 
and LR-HRW. Results under flash crowds are similar. 
This confirms our assertion about large file effects. 

6 R e l a t e d  W o r k  a n d  D i s c u s s i o n  

Cluster Schemes: Approaches for request distribution 
in clusters [8, 12, 17] generally use a switch/router 
through which all requests for the cluster pass. As a re- 
suit, they can use various forms of  feedback and load 
information from servers in the cluster to improve sys- 
tem performance. In these environments, the delay be- 
tween the redirector and the servers is minimal, so they 
can have tighter coordination [2] than in schemes like 
ours, which are developed for wide-area environments. 
We do, however, adapt the fine-grained server set ac- 
counting from the LARD/R approach [25] for our Fine 
Dynamic Replication approach. 
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Req Rate 9,300 req/s 18,478 req/s 25,407 req/s 32,582 req/s 
Latency /t 50% 90% a /z 50% 90% ~r # 50% 90% ~r /z 50% 90% ~r 

LR-CHash 
LR-HRW 

CDR 
CDR-T-R 
CDR-T-S 

FDR 
FDR-T-R 
FDR-T-S 

0.68 0.44 t.17 
0.68 0.44 1.18 
1.16 0.52 1.47 
0.78 0.52 1.43 
0.74 0.52 1.43 
1.10 0.52 1.48 
0.78 0.52 1.43 
0,74 0.52 1.43 

2.50 0.87 
2.50 0.90 
5.96 1.35 
2.77 0.76 
2.17 0.72 
5.49 1.35 
2.77 0.75 
2.17 0.72 

0.51 1.82 
0.51 1.89 
0.55 1.75 
0.52 1.40 
0.52 1.38 
0.54 1.64 
0.52 1.40 
0.52 1.37 

2.74 
3.13 
6,63 
2.80 
2.44 
6.70 
2.82 
2.55 0.98 

1.19 0.60 2.47 
1.27 0,64 2.84 
1.86 0.63 4:49 
1.05 0.57 1.90 
1.01 0.56 1.93 
1.87 0.62 3.49 
1.01 0.57 1.87 

0.56 1.84 

3.79 
3.76 
6.62 2.37 
3.06 1.58 
2.96 1.53 
6.78 2.22 
2.98 1.39 
2.95 1.41 

1.12 5.19 7.21 
0.94 3.01 3.55 
0.68 3.69 4.18 
0.87 4.88 7.12 
0.77 2.82 3.68 
0.63 2.88 3.88 

Table 9: Response Latency with Special Large File Handling, Normal Load. # - -  Mean, o- - -  Standard Deviation. 

Distributed Servers: In the case of geographically 
distributed caches and servers, DNS-based systems can 
be used to obliviously spread load among a set of servers, 
as in the case of round-robin DNS [4], or it can be used to 
take advantage of geographically dispersed server repli- 
cas [6]. More active approaches [9, 14, 16] attempt to 
use load/latency information to improve overall perfor- 
mance. We are primarily focused on balancing load, lo- 
cality and latency, meanwhile, we also demonstrate a fea- 
sible way to incorporate network proximity into server 
selection explicitly. 

Web Caches: We have discussed proxy caches as 
one deployment vehicle for redirectors, and these plat- 
forms are also used in other content distribution schemes. 
The simplest approach, the static cache hierarchy [7], 
performs well in small environments but fails to scale 
to much larger populations [32]. Other schemes in- 
volve overlapping meshes [33] or networks of  caches in a 
content distribution network [ 19], presumably including 
commercial CDNs such as Akamai. 

DDoS Detection and Protection: DDoS attacks have 
become an increasingly serious problem on the Inter- 
net [22]. Researchers have recently developed tech- 
niques to identify the source of attacks using various 
traceback techniques, such as probabilistic packet mark- 
ing [28] and SPIE [29]. These approaches are effec- 
tive in detecting and confining attack traffic. With their 
success in deterring spoofing and suspicious traffic, at- 
tackers have to use more disguised attacks, for example 
by taking control of large number of  slave hosts and in- 
structing them to attack victims with legitimate requests. 
Our new redirection strategy is effective in providing 
protection against exactly such difficult-to-detect attacks. 

Peer-to-Peer Networks: Peer-to-peer systems pro- 
vide an alternative infrastructure for content distribution. 
Typical peer-to-peer systems involve a large number of 
participants acting as both clients and servers, and they 
have the responsibility of  forwarding traffic on behalf 
of others. Given their very large scale and massive re- 
sources, peer-to-peer networks could provide a poten- 
tial robust means of information dissemination or ex- 
change. Many peer-to-peer systems, such as CAN [26], 
Chord [30], and Pastry [27] have been proposed and they 

can serve as a substrate to build other services. Most of 
these peer-to-peer networks use a distributed hash-based 
scheme to combine object location and request routing 
and are designed for extreme scalability up to hundreds 
of thousands of nodes and beyond. We also use a hash- 
based approach, but we are dealing one to two orders of 
magnitude fewer servers than the peers in these systems, 
and we expect relatively stable servers. As a result, much 
of the effort that peer-to-peer networks spend in discov- 
ery and membership issues is not needed for our work. 
Also, we require fewer intermediaries between the client 
and server, which may translate to lower latency and less 
aggregate network traffic. 

7 Conclusions 

This paper demonstrates that improved request redirec- 
tion strategies can effectively improve CDN robustness 
by balancing locality, load and proximity. Detailed end- 
to-end simulations show that even when redirectors have 
imperfect information about server load, algorithms that 
dynamically adjust the number of servers selected for a 
given object, such as FDR, allow the system to support a 
60-91% greater load than best published CDN systems. 
Moreover, this gain in capacity does not come at the ex- 
pense of response time, which is essentially the same 
both when the system is under flash crowds and when 
operating under normal conditions. 

These results demonstrate that the proposed algorithm 
results in a system with significantly greater capacity 
than published CDNs, which should improve the sys- 
tem's ability to handle legitimate flash crowds. The re- 
sults also suggest a new strategy in defending against 
DDoS attacks: each server added to the system multi- 
plicatively increases the number of resources an attacker 
must marshal in order to have a noticeable affect on the 
system. 

Although we believe this paper identifies important 
trends, much work remains to be done. We have con- 
ducted the largest detailed simulations as current simu- 
lation environment allows. We also find that approxi- 
mate load information works well. We expect our new 
algorithms scale to very large systems with thousands 
of servers, but it requires a lot more resources and time 
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to evaluate .  We  would  l ike to r un  s i m u l a t i ons  at an  

even  larger  scale,  w i th  faster,  m o r e  power fu l  s i m u l a t e d  

servers .  We  would  a lso  l ike to e x p e r i m e n t  wi th  m o r e  

topo log ie s  such  as t hose  gene ra t ed  b y  p o w e r - l a w  b a s e d  

t opo logy  genera tors ,  u se  m o r e  t races ,  rea l  or  syn the t i c  

( such  as S P E C w e b 9 9 ) .  Final ly ,  we p l an  to dep loy  our  

new a l g o r i t h m s  on  a t e s tbed  and  exp lo re  o the r  i m p l e m e n -  

t a t ion  issues.  
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